首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The immunodominant T-cell epitope that is involved in collagen-induced arthritis (CIA) is the glycosylated type II collagen (CII) peptide 256-270. In CII transgenic mice, which express the immunodominant CII 256-270 epitope in cartilage, the CII-specific T cells are characterized by a partially tolerant state with low proliferative activity in vitro, but with maintained effector functions, such as IFN-γ secretion and ability to provide B cell help. These mice were still susceptible to CIA. The response was mainly directed to the glycosylated form of the CII 256-270 peptide, rather than to the nonglycosylated peptide. Tolerance induction was rapid; transferred T cells encountered CII within a few days. CII immunization several weeks after thymectomy of the mice did not change their susceptibility to arthritis or the induction of partial T-cell tolerance, excluding a role for recent thymic emigrants. Thus, partially tolerant CII autoreactive T cells are maintained and are crucial for the development of CIA.  相似文献   

2.

Introduction

Immune responses against collagen type II (CII) are crucial for the development of collagen-induced arthritis (CIA). The aim of the present study was to evaluate and compare the CII-directed T cell and antibody specificity at different time points in the course of CIA using two mouse strains on the B10 genetic background - B10.Q, expressing Aq MHC class II molecules, and B10.DR4.Ncf1*/*, expressing human rheumatoid arthritis-associated MHC II DR4 molecules (DRA*0101/DRB*0401).

Methods

B10.Q and B10.DR4.Ncf1*/* mice were immunized with CII emulsified in adjuvant and development of CIA was assessed. T cells from draining lymph nodes were restimulated in vitro with CII peptides and interferon-gamma (IFN-γ) levels in culture supernatants were evaluated by ELISA. CII-specific antibody levels in serum samples were measured by ELISA.

Results

At four different CIA time points we analyzed T cell specificity to the immunodominant CII epitope 259-273 (CII259-273) and several posttranslationally modified forms of CII259-273 as well as antibody responses to three B cell immunodominant epitopes on CII (C1, U1, J1). Our data show that CII-specific T and B cell responses increase dramatically after disease onset in both strains and are sustained during the disease course. Concerning anti-CII antibody fine specificity, during all investigated stages of CIA the B10.Q mice responded predominantly to the C1 epitope, whereas the B10.DR4.Ncf1*/* mice also recognized the U1 epitope. In the established disease phase, T cell reactivity toward the galactosylated CII259-273 peptide was similar between the DR4- and the Aq-expressing strains whereas the response to the non-modified CII peptide was dramatically enhanced in the DR4 mice compared with the B10.Q. In addition, we show that the difference in the transgenic DR4-restricted T cell specificity to CII259-273 is not dependent on the degree of glycosylation of the collagen used for immunization.

Conclusions

The present study provides important evaluation of CII-specific immune responses at different phases during CIA development as well as a comparative analysis between two CIA mouse models. We indicate significant differences in CII T cell and antibody specificities between the two strains and highlight a need for improved humanized B10.DR4 mouse model for rheumatoid arthritis.  相似文献   

3.
IL-10 is a pleiotropic cytokine with stimulatory and inhibitory properties, and is thought to have a protective role in rheumatoid arthritis and collagen-induced arthritis (CIA). In this study, we investigated how IL-10 deficiency affects CIA and anti-collagen type II (CII) Ab-transferred arthritis in C57BL/10.Q (B10.Q) mice. The B10.Q.IL-10(-/-) mice had an 8-cM 129/Ola fragment around the IL-10 gene. The mice were treated with antibiotics, appeared healthy, and had no colitis. T cells from IL-10(-/-) mice expressed similar levels of IFN-gamma, IL-2, and IL-4 after mitogen stimulation; however, macrophages showed a reduced TNF-alpha production compared with IL-10(+/-) littermates. IL-10(-/-) mice had an increased incidence, and a more severe CIA disease than the IL-10(+/-) littermates. To study the role of IL-10 in T cell tolerance, IL-10(-/-) were crossed into mice carrying the immunodominant epitope, CII(256-270), in cartilage (MMC) or in skin (TSC). Both IL-10(-/-) and IL-10(+/-) MMC and TSC mice were completely tolerized against CIA, indicating that lack of IL-10 in this context did not break tolerance. To investigate whether IL-10 was important in the effector phase of CIA, arthritis was induced with anti-CII Abs. Surprisingly, IL-10(-/-) were less susceptible to Ab-transferred arthritis, as only 30% showed signs of disease compared with 90% of the littermates. Therefore, IL-10 seemed to have a protective role in CIA, but seemed to exacerbate the arthritogenicity of anti-CII Abs. These data emphasize the importance of studying IL-10 in a defined genetic context in vivo, to understand its role in a complex disease like arthritis.  相似文献   

4.
Antibodies against type II collagen (anti-CII) are arthritogenic and have a crucial role in the initiation of collagen-induced arthritis. Here, we have determined the dependence of T and B cells in collagen-antibody-induced arthritis (CAIA) during different phases of arthritis. Mice deficient for B and/or T cells were susceptible to the CAIA, showing that the antibodies induce arthritis even in the absence of an adaptive immune system. To determine whether CII-reactive T cells could have a role in enhancing arthritis development at the effector level of arthritis pathogenesis, we established a T cell line reactive with CII. This T cell line was oligoclonal and responded to different post-translational forms of the major CII epitope at position 260–270 bound to the Aq class II molecule. Importantly, it cross-reacted with the mouse peptide although it is bound with lower affinity to the Aq molecule than the corresponding rat peptide. The T cell line could not induce clinical arthritis per se in Aq-expressing mice even if these mice expressed the major heterologous CII epitope in cartilage, as in the transgenic MMC (mutated mouse collagen) mouse. However, a combined treatment with anti-CII monoclonal antibodies and CII-reactive T cells enhanced the progression of severe arthritis.  相似文献   

5.
Although the pathogenesis of collagen-induced arthritis (CIA), a model of rheumatoid arthritis, is mediated by both collagen-specific CD4(+) T cells and Ab specific for type II collagen (CII), the role of CII-specific T cells in the pathogenesis of CIA remains unclear. Using tetrameric HLA-DR1 with a covalently bound immunodominant CII peptide, CII(259-273), we studied the development of the CII-specific T cell response in the periphery and arthritic joints of DR1 transgenic mice. Although the maximum number of DR1-CII-tetramer(+) cells was detected in draining lymph nodes 10 days postimmunization, these T cells accounted for only 1% or less of the CD4(+) population. After day 10, their numbers gradually decreased, but were still detectable on day 130. Examination of TCR expression and changes in CD62L, CD44(high), and CD69 expression by these T cells indicated that they expressed a limited TCR-BV repertoire and had clearly undergone activation. RT-PCR analysis of cytokine expression by the tetramer(+) T cells compared with tetramer(-) cells indicated the tetramer(+) cells expressed high levels of Th1 and proinflammatory cytokines, including IL-2, IFN-gamma, IL-6, TNF-alpha, and especially IL-17. Additionally, analysis of the synovium from arthritic paws indicated that the same CD4(+)/BV8(+)/BV14(+)/tetramer(+) T cells were present in the arthritic joints. These data demonstrate that although only small numbers of CII-specific T cells are generated during the development of CIA, these cells express very high levels of cytokine mRNA and appear to preferentially migrate to the arthritic joint, indicating a potential direct role of CII-specific T cells in the pathogenesis of CIA.  相似文献   

6.
Antibodies against type II collagen (CII) are important in the development of collagen-induced arthritis (CIA) and possibly also in rheumatoid arthritis. We have determined the fine specificity and arthritogenicity of the antibody response to CII in chronic relapsing variants of CIA. Immunization with rat CII in B10.Q or B10.Q(BALB/c×B10.Q)F2 mice induces a chronic relapsing CIA. The antibody response to CII was determined by using triple-helical peptides of the major B cell epitopes. Each individual mouse had a unique epitope-specific response and this epitope predominance shifted distinctly during the course of the disease. In the B10.Q mice the antibodies specific for C1 and U1, and in the B10.Q(BALB/c×B10.Q)F2 mice the antibodies specific for C1, U1 and J1, correlated with the development of chronic arthritis. Injection of monoclonal antibodies against these epitopes induced relapses in chronic arthritic mice. The development of chronic relapsing arthritis, initially induced by CII immunization, is associated with an arthritogenic antibody response to certain CII epitopes.  相似文献   

7.
In both collagen-induced arthritis (CIA) and rheumatoid arthritis, T cells recognize a galactosylated peptide from type II collagen (CII). In this study, we demonstrate that the CII259-273 peptide, galactosylated at lysine 264, in complex with Aq molecules prevented development of CIA in mice and ameliorated chronic relapsing disease. In contrast, nonglycosylated CII259-273/Aq complexes had no such effect. CIA dependent on other MHC class II molecules (Ar/Er) was also down-regulated, indicating a bystander vaccination effect. T cells could transfer the amelioration of CIA, showing that the protection is an active process. Thus, a complex between MHC class II molecules and a posttranslationally modified peptide offers a new possibility for treatment of chronically active autoimmune inflammation such as rheumatoid arthritis.  相似文献   

8.
A synthetic peptide representing sequences of type II collagen, (CII 245-270), has previously been used to induce tolerance and suppress arthritis in DBA/1 mice. To determine important residues, a series of peptides, each containing one or two site-directed substitutions, was generated. Mononuclear cells from DBA/1 mice immunized with CII were cultured in the presence of each peptide and the T cell response determined by measuring IFN-gamma in culture supernatant fluids. Substitutions within the region CII 260-270 led to significant decreases in IFN-gamma responses, identifying this sequence as a T cell epitope. To determine the effects of substitutions within this epitope on arthritis, substituted peptides were administered to neonatal mice as tolerogens. Five site-directed substitutions, four of which included the insertion of a residue found in type I collagen to replace its type II counterpart, abrogated the ability of the peptides to induce tolerance and suppress arthritis. These substitutions were located at residues 260, 261, 263, 264, and 266. Two patterns of T cell reactivity were observed. Peptides containing individual substitutions at positions 261, 264, or 266 were capable of generating a significant T lymphokine response, although those containing substitutions at residues 260 or 263 were ineffective Ag. Systematic analysis of the fine structures of T cell determinants important for autoimmune arthritis can lead to strategies for therapeutic intervention.  相似文献   

9.
To investigate the role of Roquin, a RING-type ubiquitin ligase family member, we used transgenic mice with enforced Roquin expression in T cells, with collagen-induced arthritis (CIA). Wild-type (WT) and Roquin transgenic (Tg) mice were immunized with bovine type II collagen (CII). Arthritis severity was evaluated by clinical score; histopathologic CIA severity; proinflammatory and anti-inflammatory cytokine levels; anti-CII antibody levels; and populations of Th1, Th2, germinal center B cells, and follicular helper T cells in CIA. T cell proliferation in vitro and cytokine levels were determined to assess the response to CII. Roquin Tg mice developed more severe CIA and joint destruction compared with WT mice. Production of TNF-α, IFN-γ, IL-6, and pathogenic anti-collagen CII-specific IgG and IgG2a antibodies was increased in Roquin Tg mice. In addition, in vitro T cell assays showed increased proliferation and proinflammatory cytokine production in response to CII as a result of enforced Roquin expression in T cells. Furthermore, the Th1/Th2 balance was altered by an increased Th1 and decreased Th2 population. These findings suggest that overexpression of Roquin exacerbates the development of CIA and that enforced expression of Roquin in T cells may promote autoimmune diseases such as CIA.  相似文献   

10.
11.
To study the phenotypic and functional changes in naive type II collagen (CII)-specific autoimmune T cells following a tolerogenic signal, a TCR-transgenic (Tg) mouse model of collagen-induced arthritis was developed. These Tg mice express an I-A(q)-restricted CII (260-267)-specific TCR that confers severe accelerated autoimmune arthritis following immunization with CII. Despite the fact that >90% of the alphabeta T cells express the Tg, these mice can be rendered completely tolerant to the induction of arthritis by i.v. administration of 200 microg of CII. As early as 24 h after CII administration, CII-specific T cells demonstrated a decreased ability to proliferate in response to the CII immunodominant peptide and phenotypically altered the expression of L-selectin to CD62L(low) and of phagocytic glycoprotein-1 to CD44(high), expression levels consistent with the phenotype of memory T cells. In addition, they up-regulated the expression of the activation markers CD71 and CD69. Functionally, following tolerogenic stimulation, the CII-specific T cells produced similar levels of IL-2 in comparison to controls when challenged with CII peptide, however, by 48 h after exposure to tolerogen, IL-2 production dropped and was replaced by high levels of IL-10 and IL-4. Based on their production of Th2 cytokines, these data suggest that T regulatory cells expressing activation and memory markers are induced by the tolerogen and may exert their influence via cytokines to protect the animals from the induction of arthritis.  相似文献   

12.
After immunization with native type II collagen (CII), susceptible strains of mice (H-2q) develop a polyarthritis that mimics rheumatoid arthritis. Although the underlying mechanisms are still undefined, T cells and particularly CD4+ lymphocytes seem to play a crucial role in the initiation of collagen-induced arthritis. To investigate whether CD8+ cells may participate in the pathogenesis of the disease, we have generated lines and clones of cytotoxic T cell hybridomas reactive to CII by fusion of lymph node and spleen cells from bovine native CII-primed C3H.Q (H-2q) mice and the AKR-derived thymoma cell line BW 5147. Clones were selected for their ability to lyse syngeneic macrophages pulsed with bovine native CII in an Ag-dependent manner. The two hybrid clones that were characterized, exhibited cell surface phenotypes of cytotoxic cells and reacted with CII purified from various species. However, each of them recognized different determinants on the CII molecule. P3G8 clone was specific for an epitope shared by CII and type XI collagen, whereas P2D9 clone reacted with CII and type IX collagen. Both hybridomas recognized CII-pulsed targets in association with H-2Kq molecules. These data indicate that the two CII-specific cytotoxic clones recognize different epitopes that are shared by other articular collagens and will allow us to test their influence on the development of arthritis in vivo.  相似文献   

13.

Introduction  

The Vβ12-transgenic mouse was previously generated to investigate the role of antigen-specific T cells in collagen-induced arthritis (CIA), an animal model for rheumatoid arthritis. This mouse expresses a transgenic collagen type II (CII)-specific T-cell receptor (TCR) β-chain and consequently displays an increased immunity to CII and increased susceptibility to CIA. However, while the transgenic Vβ12 chain recombines with endogenous α-chains, the frequency and distribution of CII-specific T cells in the Vβ12-transgenic mouse has not been determined. The aim of the present report was to establish a system enabling identification of CII-specific T cells in the Vβ12-transgenic mouse in order to determine to what extent the transgenic expression of the CII-specific β-chain would skew the response towards the immunodominant galactosylated T-cell epitope and to use this system to monitor these cells throughout development of CIA.  相似文献   

14.
Collagen type II (CII)-induced arthritis (CIA) can be induced in 78% of B10.RIII mice (H2r) by intradermal (id) immunization with CII of bovine origin in complete Freund's adjuvant (CFA), whereas immunization with CII of chick origin induces arthritis in less than 5% of these mice. Nevertheless, tolerization of B10.RIII mice with intravenously injected chick CII renders the animals resistant to induction of CIA by immunization with bovine CII. Such tolerization can be achieved either by intravenous injection of 500 micrograms chick CII 1 week prior to immunization with bovine CII in CFA or by such an intravenous injection of chick CII 2 weeks after immunization with bovine CII in CFA. Postimmunization treatment results in a significant decrease in the concentration of antibody to bovine CII. Preimmunization administration of chick CII causes a marked decrease in the antibody reactive with chick CII without a significant effect on the anti-bovine CII antibody concentration. In DBA/1 mice, a strain in which both bovine CII and chick CII can induce a high incidence of the disease, intravenous injection of bovine CII can also prevent arthritis induced by chick CII, even when given 7 or 14 days after immunization. The fact that chick CII as tolerogen is quite effective in preventing arthritis in B10.RIII mice, while as immunogen it is very ineffective in inducing arthritis in this strain, may be interpreted as evidence for interaction between different epitopes on CII in the pathogenesis of CIA.  相似文献   

15.
Rheumatoid arthritis is an autoimmune disease associated with the recognition of self proteins secluded in arthritic joints. We generated transgenic rice seeds expressing three types of altered peptide ligands (APL) and the T cell epitope of type II collagen (CII256–271). When these transgenic rice and non-transgenic rice seeds were orally administrated to DBA/1?J mice once a day for 14?days, followed by immunization with CII, the clinical score of collagen-induced arthritis (CIA) was reduced and inflammation and erosion in the joints were prevented in mice fed APL7 transgenic rice only. IL-10 production against the CII antigen significantly increased in the splenocytes and iLN of CIA mice immunized with the CII antigen, whereas IFN-γ, IL-17, and IL-2 levels were not altered. These results suggest that IL-10-mediated immune suppression is involved in the prophylactic effects caused by transgenic rice expressing APL7.  相似文献   

16.
Rats immunized with type II collagen (CII) develop an immunologically mediated polyarthritis. T cells have been implicated in the pathogenesis of this model since they can adoptively transfer the disease. A CII-specific T cell line (VA), consisting of three distinct clones by Southern blot analysis, has been shown to be arthritogenic. Antibodies specific for this line were generated by immunizing rabbits. In an attempt to prevent collagen-induced arthritis (CIA), Louvain rats were injected with 1 ml of anti-VA ip on Days -1, +1, +3 and 0.5 ml on Day +5 (early treatment). To evaluate its effect on existing disease, rats received anti-VA on the day of arthritis onset and subsequently on 4 successive alternate days using the same dosage protocol (late treatment). Control rats received no therapeutic injections or were administered normal rabbit serum. All rats were immunized with CII on Day 0 to induce CIA. Rats administered antibodies using the early anti-VA treatment protocol had a significantly diminished incidence of arthritis compared to controls. Established arthritis was significantly diminished compared to controls in rats given the late anti-VA treatment. In both protocols, radiographic evidence of joint destruction was significantly reduced compared to controls. T cell phenotyping using flow cytometry analysis demonstrated that the anti-VA antibody therapy selectively eliminated a small subset of T cells since there was little difference in total T cell counts in the experimental versus control groups. Delayed type hypersensitivity and IgG antibody titers to CII were minimally decreased in the experimental versus control group. These results suggest that antibodies raised to an oligoclonal arthritogenic T cell line can suppress collagen arthritis. This may have implications with respect to 1) the size of the T cell receptor repertoire involved in the pathogenesis of collagen arthritis and 2) immunospecific protocols for CIA and other autoimmune diseases.  相似文献   

17.
Complement deficiency ameliorates collagen-induced arthritis in mice   总被引:12,自引:0,他引:12  
Collagen-induced arthritis (CIA) is an experimental animal model of human rheumatoid arthritis being characterized by synovitis and progressive destruction of cartilage and bone. CIA is induced by injection of heterologous or homologous collagen type II in a susceptible murine strain. DBA/1J mice deficient of complement factors C3 (C3(-/-)) and factor B (FB(-/-)) were generated to elucidate the role of the complement system in CIA. When immunized with bovine collagen type II emulsified in CFA, control mice developed severe arthritis and high CII-specific IgG Ab titers. In contrast, the C3(-/-) and FB(-/-) were highly resistant to CIA and displayed decreased CII-specific IgG Ab response. A repeated bovine collagen type II exposure 3 wk after the initial immunization led to an increase in the Ab response in all mice and triggered arthritis also in the complement-deficient mice. Although the arthritic score of the C3(-/-) mice was low, the arthritis in FB(-/-) mice ranked intermediate with regard to C3(-/-) and control mice. We conclude that complement activation by both the classical and the alternative pathway plays a deleterious role in CIA.  相似文献   

18.
Dendritic cells (DC) have the potential to control the outcome of autoimmunity by modulating the immune response. In this study, we tested the ability of Fasciola hepatica total extract (TE) to induce tolerogenic properties in CpG-ODN (CpG) maturated DC, to then evaluate the therapeutic potential of these cells to diminish the inflammatory response in collagen induced arthritis (CIA). DBA/1J mice were injected with TE plus CpG treated DC (T/C-DC) pulsed with bovine collagen II (CII) between two immunizations with CII and clinical scores CIA were determined. The levels of CII-specific IgG2 and IgG1 in sera, the histological analyses in the joints, the cytokine profile in the draining lymph node (DLN) cells and in the joints, and the number, and functionality of CD4+CD25+Foxp3+ T cells (Treg) were evaluated. Vaccination of mice with CII pulsed T/C-DC diminished the severity and incidence of CIA symptoms and the production of the inflammatory cytokine, while induced the production of anti-inflammatory cytokines. The therapeutic effect was mediated by Treg cells, since the adoptive transfer of CD4+CD25+ T cells, inhibited the inflammatory symptoms in CIA. The in vitro blockage of TGF-β in cultures of DLN cells plus CII pulsed T/C-DC inhibited the expansion of Treg cells. Vaccination with CII pulsed T/C-DC seems to be a very efficient approach to diminish exacerbated immune response in CIA, by inducing the development of Treg cells, and it is therefore an interesting candidate for a cell-based therapy for rheumatoid arthritis (RA).  相似文献   

19.
Collagen-induced arthritis is a mouse model of rheumatoid arthritis (RA) and is commonly induced after immunization with type II collagen (CII) of a non-mouse origin. T cell recognition of heterologous CII epitopes has been shown to be critical in development of arthritis, as mice with cartilage-restricted transgenic expression of the heterologous T cell epitope (MMC mice) are partially tolerized to CII. However, the mechanism responsible for tolerance and arthritis resistance in these mice is unclear. The present study investigated the regulatory mechanisms in naturally occurring self-tolerance in MMC mice. We found that expression of heterologous rat CII sequence in the cartilage of mice positively selects autoreactive CD4(+) T cells with suppressive capacity. Although CD4(+)CD25(+) cells did not play a prominent role in this suppression, CD152-expressing T cells played a crucial role in this tolerance. MMC CD4(+) T cells were able to suppress proliferation of wild-type cells in vitro where this suppression required cell-to-cell contact. The suppressive capability of MMC cells was also demonstrated in vivo, as transfer of such cells into wild-type arthritis susceptible mice delayed arthritis onset. This study also determined that both tolerance and disease resistance were CD152-dependent as demonstrated by Ab treatment experiments. These findings could have relevance for RA because the transgenic mice used express the same CII epitope in cartilage as humans and because autoreactive T cells, specific for this epitope, are present in transgenic mice as well as in patients with RA.  相似文献   

20.
Rheumatoid arthritis (RA) is an autoimmune disease associated with the recognition of self proteins secluded in arthritic joints. We previously reported that altered peptide ligands (APLs) of type II collagen (CII256‐271) suppress the development of collagen‐induced arthritis (CIA). In this study, we generated transgenic rice expressing CII256‐271 and APL6 contained in fusion proteins with the rice storage protein glutelin in the seed endosperm. These transgene products successfully and stably accumulated at high levels (7–24 mg/g seeds) in protein storage vacuoles (PB‐II) of mature seeds. We examined the efficacy of these transgenic rice seeds by performing oral administration of the seeds to CIA model mice that had been immunized with CII. Treatment with APL6 transgenic rice for 14 days significantly inhibited the development of arthritis (based on clinical score) and delayed disease onset during the early phase of arthritis. These effects were mediated by the induction of IL‐10 from CD4CD25? T cells against CII antigen in splenocytes and inguinal lymph nodes (iLNs), and treatment of APL had no effect on the production of IFN‐γ, IL‐17, IL‐2 or Foxp3+ Treg cells. These findings suggest that abnormal immune suppressive mechanisms are involved in the therapeutic effect of rice‐based oral vaccine expressing high levels of APLs of type II collagen on the autoimmune disease CIA, suggesting that the seed‐based mucosal vaccine against CIA functions via a unique mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号