首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Irradiation of intact rat adipocytes with high intensity ultraviolet light in the presence of 0.5 microM [3H] cytochalasin B results in the labeling of Mr 43,000 and 46,000 proteins that reside in the plasma membrane fraction. In contrast to the Mr 46,000 protein, the Mr 43,000 component is not observed in the microsome fraction and exhibits lower affinity for [3H]cytochalasin B. Photolabeling of the Mr 43,000 protein is inhibited by cytochalasin D, indicating it is not a hexose transporter component. The Mr 46,000 protein exhibits characteristics expected for the glucose transporter such that D-glucose or 3-O-methylglucose but not cytochalasin D inhibits its photolabeling with [3H] cytochalasin B. Furthermore, insulin addition to intact cells either prior to or after photoaffinity labeling of the Mr 46,000 protein causes a redistribution of this component from the low density microsomes to the plasma membrane fraction, as expected for the hexose transporter. Photolabeling of transporters in both the low density microsome and plasma membrane fractions is inhibited when intact cells are equilibrated with 50 mM ethylidene glucose prior to irradiation with [3H]cytochalasin B. Incubation of intact cells with 50 mM ethylidene glucose for 1 min at 15 degrees C leads to an intracellular concentration of only 2 mM. Under these conditions, the photoaffinity labeling in intact cells of hexose transporters that fractionate with the low density microsomes is unaffected, indicating these transporters are not exposed to the extracellular medium. In contrast, photolabeling in intact insulin-treated cells of hexose transporters that fractionate with the plasma membrane is inhibited under these incubation conditions. The results demonstrate that insulin action results in the exposure to the extracellular medium of previously sequestered hexose transporters.  相似文献   

2.
A photoreactive, radioiodinated derivative of glucose, N-(4-iodoazidosalicyl)-6-amido-6-deoxyglucopyranose (IASA-glc), has been synthesized and used as a photoaffinity label for the human erythrocyte monosaccharide transporter. Photoinactivation and photoinsertion are both light-dependent and result in a marked decrease in the absorption spectra of the compound. When [125I]IASA-glc was photolyzed with erythrocyte ghost membranes, photoinsertion of radiolabel was observed in three major regions, spectrin, band 3, and a protein of 58,000 daltons located in the zone 4.5 region. Of the three regions which were photolabeled, only labeling of polypeptides in the zone 4.5 region was partially blocked by D-glucose. In the non-iodinated form, N-(4-azidosalicyl)-6-amido-6-deoxy-glucopyranose inhibited the labeling of the transporter by [125I]IASA-glc more effectively than D-glucose. The ability to synthesize this [125I]containing photoprobe for the monosaccharide transporter at carrier-free levels offers several new advantages for investigating the structure of this transport protein in the erythrocyte.  相似文献   

3.
The synthesis of 2-N-[4-(1'-azitrifluoroethyl)benzoyl]-1,3-bis-(D-mannos-4-++ +yloxy)-2- propylamine (ATB-BMPA) is described. This compound was used as an exofacial probe for the human erythrocyte glucose-transport system. A new method is described for directly estimating the affinity for exofacial ligands which bind to the erythrocyte glucose transporter. By using this equilibrium-binding method, the Ki for ATB-BMPA was found to be 338 +/- 37 microM at 0 degrees C and 368 +/- 59 microM at 20 degrees C. This was similar to the concentration of ATB-BMPA required to half-maximally inhibit D-galactose uptake (Ki = 297 +/- 53 microM). The new photoaffinity reagent labelled the glucose transporter in intact cells but, because of its improved selectivity, was also used to label the glucose transporter in isolated erythrocyte membranes. The ATB-BMPA-labelled glucose transporter was 80% immunoprecipitated by anti-(GLUT1-C-terminal peptide) antibody, which shows that the GLUT1 glucose transporter is the major isoform present in erythrocytes. The labelling of the glucose transporter at its exofacial site, and the adoption of an outward-facing conformation, renders the transport system resistant to thermolysin and trypsin treatment. Trypsin treatment of the unlabelled glucose transporter in erythrocyte membranes produced an 18 kDa fragment which was subsequently labelled by ATB-BMPA, but had low affinity for this exofacial ligand. This suggests that the trypsin-treated transporter adopts an inward-facing conformation. The ability of D-glucose to displace ATB-BMPA from the native transporter and from the 18 kDa trypsin fragment have been compared. The D-glucose concentration which was required to obtain half-maximal inhibition of ATB-BMPA labelling was 6-fold lower for the 18 kDa tryptic fragment.  相似文献   

4.
An aryl azide derivative of glucosamine, N-(4-iodoazidosalicyl)-2-amido-2-deoxy-D-glucopyranose (GlcNAs), was synthesized as a potential photoaffinity label for the facilitative hexose carrier. The derivative inhibited hexose uptake into intact human erythrocytes half-maximally at 3.5 mM and was itself slowly transported into cells. However, photolysis of iodinated GlcNAs with leaky erythrocyte ghosts produced appreciable labeling on gel electrophoresis only of Band 6, which is glyceraldehyde-3-phosphate dehydrogenase. Band 6 photolabeling in leaky ghosts by GlcNAs was: saturable, due mostly to the aryl azide moiety, inhibited by agents with known affinity for the enzyme including sulfhydryl reagents and the enzyme substrate glyceraldehyde-3-phosphate, and not inhibited by the free-radical scavenger p-aminobenzoic acid. Moreover, GlcNAs also inhibited erythrocyte glyceraldehyde-3-phosphate dehydrogenase activity in a dose-dependent fashion in the dark and more potently following irradiation. In resealed ghosts, Band 6 labeling was decreased by D-glucose, reflecting inhibition of carrier-mediated uptake of the agent. GlcNAs appears to be a specific photoaffinity label for erythrocyte glyceraldehyde-3-phosphate dehydrogenase, and therefore potentially useful for studies of enzyme activity, compartmentation, or membrane association.  相似文献   

5.
Specificity and kinetics of hexose transport in Trypanosoma brucei   总被引:4,自引:0,他引:4  
Transport of 6-deoxy-D-glucose was studied in Trypanosoma brucei in order to characterise the kinetics of hexose transport in this organism using a nonphosphorylated sugar. Kinetic parameters for efflux and entry, measured using zero-trans and equilibrium exchange protocols, indicate that the transporter is probably kinetically symmetrical. Comparison of the kinetic constants of D-glucose metabolism with those for 6-deoxy-D-glucose transport shows that transport across the plasma membrane is likely to be the rate-limiting step of glucose utilisation. The transport rate is nevertheless very fast and 6-deoxy-D-glucose, at concentrations below Km, enters the cells with a half filling time of less than 2 s at 20 degrees C. Thus the high metabolic capacity of these organisms is matched by a high transport rate. The structural requirements for the trypanosome hexose transporter were explored by measuring inhibition constants (Ki) for a range of D-glucose analogues including fluoro and deoxy sugars as well as epimeric hexoses. The relative affinities shown by these analogues indicated H-bonds from the carrier to the C-3, C-4 and C-5 hydroxyl oxygens and from the C-1 and C-3 hydroxyl hydrogens to the binding site. Hydrophobic interactions are likely at the C-2 and C-6 regions of the glucose molecule. Spatial constraints appear to occur around C-4 indicating that the transport site at this position is not freely open to the external solution as is the case with the mammalian hexose transporter. However, the trypanosome transporter appears to accept D-fructose but the common mammalian (erythrocyte type) hexose transporter does not.  相似文献   

6.
An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-O-succinyldeacetyl-forskolin (IAPS-forskolin), has been synthesized, purified, and characterized. The I50 for inhibition of 3-O-methylglucose transport in red blood cells by IAPS-forskolin was found to be 0.05 microM. The carrier free radioiodinated label is a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes (ghosts) and purified glucose transporter preparations with 1-2 nM [125I]IAPS-forskolin and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed specific derivatization of a broad band with an apparent molecular mass of 40-70 kDa. Photoincorporation into erythrocyte membranes using 2 nM [125I]IAPS-forskolin was protected with D-glucose (I50 400 mM), cytochalasin B (I50 0.5 microM), and forskolin (I50 10 microM). No protection was observed with L-glucose (600 mM). Endo-beta-galactosidase digestion of [125I] IAPS-forskolin-labeled ghosts and purified transporter resulted in a dramatic sharpening of the specifically radiolabeled transporter to 40 kDa. Trypsinization of [125I]IAPS-forskolin-labeled ghosts and purified transporter reduced the specifically radiolabeled transporter to a sharp peak at 18 kDa. [125I]IAPS-forskolin will be a useful tool to study the structural aspects of the glucose transporter.  相似文献   

7.
A high (HAHT) and a low (LAHT) affinity hexose transport system are present in undifferentiated rat L6 myoblasts; however, only the latter can be detected in multinucleated myotubes. This suggests that HAHT is either down-regulated or modified as a result of myogenesis. The present investigation examined the relationship between HAHT and myogenic differentiation. While myogenesis could be inhibited by the potent hexose transport inhibitor phloretin, it was not affected by phlorizin which had no effect on hexose transport. This relationship was further explored using six different HAHT-defective mutants. All six mutants, altered in either the HAHT transport affinity (Type I mutants) or capacity (Type II mutants), were impaired in myogenesis. Since these mutants were selected from both mutagenized and non-mutagenized cells with different reagents, or with different concentrations of the same reagent, the deficiency in myogenesis was likely due to changes in HAHT properties. This notion was confirmed by the observation that growth of Type I mutants in high D-glucose concentrations could rectify the defect in myogenesis. D-glucose was unlikely to rectify the defect in myogenesis, if this defect was due to a second unrelated mutation that may have arisen during isolation of the mutants. Since both types of mutants were not altered in LAHT, D-glucose should still be taken up into the cells. The fact that the glucose-mediated increase in fusion could not be observed in Type II mutants (deficient in the HAHT transporter) suggested that myogenesis was dependent on the presence of D-glucose or its metabolites in specific HAHT-accessible compartments. It is tempting to speculate that trans-acting regulators involved in myogenesis may be synthesized from the glucose metabolites in these specialized HAHT-accessible compartments.  相似文献   

8.
The influence of chemical modification of functional amino acid side-chains in proteins on the H(+)-dependent uptake system for orally active alpha-amino-beta-lactam antibiotics and small peptides was investigated in brush-border membrane vesicles from rabbit small intestine. Neither a modification of cysteine residues by HgCl2, NEM, DTNB or PHMB and of vicinal thiol groups by PAO nor a modification of disulfide bonds by DTT showed any inhibition on the uptake of cephalexin, a substrate of the intestinal peptide transporter. In contrast, the Na(+)-dependent uptake systems for D-glucose and L-alanine were greatly inhibited by the thiol-modifying agents. With reagents for hydroxyl groups, carboxyl groups or arginine the transport activity for beta-lactam antibiotics also remained unchanged, whereas the uptake of D-glucose and L-alanine was inhibited by the carboxyl specific reagent DCCD. A modification of tyrosine residues with N-acetylimidazole inhibited the peptide transport system and did not affect the uptake systems for D-glucose and L-alanine. The involvement of histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics and small peptides (Kramer, W. et al. (1988) Biochim. Biophys. Acta 943, 288-296) was further substantiated by photoaffinity labeling studies using a new photoreactive derivative of the orally active cephalosporin cephalexin, 3-[phenyl-4-3H]azidocephalexin, which still carries the alpha-amino group being essential for oral activity. 3-Azidocephalexin competitively inhibited the uptake of cephalexin into brush-border membrane vesicles. The photoaffinity labeling of the 127 kDa binding protein for beta-lactam antibiotics with this photoprobe was decreased by the presence of cephalexin, benzylpenicillin or dipeptides. A modification of histidine residues in brush-border membrane vesicles with DEP led to a decreased labeling of the putative peptide transporter of Mr 127,000 compared to controls. This indicates a decrease in the affinity of the peptide transporter for alpha-amino-beta-lactam antibiotics by modification of histidine residues. The data presented demonstrate an involvement of tyrosine and histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics across the enterocyte brush-border membrane.  相似文献   

9.
A rapid method of reconstituting human erythrocyte sugar transport proteins   总被引:3,自引:0,他引:3  
A Carruthers  D L Melchior 《Biochemistry》1984,23(12):2712-2718
A rapid reconstitution procedure for human erythrocyte hexose transfer activity is described. The procedure (reverse-phase evaporation) avoids exposure of the isolated proteins to detergent, organic solvent, sonication, or freeze-thaw steps during insertion into synthetic membranes and may be effected within 15 min. The so-formed vesicles are unilamellar structures with a large encapsulated volume, narrow size range, and low passive permeabilities. Contamination by carry-through of endogenous (red cell) lipids is less than 1%. Reconstituted hexose transfer activity was examined by using unfractionated proteins (bands 3, 4.5, and 6) and purified proteins (bands 4.5 and 3). With unfractionated proteins, hexose transport activity is low [0.34 mumol X (mg of protein)-1 X min-1], is inhibited by cytochalasin B, and increases monotonically with protein concentration. Kinetic analysis indicates that Vmax values for both influx and efflux of D-glucose are identical. Reconstitution of the cytochalasin B binding protein (band 4.5) results in hexose transport with high specific activity [5 mumol X (mg of protein)-1 X min-1] and symmetry in transfer kinetics. Band 3 proteins also appear to mediate cytochalasin B sensitive D-glucose transport activity.  相似文献   

10.
A transport system for D-glucose was found in a Friend erythroleukemia cell line, T-3-C1-2-O and was characterized as a facilitated diffusion system. D-Glucose transport activity showed a half-saturation concentration of 2.2 mM and was inhibited by mercuric ions, cytochalasin B, phloretin, and stilbestrol, but was not strongly inhibited by phloridzin. Transport of 3-O-methyl-D-glucose was faster than D-glucose and the intracellular concentration of the sugar was found to reach the concentration in the assay medium. The treatment of cells with a differentiation-inducing reagent, dimethylsulfoxide(Me2SO), for 24 h caused a marked decrease in glucose transport activity due to a decrease in Vmax. In an induction-insensitive Friend cell line, T-3-K-1, D-glucose transport activity was low in untreated cells and Me2SO treatment did not cause a significant decrease in transport activity. The results obtained in this study indicate that the decrease in glucose transport activity is not due to the direct effect of Me2SO on transport activity, but is associated with the induction of differentiation. By immunoblotting cell lysates of T-3-C1-2-O cells using antibody to human erythrocyte glucose transporter, a single major band having a molecular weight of 52,000 was detected, which may be a glucose transporter in Friend cells.  相似文献   

11.
Cytochalasin B was found to bind to at least two distinct sites in human placental microvillous plasma membrane vesicles, one of which is likely to be intimately associated with the glucose transporter. These sites were distinguished by the specificity of agents able to displace bound cytochalasin B. [3H]Cytochalasin B was displaceable at one site by D-glucose but not by dihydrocytochalasin B; it was displaceable from the other by dihydrocytochalasin B but not by D-glucose. Some binding which could not be displaced by D-glucose + cytochalasin B binding site. Cytochalasin B can be photoincorporated into specific binding proteins by ultraviolet irradiation. D-Glucose specifically prevented such photoaffinity labeling of a microvillous protein component(s) of Mr = 60,000 +/- 2000 as determined by urea-sodium dodecyl sulfate acrylamide gel electrophoresis. This D-glucose-sensitive cytochalasin B binding site of the placenta is likely to be either the glucose transporter or be intimately associated with it. The molecular weight of the placental glucose transporter agrees well with the most widely accepted molecular weight for the human erythrocyte glucose transporter. Dihydrocytochalasin B prevented the photoincorporation of [3H]cytochalasin B into a polypeptide(s) of Mr = 53,000 +/- 2000. This component is probably not associated with placental glucose transport. This report presents the first identification of a sodium-independent glucose transporter from a normal human tissue other than the erythrocyte. It also presents the first molecular weight identification of a human glucose-insensitive high-affinity cytochalasin B binding protein.  相似文献   

12.
Human erythrocyte membranes and partially purified nucleoside transporter (band 4.5 and 7) were photoaffinity labelled with 3H-labelled 6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine under equilibrium binding conditions. Band 4.5 was the major site of radiolabelling in both preparations. These experiments provide additional evidence to implicate band 4.5 polypeptides in nucleoside permeation, proteins previously shown to be involved in hexose transport.  相似文献   

13.
Maltosylisothiocyanate (MITC), synthesized as an affinity label for the hexose carrier, has been reported to label a Band 3 or Mr = 100,000 protein in human erythrocytes, in contradistinction to many studies showing the carrier as a Band 4.5 or Mr = 45,000-66,000 protein on gel electrophoresis. In this work the possibility that MITC interacts with the Band 3 anion transporter was studied. In intact human erythrocytes, MITC labeling was largely confined to Band 3 and was decreased by several competitive inhibitors of hexose transport. However, MITC also appeared to react with the anion transport protein, since MITC labeling of Band 3 was irreversibly decreased by the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) and since MITC also irreversibly inhibited both tritiated dihydro-DIDS labeling of Band 3 and sulfate uptake in intact cells. Although 20 microM DIDS had little effect on hexose transport, the labeling of erythrocyte Band 3 by the dihydro analog was significantly diminished by competitive inhibitors of hexose transport. These data suggest that MITC labels in part the anion transporter as well as other DIDS-reactive sites on Band 3 which appear to be sensitive to competitive inhibitors of hexose transport.  相似文献   

14.
15.
The benzophenone derivative of 1,3-bis(D-mannos-4-yloxy)-2-propylamine (BB-BMPA) has been tested as an exofacial photoaffinity label for the sugar transport systems of human erythrocytes and rat adipocytes. The half-maximal inhibition constants for the reagent are 971 microM in erythrocytes and 536 microM in basal and 254 microM in insulin-treated adipocytes. The photolabelling of erythrocyte membranes is very specific for the 50 kDa transporter peptide and is completely displaced by D-glucose. The exofacial photoaffinity labelling of adipocytes also shows labelling of a 50 kDa transporter peptide, which is displaced by cytochalasin B, but extensive nonspecific labelling of a 75 kDa plasma membrane peptide occurs. The transporter is labelled in insulin-treated cells but not in basal cells which indicates that this in situ labelling technique selectively reveals only those transporters that visit and are active in the plasma membrane during the labelling period. This also indicates that in basal cells transporters do not turn over rapidly. Subcellular redistribution of transporters after the labelling period has been studied. Following incubation and washing at 37 degrees C in the presence of insulin, 30% of the transporters photolabelled at the plasma membrane are internalised and are found in the light microsome fraction of the cell. The proportion of transporter that is observed to be internalised is much greater than can be accounted for by a contamination of the light microsome fraction by plasma membrane. The labelled 50 kDa transporter peptide in the light microsomes is enriched when compared with the carry-over of the 75 kDa nonspecifically labelled plasma membrane peptide. Thus we have obtained direct evidence for transporter translocation.  相似文献   

16.
At least two types of glucose transporter exist in cultured renal epithelial cells, a Na(+)-glucose cotransporter (SGLT), capable of interacting with D-glucose but not 2-deoxy-D-glucose (2dglc) and a facilitated transporter (GLUT) capable of interacting with both D-glucose and 2dglc. In order to examine the polarity of transport in cultured renal epithelia, 2dglc and D-glucose uptakes were measured in confluent cultures of LLC-PK1 cells grown on collagen-coated filters that permitted access of medium to both sides of the monolayer. The rates of basolateral uptake of both 1 mM glucose (Km 3.6 mM) and 1 mM 2dglc (Km 1.5 mM) were greater than apical uptake rates and the (apical-to-basolateral)/(basolateral-to-apical) flux ratio was high for glucose (9.4) and low for 2dglc (0.8), thus, confirming the lack of interaction of 2dglc with the apical SGLT. Specific glucose transport inhibitor studies using phlorizin, phloretin and cytochalasin B confirmed the polarised distribution of SGLT and GLUT in LLC-PK1 cells. Basolateral sugar uptake could be altered by addition of insulin (1 mU/ml) which increased 2dglc uptake by 72% and glucose uptake by 50% and by addition of 20 mM glucose to the medium during cell culture which decreased 2dglc uptake capacity at confluence by 30%. During growth to confluence, 2dglc uptake increased to a maximum, then decreased at the time of confluence, coincident with a rise in uptake capacity for alpha-methyl-D-glucoside, a hexose that interacts only with the apical SGLT. It was concluded that the non-metabolisable sugar 2dglc was a useful, specific probe for GLUT in LLC-PK1 cells and that GLUT was localised at the basolateral membrane after confluence.  相似文献   

17.
The stopped flow method combined with fluorescence detection has been employed to study the rapid kinetics of the glucose transporter from human erythrocytes. Upon mixing the purified transporter reconstituted into unsealed membranes of erythrocyte lipids with 4,6-ethylidene D-glucose, a derivative that binds preferentially to the substrate site on the outer domain of the transporter, there was a rapid, first-order decrease in the intrinsic fluorescence of the protein. Three properties of this transient indicate that it represents a half-turnover of the transporter from a conformation with the substrate site facing inward to one with this site facing outward. The first-order rate constant decreased as the concentration of ethylidene glucose was increased; the value of the rate constant for the process is similar to that expected from steady-state kinetic studies of transport in the erythrocyte; and D-glucose at low concentration increased the rate of reaction. This study is the first determination of the kinetics of a half-turnover for a transport system of the facilitated diffusion type. The identification of this step provides direct evidence for the alternating conformation mechanism of transport.  相似文献   

18.
Reconstitution of the glucose transporter from bovine heart   总被引:1,自引:0,他引:1  
Reconstitution of the glucose transporter from heart should be useful as an assay in its purification and in the study of its regulation. We have prepared plasma membranes from bovine heart which display D-glucose reversible binding of cytochalasin B (33 pmol sites/mg protein; Kd = 0.2 muM). The membrane proteins were reconstituted into liposomes by the freeze-thaw procedure. Reconstituted liposomes showed D-glucose transport activity which was stereospecific, saturable and inhibited by cytochalasin B, phloretin, and mercuric chloride. Compared to membrane proteins reconstituted directly, proteins obtained by dispersal of the membranes with low concentrations of cholate or by cholate solubilization showed 1.2- or 2.3-fold higher specific activities for reconstituted transport, respectively. SDS-polyacrylamide gel electrophoresis followed by electrophoretic protein transfer and labeling with antisera prepared against the human erythrocyte transporter identified a single band of about 45 kDa in membranes from both dog and bovine hearts, a size similar to that reported for a number of other glucose transporters in various animals and tissues.  相似文献   

19.
D-glucose carrier protein in K562 cell membrane was studied by photoaffinity labeling with cytochalasin B. The saturable cytochalasin B binding in purified K562 cell membranes was 90 pmol/mg and 200 pmol/mg protein in the presence of D-glucose and D-sorbitol, respectively. More than half of the total cytochalasin B binding could be depressed by D-glucose. The results of SDS-PAGE analysis of K562 cell membranes after photoaffinity labeling at 0.1 microM cytochalasin B showed that the main peak of covalently bound [3H]-cytochalasin B was in the Mr range of 46-65 KDa. The label found in the peak was reduced by more than 50% in the presence of 0.5 M D-glucose, the inhibition similar being to that obtained in the binding experiment. This polypeptide has a slightly higher molecular weight than that of the human erythrocyte cell membrane.  相似文献   

20.
Both genomic and full length cDNA clones of an Arabidopsis thaliana sugar carrier, STP1, have been obtained using a cDNA clone of the H+/hexose cotransporter from the green alga Chlorella kessleri as hybridization probe. The peptide predicted from these sequences in 522 amino acids long and has a molecular weight of 57,518 kd. This higher plant sugar carrier contains 12 putative transmembrane segments and is highly homologous to the H+/hexose cotransporter from Chlorella, with an overall identity in the amino acid sequence of 47.1%. It is also homologous to the human HepG2 glucose transporter (28.4%), and other sugar carriers from man, rat, yeast and Escherichia coli. The definite proof for the function of the STP1 protein as a hexose transporter and data on its substrate specificity were obtained by heterologous expression in the fission yeast Schizosaccharomyces pombe. Transformed yeast cells transport D-glucose with a 100-fold lower KM value than control cells. Moreover only the transformed cells were able to accumulate the non-metabolizable D-glucose analogue 3-O-methyl-D-glucose, indicating that the Arabidopsis carrier catalyses an energy dependent, active uptake of hexoses. Expression of STP1 mRNA is low in heterotrophic tissues like roots or flowers. High levels of expression are found in leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号