首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extent of gastric damage induced by aspirin was found to differ according to rat strain. The occurrence of ulcers varied, from high to low, in the following strain order: Donryu, Sprague-Dawley (SD) and Wistar. The content of corpus mucus glycoprotein was essentially the same in all the strains: about 6 mg as hexose of dry tissue. Antral mucus glycoprotein content increased in the order Wistar, SD and Donryu: 7.1, 8.3 and 9.1 mg, respectively. Gastric mucus glycoprotein carbohydrate composition was essentially the same in all three strains. The relatively low proportions of N-acetylglucosamine, galactose and sialic acid from the antrum was a characteristic feature in contrast to mucus glycoprotein from the corpus which contained a high proportion of these sugars.  相似文献   

2.
Biosynthetic activity of gastrin mucus glycoprotein in rats after fasting for 24 and 72 hr was studied by the organ culture technique. Fasting produced a slight reduction in gastric mucus glycoprotein biosynthesis in the corpus and antrum (about 70-90% of fed rats). Sulfation of gastric mucus glycoprotein was restrained in the corpus (18% in control for 72 hr).  相似文献   

3.
Comparative study on mucus glycoproteins in rat stomach and duodenum   总被引:1,自引:0,他引:1  
The density of mucus glycoprotein compared to that of the corpus, antrum and duodenum was; 1.52, 1.49 and 1.57 g/ml respectively. Carbohydrate composition of gastrointestinal mucus glycoprotein consisted of N-acetylgalactosamine, N-acetylglucosamine, galactose, fucose and sialic acid. Ratios of carbohydrate composition among corpus, antral and duodenal mucus glycoproteins differed. The average length of an oligosaccharide was found to be about 12-13, 14 and 10 sugars in the corpus, antrum and duodenum, respectively. In the corpus, the amino acid content was found to have the following quantitative order: Thr greater than Ser greater than Glx = Pro; in the antrum: Thr greater than Ser greater than Glx; and in the duodenum: Thr greater than Ser greater than Pro. Corpus, antral and duodenal mucus glycoproteins have the blood-group A antigen; antral mucus glycoprotein in particular exhibited strong blood-group A activity.  相似文献   

4.
Two types of rat gastric mucus glycoprotein subunits   总被引:1,自引:0,他引:1  
Gastric mucus glycoproteins were extracted with 2% Triton X-100 from rat gastric corpus and antrum and purified by CsCl equilibrium centrifugation. Corpus mucus glycoproteins were degraded into what appeared to be two "subunits" (Mw 4.4 x 10(5) and 6 x 10(6)) by the reduction of disulfide bonds. Papain digestion of the latter produced glycopeptides with a molecular weight of approximately 4.4 x 10(5). This type of subunit had carbohydrate chains with about 9 sugars attached to every 2 amino acid residues. Papain digestion of the former type of subunit revealed no change in the elution profile on Bio-Gel A-15m. This type of subunit had carbohydrate chains with 17-19 sugars attached to every 3 amino acid residues. The subunit of antral mucus glycoproteins was essentially the same as the former type of corpus subunits in molecular weight (Mw 4.4 x 10(5)) and average oligosaccharide chain length. These results suggest that there are two distinct types of mucus glycoprotein subunits in rat stomach.  相似文献   

5.
Peptic erosion of gastric mucus in the rat   总被引:1,自引:0,他引:1  
1. The effect of pepsin on the loss of mucus glycoprotein from the gastric epithelial mucus layer was studied in the rat. 2. Pepsin was instilled into the gastric lumen, and luminal contents were subsequently assayed. 3. Glycoprotein loss increased with luminal pepsin, up to a concentration of 1 mg pepsin/ml. 4. Luminal glycoprotein had a molecular size distribution intermediate between subunit, and native mucus glycoprotein of the epithelial mucus layer. 5. Incubation of gastric epithelial scrapings with pepsin demonstrated that insoluble, native mucus glycoprotein was rapidly degraded to soluble glycoprotein of similar molecular size distribution to that found in vivo in the lumen.  相似文献   

6.
Covalently bound fatty acids were found in strictly purified and delipidated gastric mucus glycoprotein of normal and cystic fibrosis individuals. The susceptibility of this linkage to methanolic KOH and hydroxylamine treatment indicated the ester bond between fatty acids and glycoprotein. On the average, 2.9 nmol fatty acid/mg glycoprotein were found in normal samples, and 12.2 nmol/mg glycoprotein in samples derived from cystic fibrosis. In normal gastric mucus glycoprotein the covalently linked fatty acids consisted of hexadecanoate (47.0%), octadecanoate (22.0%), tetracosanoate (5.9%), octadecenoate (14.5%) and tetracosenoate (6.0%). In cystic fibrosis mucus glycoprotein the covalently bound fatty acids were comprised mainly of hexadecanoate (36.5%), octadecanoate (48.7%) and octadecenoate (8.6%). These data indicate that cystic fibrosis gastric mucus glycoprotein is highly acylated and perhaps this is the major defect of glycoproteins in this disease.  相似文献   

7.
A fatty acyltransferase activity which catalyzes the transfer of palmitic acid from palmitoyl coenzyme A to gastric mucus glycoprotein has been demonstrated in the rat gastric mucosa. Subcellular fractionation studies revealed that the enzyme activity was present in a Golgi-rich membrane fraction. Optimum enzymatic activity for acylation of mucus glycoprotein was obtained with 0.5% Triton X-100, 25 mM NaF, and 2 mM dithiothreitol at a pH of 7.4. The enzymatic activity increased proportionally, over a given range, with increased concentrations of both substrates and of enzyme. The apparent Km of the enzymes for the undegraded mucus glycoprotein was 4.5 X 10(-7) M and for palmitoyl-CoA, 3.8 X 10(-5) M. The 14C-labeled product of the reaction cochromatographed on Bio-Gel A-50 column and migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with gastric mucus glycoprotein. Treatment of this 14C-labeled glycoprotein with mild alkali released hexane-extractable product which was identified as [14C]palmitate. The enzyme was also capable of fatty acylation of the deglycosylated glycoprotein, but did not catalyze the transfer of palmitic acid to the proteolytically degraded mucus glycoprotein. This indicates that the acceptor site for fatty acyltransferase is situated in the protease-susceptible nonglycosylated region of the mucus glycoprotein polymer.  相似文献   

8.
P Tao  D E Wilson 《Prostaglandins》1984,28(3):353-365
The effects of orally administered prostaglandin E2, 16,16-dimethyl prostaglandin E2 and U-46619, an analogue of the prostaglandin endoperoxide PGH2, on gastric secretory volume, acid and mucus were studied in the rat. All of the compounds significantly increased the volume of gastric secretion, mucus secretion, measured as N-acetylneuraminic acid and mucus synthesis measured as the incorporation of [3H]-glucosamine into mucosal glycoprotein; however, only PGE2 and 16,16-dimethyl PGE2 inhibited acid secretion. U-46619, 1.5 mg/kg provided significant protection against ethanol-induced gastric ulcers, an effect that has been previously shown for the other two compounds. These studies provide additional evidence that prostaglandin induced mucosal protection may be related to an effect on mucus and on stimulation of nonparietal cell gastric secretion. Further study of these parameters may be important in the development of antiulcer drugs for long term clinical use.  相似文献   

9.
The undegraded high-molecular-weight glycoprotein of human gastric mucus has been isolated free of noncovalently bound proteins and lipids, as judged by gel filtration, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, cesium chloride density gradient centrifugation, and lipid analysis. Mild alkaline methanolysis of the thoroughly delipidated glycoprotein revealed that, on the average, the native undegraded glycoprotein contains 2.9 mol of acyl linked fatty acids/mg glycoprotein. The low-molecular-weight glycoprotein subunits, obtained after pepsin digestion, contain 2 nmol of acyl linked fatty acids/mg glycopeptide. The highest content of covalently bound fatty acids was found in the fraction of glycoprotein which remained undegraded after pepsin digestion. On the average, 10.2 mol of fatty acids/mg was substituted on this pepsin-resistant glycoprotein. After deacylation with hydroxylamine, the undegraded pepsin-resistant glycoprotein became susceptible to proteolytic cleavage. The obtained results suggest that fatty acids covalently bound to gastric mucus glycoprotein are involved in the regulation of proteolytic digestion of mucus glycoprotein in the stomach.  相似文献   

10.
In vitro acylation of rat gastric mucus glycoprotein with [3H]palmitic acid   总被引:3,自引:0,他引:3  
The incorporation of fatty acids into gastric mucus glycoproteins was studied by incubating rat gastric mucosal cell suspensions with [9,10-3H]palmitic acid and [3H]proline. The mucus glycoprotein polymer, secreted into the growth medium (extracellular) and that contained within the cells (intracellular), was purified from the other components of the secretion, thoroughly delipidated, and then analyzed for the radiolabeled tracers. Both pools of mucus glycoprotein, incubated in the presence of [3H]palmitic acid, contained radioactive label which could not be removed by gel filtration, CsCl density gradient centrifugation, sodium dodecyl sulfate-gel electrophoresis, or lipid extraction. Treatment of the purified mucus glycoprotein with 1 M hydroxylamine or 0.3 M methanolic KOH released the radioactivity, thus indicating that [3H]palmitic acid was covalently bound by ester linkage to the glycoprotein. The released radioactivity was associated mainly (87%) with palmitic acid. The incorporation ratio of [3H]proline to [3H]palmitic acid was 0.12:1.0 in the extracellular glycoprotein and 1.38:1.0 in the intracellular glycoprotein, which suggested that acylation of mucus glycoprotein occurs in the intracellular compartment after completion of its polypeptide core. The fact that incorporation of [3H]palmitic acid was greater in the glycoprotein subunits than in the glycoprotein polymer indicates that acylation takes place near the end of subunit processing but before their assembly into the high molecular weight mucus glycoprotein polymer.  相似文献   

11.
Sialic acids occupy terminal positions on gastric mucus glycoprotein where they contribute to the high viscosity of mucin. Desialylation of mucus may lead to degradation of the mucus and eventually to the breakdown of the gastric mucus barrier. The effect of a variety of damaging agents (0.1 M HCl, 2 mg ml(-1) pepsin and 2 M NaCl) on sialic acid profile was determined in pylorus-ligated rats. The relationship between sialic acid, galactose, pyruvate and the extent of gastric mucosal damage were studied. Instillation of pepsin significantly increased total sialic acid, galactose and macroscopic mucosal lesions in the stomach. Instillation of 0.1 M HCl reduced the total sialic acid but this decrease was not significant. Acidity led to a significant increase in the amount of free sialic acid in the gastric instillates and the macroscopic lesions induced by acid was not significantly different from the control animals (0.15 M NaCl). 2 M NaCl induced the macroscopic lesions in the stomach and also free sialic acid in the instillates. Pepsin potentiates the action of 2 M NaCl. In all the agents examined with the exception of acid, it was observed that an increase in free sialic acid and galactose was accompanied by gastric mucosal erosion and elevation of pyruvate concentration. It is concluded that gastric acidity alone is not inherently damaging and that resistance of gastric mucosa to destructive agents may be dependent on the integrity of the sialic acids.  相似文献   

12.
The effect of ethanol on the synthesis and secretion of mucus glycoprotein in gastric mucosal cells was investigated. The mucosal cell suspensions were subjected to a short-term (4 h) culture in the presence of 0-1.5 M ethanol, with [3H]proline and [3H]palmitic acid as markers for glycoprotein synthesis and acylation. The synthesized labeled mucus glycoprotein was isolated from the incubation medium (extracellular glycoprotein) and from the mucosal cells (intracellular glycoprotein), and analyzed. Depending upon the ethanol concentration in the cell culture medium, two distinct effects on the synthesis and secretion of mucus glycoprotein were observed. The cells cultured in the presence of 0.02-0.1 M ethanol showed increased ability for the incorporation of [3H]proline and [3H]palmitic acid, and for the secretion of the newly assembled mucus glycoprotein. The synthesis of the glycoprotein increased 18-fold, acylation 5-fold, and secretion 10-fold. The synthesized glycoprotein, however, contained four to five times less of acyl-bound fatty acids. Ethanol at 0.1-1.5 M caused a marked reduction (62-64%) in the mucus glycoprotein synthesis, but the amount of glycoprotein released to the medium remained constant. This indicated that higher concentrations of ethanol caused the release of the preformed intracellular mucus glycoprotein reserves. The results demonstrate that gastric mucosal cells incubated in the presence of ethanol exhibit impaired synthesis and secretion of mucus glycoprotein, and that the severity of impairment depends upon the ethanol concentration.  相似文献   

13.
The effect of associated lipids and covalently bound fatty acids, and the contribution of serum albumin and secretory IgA to the viscosity of dog gastric mucus glycoprotein was investigated. Using a cone/plate viscometer at shear rates between 1.15 - 230s -1, it was found that extraction of associated lipids from the glycoprotein lead to 80-85% decrease in the viscosity. Further loss (39%) in viscosity of the delipidated glycoprotein occurred following removal of covalently bound fatty acids. Reassociation of the delipidated glycoprotein with its neutral lipids increased the viscosity 3-fold, a 2.5-fold increase was obtained with glycolipids, and 2-fold with phospholipids. Preincubation of purified mucus glycoprotein with albumin or IgA resulted in the increase in viscosity. This increase in viscosity was proportional to albumin concentration up to 10%, and to IgA concentration up to 5%. The results show that interaction of lipids and proteins with mucus glycoprotein contributes significantly to the viscosity of gastric mucus.  相似文献   

14.
The effect of 16,16-dimethyl prostaglandin E2 (DMPGE2) on gastric mucus glycoprotein viscosity, permeability to hydrogen ion and degradation by pepsin was investigated. Preincubation with DMPGE2 produced a marked enhancement in the glycoprotein viscosity. The increase was concentration dependent and at 2.6 X 10(-5)M DMPGE2 reached a value of 178%. Permeability measurements revealed that 2.6 X 10(-7)M DMPGE2 increased the retardation ability of the glycoprotein to hydrogen ion by 10%, while 22% increase was obtained with 2.6 X 10(-4)M DMPGE2. The results of peptic activity assay showed that DMPGE2 had no inhibitory effect on the rate of glycoprotein proteolysis, and actually a small stimulatory influence was consistently observed. The results suggest that prostaglandins beneficially affect the physical properties of mucus glycoprotein which are considered to be essential for the protective function of gastric mucus.  相似文献   

15.
The effects of orally administered prostaglandin E2, 16,16-dimethyl prostaglandin E2 and U-46619, an analogue of the prostaglandin endoperoxide PGH2, on gastric secretory volume, acid and mucus were studied in the rat. All of the compounds significantly increased the volume of gastric secretion, mucus secretion, measured as N-acetylneuraminic acid and mucus synthesis measured as the incorporation of [3H]-glucosamine into mucosal glycoprotein; however, only PGE2 and 16,16-dimethyl PGE2 inhibited acid secretion. U-46619, 1.5 mg/kg provided significant protection against ethanol-induced gastric ulcers, an effect that has been previously shown for the other two compounds. These studies provide additional evidence that prostaglandin induced mucosal protection may by related to an effect on mucus and on stimulation of nonparietal cell gastric secretion. Further study of these parameters may be important in the development of antiulcer drugs for long term clinical use.  相似文献   

16.
  • 1.1. The effect of gastric mucus glycoprotein on the activity of calcium channel isolated from gastric epithelial cell membrane was investigated. The 45Ca2+ uptake into the vesicle-reconstituted channels, while only moderately (14%) affected by the intact mucus glycoprotein, was found significantly inhibited (59%) by the acidic glycoprotein fraction. This effect was associated with the sialic acid and sulfate ester groups of the glycoprotein, as their removal caused a loss in the inhibition.
  • 2.2. The channel complex in the presence of epidermal growth factor (EGF) and ATP responded by an increase in protein tyrosine phosphorylation of 55 and 170 kDa proteins, and the vesicles containing the phosphorylated channels showed a 50% increase in 45Ca2+ uptake. The phosphorylation and the calcium uptake were susceptible to inhibition by a specific tyrosine kinase inhibitor, genistein.
  • 3.3. The channel protein phosphorylation was inhibited by the acidic mucus glycoprotein, which also interfered with the binding of EGF to the channel protein. The inhibitory effect was dependent upon the presence of sulfate ester and sialic acid groups, as evidenced by the loss of the glycoprotein inhibitory capacity following their removal.
  • 4.4. The results suggest that the acidic gastric mucus glycoproteins, by modulating the EGF-controlled calcium channel phosphorylation, play a major role in gastric mucosal calcium homeostasis.
  相似文献   

17.
The glycoprotein of pig gastric mucus has been isolated free of non-covalently bound protein as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and equilibrium density-gradient centrifugation. After reduction with 0.2 M-mercaptoethanol, protein was released from the glycoprotein, which consisted of a major 70000-mol.wt. component and a minor 60000-mol.wt. component. The 70000-mol.wt. protein fraction was separated from the reduced glycoprotein by either density-gradient centrifugation in CsCl or by gel filtration. Analysis of the 70000-mol.wt. protein fraction showed that, within the limits of the analysis, it was non-glycosylated, and its amino acid analysis was quite different from that of the reduced glycoprotein, which is high in serine, threonine and proline. There was a ratio of one 70000-mol.wt. protein per native glycoprotein molecule of 2 X 10(6) mol.wt. Dissociation of the native glycoprotein into glycoprotein subunits (5 X 10(5) mol.wt.) by reduction or proteolysis results in the release or hydrolysis respectively of the 70000-mol.wt. protein. A similar 70000-mol.wt. protein is demonstrated in human gastric mucus glycoprotein. A structural role for the proteins in these mucus glycoproteins is proposed.  相似文献   

18.
The effect of an antiulcer drug (sucralfate) on the viscosity and the ability of pig gastric mucus glycoprotein to retard the diffusion of hydrogen ions was investigated. Preincubation with sucralfate produced a marked enhancement in the glycoprotein viscosity. This enhancement was concentration-dependent and at 1.0 X 10(-3) M sucralfate a 60% increase in viscosity was attained. Permeability measurements revealed that sucralfate caused a substantial improvement in the ability of the glycoprotein to retard the diffusion of hydrogen ions. At 1.0 X 10(-3) M sucralfate, permeability decreased by 25% and a 43% reduction was obtained with 1.0 X 10(-3) M sucralfate. It is suggested that sucralfate, by increasing the viscosity of the glycoprotein and by improving its ability to retard the diffusion of hydrogen ions, strengthens the integrity of gastric mucus.  相似文献   

19.
Radiolabelled mucus glycoprotein was obtained from tissue and a culture medium each of the corpus and antrum of rat stomach incubated with [35S]sulphate in vitro. Gel-filtration analysis of oligosaccharides liberated by alkaline-borohydride treatment from glycoproteins indicated that 35S-labelled oligosaccharides from the corpus vary considerably with respect to chain length whereas those from antral mucus glycoprotein are composed of small oligosaccharides. Examination of the reduced radiolabelled products obtained by HNO2 cleavage of the hydrazine-treated oligosaccharides indicated sulphate esters of N-acetylglucosamine to be present at three locations on a carbohydrate unit: [35S]sulphated monosaccharide (2,5-anhydromannitol 6-sulphate), [35S]sulphated disaccharide [galactosyl(beta 1-4)-2,5-anhydromannitol 6-sulphate] and [35S]sulphated trisaccharide [fucosyl(alpha 1-2)-galactosyl(beta 1-4)-2,5-anhydromannitol 6-sulphate]. Sulphated disaccharide and trisaccharide, possibly originating from the N-acetyl-lactosamine and fucosyl-N-acetyl-lactosamine sequences respectively, were detected in the corpus, especially as large oligosaccharides, but were present in the antrum in only very small amounts. The sulphated monosaccharide, however, most probably originating from 6-sulphated N-acetylglucosamine residues at non-reducing termini, was present in all oligosaccharide fractions in both the corpus and antrum.  相似文献   

20.
The effect of fish oil (FO) derived from Scomberoides commersonianus containing omega-3 polyunsaturated fatty acids was studied on gastric ulcers and as well as on offensive and defensive factors in gastric mucosal damage, following experimental gastric ulceration. FO significantly reduced the severity of ulceration in gastric ulcers induced by aspirin, cold-restraint stress (CRS), alcohol, and pylorus ligation. The results also indicated the potentiality of FO in maintaining the integrity of gastric mucosa by virtue of its effect on both offensive and defensive gastric mucosal factors. It decreased the offensive acid-pepsin secretion and augmented the defensive factors like mucin secretion, cellular mucus and life span of mucosal cells following pylorus ligation. FO significantly increased activity of anti-oxidant enzymes (catalase and glutathione peroxidase) and decreased lipid peroxidation in gastric mucosa of CRS rats. The study indicates the beneficial role of FO in gastric ulceration by inhibition of offensive mucosal factors and oxidative stress, and augmentation of defensive mucosal factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号