首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of dicyclohexylcarbodiimide, a potent inhibitor of chloroplast ATPase, on the light-induced electric potential changes in intact chloroplasts of Peperomia metallica and of a hornwort Anthoceros sp. were investigated by means of glass microcapillary electrodes. The characteristics of potential changes induced by flashes or continuous light in chloroplasts of both species are similar except for the phase of potential rise in continuous light, which is clearly biphasic in Anthoceros chloroplasts. Dicyclohexylcarbodiimide at concentration 5 · 10−5 M completely abolishes the transient potential undershoot in the light-off reaction but has little effect on the peak value of the photoelectric response. The membrane conductance in the light and in the dark was tested by measuring the decay kinetics of flash-generated potential in dark-adapted and preilluminated chloroplasts. In the absence of dicyclohexylcarbodiimide, preillumination causes a significant acceleration of the potential decay. The light-induced changes in the decay kinetics of flash-induced responses were abolished in the presence of dicyclohexylcarbodiimide, whereas the rate of potential decay in dark-adapted chloroplasts was not altered by dicyclohexylcarbodiimide. The results are consistent with the notion that dicyclohexylcarbodiimide diminishes H+ conductance of energized thylakoid membranes by interacting with the H+ channel of ATPase. The occurrence of a lag (approx. 300 ms) on the plot of potential undershoot (diffusion potential) versus illumination time might suggest the increase in H+ permeability coefficient of thylakoid membrane during illumination.  相似文献   

2.
麦冬皂苷D对过氧化氢造模的HUVEC保护作用机制研究   总被引:7,自引:0,他引:7  
目的:研究麦冬皂苷D对HUVEC凋亡相关分子的影响,探讨其作用机制。方法:用H2O2构建凋亡模型,运用MTT及流式细胞仪检测细胞活性,激光共聚焦方法测定粒体膜电位和钙离子浓度。结果:麦冬皂苷D可以稳定线粒体膜电位,减少钙离子内流,增加细胞的活力。结论:麦冬皂苷D对HUVEC有一定的保护作用。  相似文献   

3.
The rate of dark relaxation of the oxygen evolving system in chloroplasts is shown to depend on the value of the surface charge of some chloroplast membrane component having protein nature and isoelectric point at pH 6.0. The substitution of H2O for D2O leads to isoelectric point shift of this protein.  相似文献   

4.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (psi m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+],) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas.  相似文献   

5.
The solution properties of fibrinogen and the thrombin-induced activation and gelation of fibrinogen in 95% D2O at pH 7.4 were compared to those in H2O under similar conditions. The initial release rates of fibrinopeptides A and B in D2O were slightly slower than those in H2O. However, the values of the Michaelis-Menten parameters Km and V for the release of the two peptides in D2O and H2O in the presence of 0.5 M NaCl were about the same. From turbidity measurements at 450 nm it is obvious that fibrinogen is soluble in a slightly more narrow range of NaCl concentration and that the fibrin gels have a higher degree of lateral aggregation in D2O than in H2O. The variation of fibrinogen concentration, thrombin concentration, pH and ionic a strength have a similar dependence on the final gel structure and clotting time in D2O and H2O. SDS-gel electrophoresis on fibrin samples, which were cross-linked by factor XIII, yielded results where the cross-linking of the gamma-chain appeared to be the same in D2O and H2O. The alpha-chain cross-linking was somewhat faster in D2O than in H2O. When fibrinogen solutions in 95% D2O were incubated at 20 mM CaCl2, a slow gelation of fibrinogen was observed, which was found to be induced by trace amounts of factor XIII. The final gel turbidity appeared to be about the same for this gelation as for that induced by thrombin. The differences in solubility for fibrinogen, kinetics for the enzyme reaction and optical properties for the fibrin gels in D2O and H2O may be explained by differences in electrostatic interactions, hydrogen bonding and hydration of fibrinogen in these two media.  相似文献   

6.
In this study, oxygen consumption and H(2)O(2) release rate by succinate or pyruvate/malate supplemented mitochondria isolated from skeletal muscle of trained and untrained rats were investigated. The overall mitochondrial antioxidant capacity and the effect of preincubation of mitochondria with GDP, an inhibitor of uncoupling proteins UCP1 and UCP2, on both succinate-supported H(2)O(2) release and membrane potential were also determined. The results indicate that training does not affect mitochondrial oxygen consumption with both complex-I- and complex II-linked substrates. Succinate-supported H(2)O(2) release was lower in trained than in untrained rats both in State 4 and State 3. Even the antimycin A-stimulated release was lower in trained rats. When pyruvate/malate were used as substrates, H(2)O(2) release rate was lower in trained rats only in the presence of antimycin A. The increase of mitochondrial protein content (determined by the ratio between cytochrome oxidase activities in homogenates and mitochondria) in trained muscle was such that the succinate-supported H(2)O(2) release per g of tissue was not significantly different in trained and untrained rats, while that supported by pyruvate/malate was higher in trained than in untrained animals. The lack of training-induced changes in overall antioxidant capacity of mitochondria indicates that the decrease in mitochondrial H(2)O(2) release cannot be attributed to a greater capacity of mitochondria to scavenge the reactive oxygen intermediates derived from univalent O(2) reduction by respiratory chain components. In contrast, the above decrease seems to depend on the drop induced by training in mitochondrial membrane potential. These training effects are not due to an increased level of mitochondrial uncoupling protein, because in the presence of GDP the increase in both membrane potential and H(2)O(2) release was greater in untrained than in trained rats.  相似文献   

7.
Heavy water (D2O) has been used as a putative inhibitor of the plasma membrane H(+)-ATPase and the plasma membrane redox system. Concentrations above 50% D2O inhibited H+ secretion and the plasma membrane redox system of Zea mays L. roots. Inhibition of H+ secretion by vanadate was reduced in presence of D2O. The plasma membrane of roots was transiently depolarized after the addition of heavy water in concentrations above 5%. The repolarization of the plasma membrane that takes place while the H+ secretion is still reduced by heavy water indicates that, despite the overall inhibiting effect of D2O, the plant is still able to regulate the membrane potential.  相似文献   

8.
Alterations in membrane fluidity are among the early events in plants that detect changes in ambient temperature. However, signal transduction downstream of the membrane-associated processes is still not well understood. We have focused here on the role of hydrogen peroxide (H(2)O(2)) in high-temperature signalling in relation to changes in membrane fluidity in cells of tobacco (Nicotiana tabacum L.) cv. Bright Yellow 2 (BY2). As final indicators of the heat-signalling cascade, we have monitored the synthesis of small heat-shock proteins (sHSPs). Elevation of temperature between 32 and 38 degrees C resulted in a fast, transient stimulation of H(2)O(2) production in the tobacco cells. A similar H(2)O(2) burst could be induced at lower temperatures (28-32 degrees C) by membrane fluidization using benzyl alcohol (BA). Diphenylene iodonium (DPI), a NADPH oxidase inhibitor, prevented both the heat- and BA-triggered H(2)O(2) rise. The synthesis of sHSPs (14.5 and 16 kDa) was shifted to lower temperatures by BA application and was suppressed by DPI treatment in the same way. The results indicate that H(2)O(2) is an early component of the heat-signalling pathway, which responds rapidly to changes in membrane fluidity and is required for the activation of sHSP synthesis.  相似文献   

9.
The membrane potential (MP) of the unicellular green alga Micrasterias torreyi was found to be −46 to −47 mV (when cultured in Waris medium). In contrast to plant cells in general, light-dark changes neither affected the potential or the membrane resistance in Micrasterias . In comparison, the freshwater plant Elodea showed a light-induced hyperpolarization due to the activating effect of light on the plasma membrane adenosine triphosphatases (PM ATPases) through a signal from chloroplasts. In Micrasterias , the PM H+-ATPase inhibitors Na-orthovanadate and diethylstilbestrol depolarized the potential, but it remained at the same level in light and dark. On the other hand, fusicoccin, which activates the PM H+-ATPases, hyperpolarized the potential clearly (to −56 mV). 3-(3',4'-dichlorophenyl)-1,1-dimethylurea, which blocks the electron transport chain from photosystem (PS)II to PSI and thereby prevents the possible signal transmission from chloroplasts to the PM, depolarized the MP slightly, but did not affect the (lacking) light changes either. The results indicate the presence of a continuous (low) activity of PM H+-ATPases in Micrasterias , which is not stimulated by light. The lack of rapid light-induced changes in Micrasterias MP may be due to an unusual functioning of giant chloroplasts in the ion metabolism of the Micrasterias cell.  相似文献   

10.
H2O2 intensifies CN−-induced apoptosis in pea leaves   总被引:1,自引:0,他引:1  
H2O2 intensifies CN(-)-induced apoptosis in stoma guard cells and to lesser degree in basic epidermal cells in peels of the lower epidermis isolated from pea leaves. The maximum effect of H2O2 on guard cells was observed at 10(-4) M. By switching on non-cyclic electron transfer in chloroplasts menadione and methyl viologen intensified H2O2 generation in the light, but prevented the CN--induced apoptosis in guard cells. The light stimulation of CN- effect on guard cell apoptosis cannot be caused by disturbance of the ribulose-1,5-bisphosphate carboxylase function and associated OH* generation in chloroplasts with participation of free transition metals in the Fenton or Haber-Weiss type reactions as well as with participation of the FeS clusters of the electron acceptor side of Photosystem I. Menadione and methyl viologen did not suppress the CN(-)-induced apoptosis in epidermal cells that, unlike guard cells, contain mitochondria only, but not chloroplasts. Quinacrine and diphenylene iodonium, inhibitors of NAD(P)H oxidase of cell plasma membrane, had no effect on the respiration and photosynthetic O2 evolution by leaf slices, but prevented the CN(-)-induced guard cell death. The data suggest that NAD(P)H oxidase of guard cell plasma membrane is a source of reactive oxygen species (ROS) needed for execution of CN(-)-induced programmed cell death. Chloroplasts and mitochondria were inefficient as ROS sources in the programmed death of guard cells. When ROS generation is insufficient, exogenous H2O2 exhibits a stimulating effect on programmed cell death. H2O2 decreased the inhibitory effects of DCMU and DNP-INT on the CN(-)-induced apoptosis of guard cells. Quinacrine, DCMU, and DNP-INT had no effect on CN(-)-induced death of epidermal cells.  相似文献   

11.
(1) The effect of gradual disruption of the outer membrane of intact chloroplasts on CO2 fixation, electron transport and phosphorylation was investigated. The results suggested that whilst ferricyanide and substrate amounts of ADP enter intact chloroplasts only very slowly, methyl viologen rapidly penetrates the outer membrane. (2) Preparatwons of intact pea chloroplasts had an ATP-consuming reaction which resulted in decreased ADP/O ratios when noncyclic electron transport was measured after disruption of the outer membrane. The ATP-consuming reaction was removed into the supernatant after washing the disrupted chloroplasts. The resulting washed chloroplasts gave ADP/O ratios of 1.5-1.6 for ferricyanide and 1.9-2.0 for methyl viologen. (3) Preparations of intact spinach chloroplasts had lower activity of the ATP-consuming reaction and gave similar ADP/O ratios to washed pea chloroplasts. The ADP/O ratios of spinach chloroplasts did not alter significantly after washing. (4) An investigation of the effect of various assay conditions on the ADP/O ratio showed that the phosphate concentration was critical in obtaining optimal values for ADP/O ratio. Decreasing the phosphate concentration below 10 mM decreased the ADP/O ratio significantly. (5) It is suggested that the maximum ADP/O ratio of chloroplasts is 2.0 but that lower values can be obtained in the presence of an ATP-consuming reaction, under suboptimal assay conditions or where the chloroplasts are structurally damaged.  相似文献   

12.
In Saccharomyces cerevisiae, the diffusion rate of hydrogen peroxide (H2O2) through the plasma membrane decreases during adaptation to H2O2 by means of a mechanism that is still unknown. Here, evidence is presented that during adaptation to H2O2 the anisotropy of the plasma membrane increases. Adaptation to H2O2 was studied at several times (15min up to 90min) by applying the steady-state H2O2 delivery model. For wild-type cells, the steady-state fluorescence anisotropy increased after 30min, or 60min, when using 2-(9-anthroyloxy) stearic acid (2-AS), or diphenylhexatriene (DPH) membrane probe, respectively. Moreover, a 40% decrease in plasma membrane permeability to H2O2 was observed at 15min with a concomitant two-fold increase in catalase activity. Disruption of the ergosterol pathway, by knocking out either ERG3 or ERG6, prevents the changes in anisotropy during H2O2 adaptation. H2O2 diffusion through the plasma membrane in S. cerevisiae cells is not mediated by aquaporins since the H2O2 permeability constant is not altered in the presence of the aquaporin inhibitor mercuric chloride. Altogether, these results indicate that the regulation of the plasma membrane permeability towards H2O2 is mediated by modulation of the biophysical properties of the plasma membrane.  相似文献   

13.
Active oxygen and cell death in cereal aleurone cells   总被引:17,自引:0,他引:17  
The cereal aleurone layer is a secretory tissue whose function is regulated by gibberellic acid (GA) and abscisic acid (ABA). Aleurone cells lack functional chloroplasts, thus excluding photosynthesis as a source of active oxygen species (AOS) in cell death. Incubation of barley aleurone layers or protoplasts in GA initiated the cell death programme, but incubation in ABA delays programmed cell death (PCD). Light, especially blue and UV-A light, and H(2)O(2) accelerate PCD of GA-treated aleurone cells, but ABA-treated aleurone cells are refractory to light and H(2)O(2) and are not killed. It was shown that light elevated intracellular H(2)O(2), and that the rise in H(2)O(2) was greater in GA-treated cells compared to cells in ABA. Experiments with antioxidants show that PCD in aleurone is probably regulated by AOS. The sensitivity of GA-treated aleurone to light and H(2)O(2) is a result of lowered amounts of enzymes that metabolize AOS. mRNAs encoding catalase, ascorbate peroxidase and superoxide dismutase are all reduced during 6-18 h of incubation in GA, but these mRNAs were present in higher amounts in cells incubated in ABA. The amounts of protein and enzyme activities encoded by these mRNAs were also dramatically reduced in GA-treated cells. Aleurone cells store and metabolize neutral lipids via the glyoxylate cycle in response to GA, and glyoxysomes are one potential source of AOS in the GA-treated cells. Mitochondria are another potential source of AOS in GA-treated cells. AOS generated by these organelles bring about membrane rupture and cell death.  相似文献   

14.
以2’,7’-二氯二氢荧光素二乙酯(dichlorofluorescein diacetate,H2DCF-DA)为荧光探针孵育拟南芥叶表皮条,利用荧光光谱和激光共聚焦扫描显微技术,对高辐照蓝光诱导下叶肉细胞活性氧(reactive oxygen spe-cies,ROS)的生成,进行了分子识别和亚细胞定位检测。结果表明:植物细胞在蓝光诱导下,可以产生大量的ROS。过氧化氢酶清除实验表明:高辐照蓝光诱导产生的ROS,主要成分是H2O2,并且主要定位在叶绿体和细胞膜上。  相似文献   

15.
Translocations of chloroplasts induced by blue light were investigated in both leaves and protoplasts isolated from leaf mesophyll of Nicotiana tabacum. In the leaf tissue, the responses of chloroplasts were similar to those observed in other, higher and lower plant species. Weak and strong light induced movements of chloroplasts towards cell walls perpendicular and parallel to the light direction, respectively. Treatment with cytochalasin D, an actin-disturbing agent, blocked the movements. This shows that actin is involved in the motile system of chloroplast translocation in tobacco. By monitoring the response of chloroplasts to light in isolated protoplasts, we addressed the question whether the presence of the cell wall is necessary for the translocations of chloroplasts to occur. In control protoplasts (isolated at room temperature from unstressed leaves), no clear light intensity-dependent changes were observed in chloroplast distribution pattern. In contrast, in protoplasts obtained from plants treated with 4 °C for 8 h the chloroplasts maintained their responsiveness to light. Atomic Force Microscopy was used to measure elastic properties of the protoplasts. Young’s modulus, which reflects rigidity of the material, was 10 times higher for protoplasts of the coldstressed plants as compared to those isolated from the control plants. The rigidity of protoplasts isolated from the plants treated with low temperature was reduced four-fold by exposure to cytochalasin D. It appears that the status of protoplast actin is a factor responsible for elasticity of protoplasts. We speculate that unknown, cold stress-induced factors, maintain the orientational movements due to anchorage of the actin cytoskeleton in the plasma membrane despite the cell wall removal.  相似文献   

16.
Hydrogen peroxide potentiates CN(-)-induced apoptosis of guard cells recorded as destruction of cell nuclei in the epidermis from pea leaves. A still stronger effect was exerted by the addition of H2O2 and NADH, which are the substrates of the plant cell wall peroxidase producing O2*- coupled to the oxidation of NADH. The CN(-)-or (CN(-) + H2O2)-induced destruction of guard cell nuclei was completely removed by nitroblue tetrazolium (NBT) oxidizing O2*- and preventing there-by the subsequent generation of H2O2. The reduced NBT was deposited in the cells as formazan crystals. Cyanide-induced apoptosis was diminished by mannitol and ethanol, which are OH* traps. The dyes Rose Bengal (RB) and tetramethylrhodamine ethyl ester (TMRE) photosensitizing singlet oxygen production suppressed the CN(-)-induced destruction of the cell nuclei in the light. This suppression was removed by exogenous NADH, which reacts with 1O2 yielding O2*-. Incubation of leaf slices with RB in the light lowered the photosynthetic O2 evolution rate and induced the permeability of guard cells for propidium iodide, which cannot pass across intact membranes. Inhibition of photosynthetic O2 evolution by 3-(3',4'-dichlorophenyl)-1,1-dimethylurea or bromoxynil prevented CN(-)-induced apoptosis of guard cells in the light but not in the dark. RB in combination with exogenous NADH caused H2O2 production that was sensitive to NBT and estimated from dichlorofluorescein (DCF) fluorescence. Data on NBT reduction and DCF and TMRE fluorescence obtained using a confocal microscope and data on the NADH-dependent H2O2 production are indicative of generation of reactive oxygen species in the chloroplasts, mitochondria, and nuclear region of guard cells as well as with participation of apoplastic peroxidase. Cyanide inhibited generation of reactive oxygen species in mitochondria and induced their generation in chloroplasts. The results show that H2O2, OH*, and O2*- resources utilized for H2O2 production are involved in apoptosis of guard cells. It is likely that singlet oxygen generated by RB in the light, judging from the permeability of the plasmatic membrane for propidium iodide, makes Photosystem II of chloroplasts inoperative and induces necrosis of the guard cells.  相似文献   

17.
(Pro-Pro-Gly)10 [(PPG10)], a collagen-like polypeptide, forms a triple-helical, polyproline-II structure in aqueous solution at temperatures somewhat lower than physiological, with a melting temperature of 24.5 degrees C. In this article, we present circular dichroism spectra that demonstrate an increase of the melting temperature with the addition of increasing amounts of D2O to an H2O solution of (PPG)10, with the melting temperature reaching 40 degrees C in pure D2O. A thermodynamic analysis of the data demonstrates that this result is due to an increasing enthalpy of unfolding in D2O vs. H2O. To provide a theoretical explanation for this result, we have used a model for hydration of (PPG)10 that we developed previously, in which inter-chain water bridges are formed between sterically crowded waters and peptide bond carbonyls. Energy minimizations were performed upon this model using hydrogen bond parameters for water, and altered hydrogen bond parameters that reproduced the differences in carbonyl oxygen-water oxygen distances found in small-molecule crystal structures containing oxygen-oxygen hydrogen bonds between organic molecules and H2O or D2O. It was found that using hydrogen bond parameters that reproduced the distance typical of hydrogen bonds to D2O resulted in a significant lowering of the potential energy of hydrated (PPG)10. This lowering of the energy involved energetic terms that were only indirectly related to the altered hydrogen bond parameters, and were therefore not artifactual; the intra-(PPG10) energy, plus the water-(PPG10) van der Waals energy (not including hydrogen bond interactions), were lowered enough to qualitatively account for the lower enthalpy of the triple-helical conformation, relative to the unfolded state, in D2O vs. H2O. This result indicates that the geometry of the carbonyl-D2O hydrogen bonds allows formation of good hydrogen bonds without making as much of an energetic sacrifice from other factors as in the case of hydration by H2O.  相似文献   

18.
Stentor coeruleus exhibits negative phototaxis and step-up photophobic response (avoiding reaction) to visible light (maximum at 610-620 nm in both responses). In the presence of deuterium oxide (D2O) the step-up photophobic response was markedly enhanced, whereas the phototactic orientation response was inhibited. The induction time for the step-up photophobic response was longer in D2O than in H2O, and the duration of ciliary reversal for the response was also longer in D2O than in H2O, indicating that certain steps of the sensory transduction chain are subject to solvent deuterium isotope effects. The enhancement of the step-up photophobic response in D2O was canceled by LaCl3, while the inhibition of the phototactic orientation response in D2O was partially removed by LaCl3, even though LaCl3 did not affect the phototactic orientation response. These results suggest that the sensory transduction mechanisms for the two photoresponses are different, although the photoreceptors (stentorin) are the same.  相似文献   

19.
In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the stability of globular protein structure is determined in a systematic way. The differential scanning calorimetry technique is applied to allow for a thermodynamic analysis of two types of globular proteins: hen's egg lysozyme (LSZ) with relatively strong internal cohesion ("hard" globular protein) and bovine serum albumin (BSA), which is known for its conformational adaptability ("soft" globular protein). Both proteins tend to be more stable in D2O compared to H2O. We explain the increase of protein stability in D2O by the observation that D2O is a poorer solvent for nonpolar amino acids than H2O, implying that the hydrophobic effect is larger in D2O. In case of BSA the transitions between different isomeric forms, at low pH values the Nm and F forms, and at higher pH values Nm and B, were observed by the presence of a supplementary peak in the DSC thermogram. It appears that the pH-range for which the Nm form is the preferred one is wider in D2O than in H2O.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号