首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visualization of planar drug intercalations in B-DNA.   总被引:13,自引:8,他引:5       下载免费PDF全文
A computerized linked-atom modeling system was developed to examine the stereochemical requirements for intercalation of planar drugs into DNA. All classes of conformational possibilities for extending the polynucleotide backbone were examined for their ability to accommodate insertion of a drug into a base-paired region of DNA compatible with adjacent regions of B-DNA while stacking interactions, steric strain and non-bonded interatomic contacts were optimised. One conformation was found which proved superior to all others in ability to satisfy these criteria: an extension of the backbone by characteristic changes in two torsion angles to trans values, plus a change in one sugar puckering to C3'-endo to relieve strain in an adjacent residue. The turn angle distributed over three polynucleotides for this most general mode of intercalation is 90 degrees, equivalent to a helical unwinding of -18 degrees for B-DNA.  相似文献   

2.
The crystal and molecular structure of anthracycline antibiotic steffimycin B(C29H32O13) has been determined by X-ray diffraction and the stereochemistry revealed. The orthorhombic crystals belong to space group P2(1)2(1)2(1), with the dimensions; a = 8.253 (2), b = 8.198 (2), c = 40.850 (8) A and Z = 4. Intensity data were collected for 2518 independent reflections. The structure was solved by direct methods and refined to an R value of 0.066 for 1410 reflections. The configuration in ring A is 7R,8S,9S. Ring A adopts half chair conformation, while the sugar ring has the regular chair conformation. The molecule most probably binds to double helical DNA through intercalation and hydrogen bonding.  相似文献   

3.
4.
The crystal structures of the 2:1 complex of the self-complementary DNA octamer d(GAAGCTTC) with actinomycin D has been determined at 3.0 A resolution. This is the first example of a crystal structure of a DNA-drug complex in which the drug intercalates into the middle of a relatively long DNA segment. The results finally confirmed the DNA-actinomycin intercalation model proposed by Sobell & co-workers in 1971. The DNA molecule adopts a severely distorted and slightly kinked B-DNA-like structure with an actinomycin D molecule intercalated in the middle sequence, GC. The two cyclic depsipeptides, which differ from each other in overall conformation, lie in the minor groove. The complex is further stabilized by forming base-peptide and chromophore-backbone hydrogen bonds. The DNA helix appears to be unwound by rotating one of the base-pairs at the intercalation site. This single base-pair unwinding motion generates a unique asymmetrically wound helix at the binding site of the drug, i.e. the helix is loosened at one end of the intercalation site and tightened at the other end. The large unwinding of the DNA by the drug intercalation is absorbed mostly in a few residues adjacent to the intercalation site. The asymmetrical twist of the DNA helix, the overall conformation of the two cyclic depsipeptides and their interaction mode with DNA are correlated to each other and rationally explained.  相似文献   

5.
Multistranded helical structures in nucleic acids play various functions in biological processes. Here we report the crystal structure of a hexamer, rU(BrdG)r(AGGU),at 1.5 A resolution containing a structural complex of an alternating antiparallel eight-stranded helical fragment that is sandwiched in two tetraplexes. The octaplex is formed by groove binding interaction and base tetrad intercalation between two tetraplexes. Two different forms of octaplexes have been proposed, which display different properties in interaction with proteins and nucleic acids. Adenines form a base tetrad in the novel N6-H em leader N3 conformation and further interact with uridines to form an adenine-uridine octad in the reverse Hoogsteen pairing scheme. The conformational flexibility of adenine tetrad indicates that it can optimize its conformation in different interactions.  相似文献   

6.
Spectrophotometry, thermal denaturation, sedimentation, and viscometric techniques were used in a study of interaction of double helical DNA with an asymmetric phenazinium derivative, aposafranine. The results obtained indicate that aposafranine binds to DNA by a single binding mode, a wedge-like partial intercalation.  相似文献   

7.
Extensive environment-dependent rearrangement of the helix-turn-helix DNA recognition region and adjacent L-tryptophan binding pocket is reported in the crystal structure of dimeric E. coli trp aporepressor with point mutation Leu75Phe. In one of two subunits, the eight residues immediately C-terminal to the mutation are shifted forward in helical register by three positions, and the five following residues form an extrahelical loop accommodating the register shift. In contrast, the second subunit has wildtype-like conformation, as do both subunits in an isomorphous wildtype control structure. Treated together as an ensemble pair, the distorted and wildtype-like conformations of the mutant apoprotein agree more fully than either conformation alone with previously reported NOE measurements, and account more completely for its diverse biochemical and biophysical properties. The register-shifted segment Ile79-Ala80-Thr81-Ile82-Thr83 is helical in both conformations despite low helical propensity, suggesting an important structural role for the steric constraints imposed by β-branched residues in helical conformation.  相似文献   

8.
Using site-specific intercalation directed by intermolecular triplex formation, the conformation of an intercalation site in DNA was examined by footprinting with the purine-specific (A much greater than G) reagent diethylpyrocarbonate. Site specific intercalation was achieved by covalently linking an intercalator to the 5' end of a homopyrimidine oligodeoxynucleotide, which bound to a homopurinehomopyrimidine stretch in a recombinant plasmid via intermolecular triplex formation. This directs intercalation to a single site in 3kb of DNA at the 5' triplex-duplex junction. Footprinting with diethylpyrocarbonate and dimethylsulphate revealed strong protection from modification of adenine residues within the triple-helix in concordance with their Hoogsteen pairing with the third strand, and a strong hypersensitivity to diethylpyrocarbonate at the first adenine of the duplex. This result indicates that intercalation at this site induces a conformational change at the 5' triplex-duplex junction. Furthermore, the same diethlypyrocarbonate hypersensitivity was observed with an unmodified triple-strand forming oligonucleotide and a range of intercalating molecules present in solution. Thus the 5' triplex-duplex junction is a strong binding site for some intercalating molecules and the junction undergoes a conformational change which is sensitive to diethylpyrocarbonate upon insertion of the planar aromatic chromophore. This conformational change can be used to direct a single-strand cut in duplex DNA to a defined site.  相似文献   

9.
The electronic absorption and circular dichroism spectra of the DNA-acridine orange complex have been measured over a range of ionic strength, pH, and DNA phosphate to dye (P/D) ratios. Three circular dichroism bands associated with the long wavelength absorption band of acridine orange are induced on complex formation with DNA. Two of the dichroism bands, due mainly to dimeric dye molecules, are favored by low ionic strength, low pH (3.2), and a low P/D ratio (~3), while the third, deriving primarily from monomeric dye, is optimum at high ionic strength, neutral pH, and a larger P/D ratio (9). The data suggest that monomeric acridine orange binds to DNA in the form of a left-handed helical array with four dye molecules per turn, while the bound dimer has a skewed sandwich conformation which is itself dissymmetric. The stereochemical relations between the bound monomer dye and the DNA are consistent with a modified intercalation model for the DNA-acridine complex.  相似文献   

10.
X-ray diffraction and infrared linear dichroism of oriented samples of DNA-violamycin B1 complexes have been studied at different antibiotic/DNA phosphate ratios (r) as a function of relative humidity. Violamycin B1 binds to DNA according to the intercalation as well as to the outside binding model. At low r values, where the intercalation predominates the unwinding angle of DNA helix is between 6 degrees and 12 degrees per intercalation site as followed from the dependence of the pitch of helix versus r. At r greater than or equal to 0.17 the intercalation sites are saturated and the outside binding becomes prevalent; however the violamycin B1 chromophore is still oriented in the plane of DNA bases. Conformational mobility of DNA in the violamycin B1 complexes is largely inhibited compared with pure DNA, but it is higher than that of the daunomycin complexes. At least 30% of DNA in violamycin complexes has A conformation at the medium humidities as followed by IR linear dichroism. In the case of x-ray diffraction the A conformation was not detected. The distance between DNA molecules in the complex is found to be 23.2 A, that is 2 A less than in pure DNA at the same conditions and it does not depend upon r.  相似文献   

11.
All atom molecular dynamics simulations (10ns) of a nucleosome and of its 146 basepairs of DNA free in solution have been conducted. DNA helical parameters (Roll, Tilt, Twist, Shift, Slide, Rise) were extracted from each trajectory to compare the conformation, effective force constants, persistence length measures, and fluctuations of nucleosomal DNA to free DNA. The conformation of DNA in the nucleosome, as determined by helical parameters, is found to be largely within the range of thermally accessible values obtained for free DNA. DNA is found to be less flexible on the nucleosome than when free in solution, however such measures are length scale dependent. A method for disassembling and reconstructing the conformation and dynamics of the nucleosome using Fourier analysis is presented. Long length variations in the conformation of nucleosomal DNA are identified other than those associated with helix repeat. These variations are required to create a proposed tetrasome conformation or to qualitatively reconstruct the 1.75 turns of the nucleosome's superhelix. Reconstruction of free DNA using selected long wavelength variations in conformation can produce either a left-handed or a right-handed superhelix. The long wavelength variations suggest 146 basepairs is a natural length of DNA to wrap around the histone core.  相似文献   

12.
Unfused tricyclic aromatic ring systems 1-6 with one or two cationic side chains have been synthesized and their interactions with DNA and synthetic polymers probed with a variety of techniques. Molecular mechanics calculations indicate that the torsional angle between ring planes in the minimum energy conformation of the tricyclic molecules can range from 0 degree to as high as 50 degrees depending on the type of rings and substituents. Viscometric titrations with linear and supercoiled DNA, linear dichroism, and NMR studies indicated that all compounds with torsional angles of approximately 20 degrees or less bind to DNA by intercalation. The more highly twisted intercalators caused significant perturbation of DNA structure. Unfused intercalators with twist angles of approximately 20 degrees have reduced binding constants, suggesting that they could not form an optimum interaction with the DNA base pairs. Unfused intercalators with twist less than 20 degrees formed strong complexes with DNA. The structures of these unfused intercalators are more analogous to typical groove-binding molecules, and an analysis of their interaction with DNA provides a better understanding of the subtle differences between intercalation and groove-binding modes for aromatic cations. The results indicate that intercalation and groove-binding modes should be viewed as two potential wells on a continuous energy surface. The results also suggest design strategies for intercalators that can optimally complement DNA base pair propeller twist or that can induce bends in DNA at the intercalation site.  相似文献   

13.
Origin of DNA helical structure and its sequence dependence   总被引:9,自引:0,他引:9  
A Sarai  J Mazur  R Nussinov  R L Jernigan 《Biochemistry》1988,27(22):8498-8502
Conformational analysis of DNA shows that the origin of the B-form double helix can be attributed in large part to the atomic charge pattern in the base pairs. The charge patterns favor specific helical stacking of the base pairs. Base pairs alone--without backbones--have a strong tendency to form helix, indicating that the backbones play a rather passive role in determining the basic helical structure of DNA. It is mainly the electrostatic interactions determined by the charge pattern on base pairs that stabilize a particular helical conformation. The charge pattern in the base pairs appears to be responsible for much of the sequence dependence of DNA conformation, rather than steric clashes.  相似文献   

14.
Abstract

All atom molecular dynamics simulations (10ns) of a nucleosome and of its 146 basepairs of DNA free in solution have been conducted. DNA helical parameters (Roll, Tilt, Twist, Shift, Slide, Rise) were extracted from each trajectory to compare the conformation, effective force constants, persistence length measures, and fluctuations of nucleosomal DNA to free DNA. The conformation of DNA in the nucleosome, as determined by helical parameters, is found to be largely within the range of thermally accessible values obtained for free DNA. DNA is found to be less flexible on the nucleosome than when free in solution, however such measures are length scale dependent. A method for disassembling and reconstructing the conformation and dynamics of the nucleosome using Fourier analysis is presented. Long length variations in the conformation of nucleosomal DNA are identified other than those associated with helix repeat. These variations are required to create a proposed tetrasome conformation or to qualitatively reconstruct the 1.75 turns of the nucleosome's superhelix. Reconstruction of free DNA using selected long wavelength variations in conformation can produce either a left-handed or a right-handed superhelix. The long wavelength variations suggest 146 basepairs is a natural length of DNA to wrap around the histone core.  相似文献   

15.
Experiments were made to demonstrate the predominant protonation effects and structural changes of the ordered double helical DNA structure and denatured state of DNA. Spectrophotometric titrations performed at different wavelengths indicate that cytosine can be protonated in the DNA double helical molecule to a high extent without breakdown of the secondary structure. With DNA heat-denatured under severe conditions the protonation of cytosine can be measured at 280, 295, and 300 mμ: the apparent pK value obtained was ~4.6. The protonated double helical conformation of the DNA molecule differs from the unprotonated state, which follows from the decrease of the thermal stability and from changes in the ORD curves. The ORD of a GC-rich DNA indicates a novel Cotton effect with positive rotations at ~260 mμ in 0.02M KCl below pH 4.0 to pH 3.3. The occurrence of the new peak parallels the extent of protonated cytosine measured by the spectrophotometric titrations. It is concluded that the protonated cytosine in the double helical structure is responsible for the difference between the protonated DNA conformation and the native state at neutral pH.  相似文献   

16.
A number of unfused tricyclic aromatic intercalators have shown excellent activity as amplifiers of the anticancer activity of the bleomycins and the 4',6-diphenylpyrimidines, 2a and 2b, with terminal basic functions (4-methylpiperazino groups) have been synthesized to test the structural requirements for amplifier-DNA interactions. The terminal piperazine rings are bulky, have limited flexibility, and are twisted out of the phenyl ring plane in both 2a and 2b. With 2a the pyrimidine is unsubstituted at position 5 and the conformation predicted by molecular mechanics calculations has a 25-30 degrees twist between the phenyl and pyrimidine ring planes. With 2b the 5-position is substituted with a methyl group and this causes a larger twist angle (50-60 degrees) between the phenyl and pyrimidine planes. These conformational variations lead to markedly different DNA interactions for 2a and 2b. Absorption, CD and NMR spectral, viscometric, flow dichroism and kinetics results indicate that 2a binds strongly to DNA by intercalation while 2b binds more weakly in a groove complex. The general structure and conformation of 2a, a slightly twisted, unfused-aromatic system with terminal piperazino groups is more similar to groove-binding agents such as Hoechst 33258 than to intercalators. The fact that 2a forms a strong intercalation complex with DNA is unusual but in agreement with studies on other amplifiers of anticancer drug action. Molecular modeling studies provide a second unusual feature of the 2a intercalation complex. While most well-characterized intercalators bind with their bulky and/or cationic substitutents in the DNA minor groove, the cationic piperazino groups of 2a are too large to bind in the minor groove in an intercalation complex but can form strong interactions with DNA in the major groove. The tricyclic aromatic ring system of 2a stacks well with adjacent base-pairs in the major-groove complex and the piperazino groups have good electrostatic and van der Waals interactions with the DNA backbone.  相似文献   

17.
Imidazoacridinones (IAs) are a new group of highly active antitumor compounds. The intercalation of the IA molecule into DNA is the preliminary step in the mode of action of these compounds. There are no experimental data about the structure of an intercalation complex formed by imidazoacridinones. Therefore the design of new potentially better compounds of this group should employ the molecular modelling techniques. The results of molecular dynamics simulations performed for four IA analogues are presented. Each of the compounds was studied in two systems: i) in water, and ii) in the intercalation complex with dodecamer duplex d(GCGCGCGCGCGC)2. Significant differences in the conformation of the side chain in the two environments were observed for all studied IAs. These changes were induced by electrostatic as well as van der Waals interactions between the intercalator and DNA. Moreover, the results showed that the geometry of the intercalation complex depends on: i) the chemical constitution of the side chain, and ii) the substituent in position 8 of the ring system.  相似文献   

18.
Based on steric and electrostatic considerations, the prerequisites for binding to DNA via the intercalation mechanism are proposed. Steric contour energy curves are presented to demonstrate the region inaccessible to an intercalant. They are calculated with a 6-n (n = 14) potential. This method is a soft potential analog of an excluded-volume approach. Electrostatic contours on the steric surface illustrate the relatively positive and negative regions of the binding site. The principal intercalation sites, predicted to fit into B-DNA via a tetramer-duplex unit, and the unconstrained dimer-duplex units, obtained in crystal structures, are examined. These contours illustrate the requirements of size, conformation, and net atomic charges necessary for intercalation and optimum binding. Based on the limited space available for intercalation by the presence of the backbone and the maximum base-pair separation of 8.25 Å, an Essential Metabolite Exclusion Hypothesis is presented.  相似文献   

19.
Abstract

The crystal and molecular structure of anthracycline antibiotic steffimycin B(C29H320O13) has been determined by X-ray diffraction and the stereochemistry revealed. The orthorhombic crystals belong to space group P212121, with the dimensions; a = 8.253 (2), b = 8.198 (2), c = 40.850 (8) Å and Z = 4. Intensity data were collected for 2518 independent reflections. The structure was solved by direct methods and refined to an R value of 0.066 for 1410 reflections. The configuration in ring A is TR,8S,9S. Ring A adopts half chair conformation, while the sugar ring has the regular chair conformation. The molecule most probably binds to double helical DNA through intercalation and hydrogen bonding.  相似文献   

20.
DNA-induced increase in the alpha-helical content of C/EBP and GCN4   总被引:16,自引:0,他引:16  
Leucine zipper proteins comprise a recently identified class of DNA binding proteins that contain a bipartite structural motif consisting of a "leucine zipper" dimerization domain and a segment rich in basic residues responsible for DNA interaction. Protein fragments encompassing the zipper plus basic region domains (bZip) have previously been used to determine the conformational and dynamic properties of this motif. In the absence of DNA, the coiled-coil portion is alpha-helical and dimeric, whereas the basic region is flexible and partially disordered. Addition of DNA containing a specific recognition sequence induces a fully helical conformation in the basic regions of these fragments. However, the question remained whether the same conformational change would be observed in native bZip proteins where the basic regions might be stabilized in an alpha-helical conformation even in the absence of DNA, through interactions with portions of the protein not included in the bZip motif. We have now examined the DNA-induced conformational transition for an intact bZip protein, GCN4, and for the bZip fragment of C/EBP with two enhancers that are differentially symmetric. Our results are consistent with the induced helical fork model wherein the basic regions are largely flexible in the absence of DNA and become fully helical in the presence of the specific DNA recognition sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号