首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of antigens that distinguish normal cells from cancer cells is an important challenge in the field of tumour immunology and immunotherapy. The immunoscreening of cDNA expression libraries constructed from human tumour tissues with antibodies in sera from cancer patents (SEREX: serological identification of antigens by recombinant expression cloning) provides a powerful approach to identify immunogenic tumour antigens. To date, over 2,000 tumour antigens have been identified from a variety of malignancies using SEREX. These antigens can be classified into several categories, of which the cancer/testis (CT) antigens appear to be the most attractive candidates for vaccine development. The SEREX-defined tumour antigens facilitate the identification of epitopes (antigenic peptides) recognised by antigen-specific cytotoxic T lymphocytes (CTLs) and provide a basis for peptide vaccine and gene therapy in a wide variety of human cancers. Moreover, some of these antigens seem to play a functional role in the pathogenesis of cancer.This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.  相似文献   

2.
Multiple myeloma is incurable with standard therapies but is susceptible to a T-cell-mediated graft versus myeloma effect after allogeneic stem cell transplantation. We sought to identify myeloma-specific antigens that might be used for T-cell immunotherapy of myeloma. MAGE-C1 (CT-7) is a cancer-testis antigen that is expressed by tumor cells in >70% of myeloma patients and elicits a humoral response in up to 93% of patients with CT-7+ myeloma. No CD8+ T-cell epitopes have been described for CT-7, so we used a combination of reverse immunology and immunization of HLA-A2 transgenic mice with a novel cell-based vaccine to identify three immunogenic epitopes of CT-7 that are recognized by human CD8+ T-cells. CT-7-specific T-cells recognizing two of these peptides are able to recognize myeloma cells as well as CT-7 gene-transduced tumor cells, demonstrating that these epitopes are naturally processed and presented by tumor cells. This is the first report of the identification of immunogenic CD8+ T-cell epitopes of MAGE-C1 (CT-7), which is the most commonly expressed cancer-testis antigen found in myeloma, and these epitopes may be promising candidate targets for vaccination or T-cell therapy of myeloma or other CT-7+ malignancies.  相似文献   

3.
Vaccine development efforts will be guided by algorithms that predict immunogenic epitopes. Such prediction methods rely on classification-based algorithms that are trained against curated data sets of known B and T cell epitopes. It is unclear whether this empirical approach can be applied prospectively to predict epitopes associated with protective immunity for novel antigens. We present a comprehensive comparison of in silico B and T cell epitope predictions with in vivo validation using an previously uncharacterized malaria antigen, CelTOS. CelTOS has no known conserved structural elements with any known proteins, and thus is not represented in any epitope databases used to train prediction algorithms. This analysis represents a blind assessment of this approach in the context of a novel, immunologically relevant antigen. The limited accuracy of the tested algorithms to predict the in vivo immune responses emphasizes the need to improve their predictive capabilities for use as tools in vaccine design.  相似文献   

4.
Cancer arises from 'self' in a series of steps that are all subject to immunoediting. Therefore, therapeutic cancer vaccines must stimulate an immune response against tumour antigens that have already evaded the body's immune defences. Vaccines presenting a tumour antigen in the context of obvious danger signals seem more likely to stimulate a response. This approach can be facilitated by genetic engineering using recombinant viral vectors expressing tumour antigens, cytokines, or both, from an immunogenic virus particle. We overview clinical attempts to use these agents for systemic immunisation and contrast the results with strategies employing direct intratumoural administration. We focus on the challenge of producing an effective response within the immune-suppressive tumour microenvironment, and discuss how the technology can overcome these obstacles.  相似文献   

5.
Brucella is the etiologic agent of brucellosis, one of the most common and widely distributed zoonotic diseases. Its highly infectious nature, the insidious, systemic, chronic, debilitating aspects of the disease and the lack of an approved vaccine for human use in the United States are features that make Brucella a viable threat to public health. One of the main impediments to vaccine development is identification of suitable antigens. In order to identify antigens that could potentially be used in a vaccine formulation, we describe a multi-step antigen selection approach. We initially used an algorithm (Vaxign) to predict ORF encoding outer membrane proteins with antigenic determinants. Differential gene expression during acute infection and published evidence for a role in virulence were used as criteria for down-selection of the candidate antigens that resulted from in silico prediction. This approach resulted in the identification of nine Brucella melitensis outer membrane proteins, 5 of which were recombinantly expressed and used for validation. Omp22 and Hia had the highest in silico scores for adhesin probability and also conferred invasive capacity to E. coli overexpressing recombinant proteins. With the exception of FlgK in the goat, all proteins reacted to pooled sera from exposed goats, mice, and humans. BtuB, Hia and FlgK stimulated a mixed Th1–Th2 response in splenocytes from immunized mice while BtuB and Hia elicited NO release from splenocytes of S19 immunized mice. The results support the applicability of the current approach to the identification of antigens with immunogenic and invasive properties. Studies to assess immunogenicity and protective efficacy of individual proteins in the mouse are currently underway.  相似文献   

6.
Summary The possibilities of immunological intervention in neoplastic diseases are discussed in light of the accumulating findings that many spontaneously arising tumors of animals are not immunogenic in the host of origin or are not susceptible to immunological attack, and of the doubts as to the existence of tumor-associated antigens for many human neoplasms. Although some spontanous tumors do in fact display immunogenic properties and are subject to cytotoxic immune reactions, there are persuasive arguments for anticipating that a large proportion of naturally appearing malignant growths will be found to lack both immunogenicity and sensitivity to immunological effector mechanisms in the course of the host-tumor association. Even in the case of such tumors, however, significant opportunities for therapy and prophylaxis by extrinsic immunological manipulation remain cogent, as do eventualities of immunodiagnosis. These possibilities are discussed. It is concluded that whereas the simplistic assumptions which for some years set expectations in the field of tumor immunology must now be abandoned, reassessment of the nature of immunological parameters of host-tumor relationships and of the scope of immunological intervention on the basis of the information now available suggests that the immunological approach to the control of cancer continues to be a profitable area of investigation.  相似文献   

7.
Reverse vaccinology   总被引:3,自引:0,他引:3  
Biochemical, serological and microbiological methods have been used to dissect pathogens and identify the components useful for vaccine development. Although successful in many cases, this approach is time-consuming and fails when the pathogens cannot be cultivated in vitro, or when the most abundant antigens are variable in sequence. Now genomic approaches allow prediction of all antigens, independent of their abundance and immunogenicity during infection, without the need to grow the pathogen in vitro. This allows vaccine development using non-conventional antigens and exploiting non-conventional arms of the immune system. Many vaccines impossible to develop so far will become a reality. Since the process of vaccine discovery starts in silico using the genetic information rather than the pathogen itself, this novel process can be named reverse vaccinology.  相似文献   

8.
There remains a need to identify novel epitopes of potential tumour target antigens for use in immunotherapy of cancer. Here, several melanoma tissues and cell lines but not normal tissues were found to overexpress the cancer-testis antigen HAGE at the mRNA and protein level. We identified a HAGE-derived 15-mer peptide containing a shorter predicted MHC class I-binding sequence within a class II-binding sequence. However, only the longer peptide was found to be both endogenously processed and immunogenic for T cells in transgenic mice in vivo, as well as for human T cells in vitro. A different class I-binding peptide, not contained within a longer class II sequence, was subsequently found to be both immunogenic and endogenously processed in transgenic mice, as was a second class II epitope. These novel HAGE-derived epitopes may contribute to the range of immunotherapeutic targets for use in cancer vaccination programs.  相似文献   

9.
Four sublines of the chemically induced BALB/c tumour MCG4 have been obtained after serial intraperitoneal transplantation in syngeneic recipients and have been named MCG4-O, MCG4-A, MCG4-B and MCG4-C. The four subline have been typed for H-2 antigens in a complement dependent microradioassay with H-2 alloantisera defining H-2 specificities as well as with two syngeneic anti tumour sera: BALB/c anti MCG4-O and BALB/c anti MCG4-A. The results obtained showed a progressive loss of the foreign H-2 antigens detected in the primitive line, MCG4-O, with a simultaneous appearance of the appropriate H-2 antigens detected in MCG4-B and MCG4-C. Furthermore the immunogenic capacity of the sublines decrease progressively with the transplantation procedures, rendering MCG4-O and MCG4-A highly immunogenic and capable of producing isoantibodies while MCG4-B and MCG4-C are poorly immunogenic. The results could suggest that the primitive subline is heterogeneous mixture of (H-2d) are immunoselected by the transplantation procedures with rejection of the most immunogenic clones, which would express the foreign H-2 antigens.  相似文献   

10.
Summary Antigens presented on cell membranes or on liposomes are usually more immunogenic than antigens in soluble form, this being one of the reasons for the weak immunogenicity of extracted tumour-associated transplantation antigens (TATA). The main objective of this study is to solubilize TATA from tumour cells and to present them on a membrane-like structure to the immune system. Crude tumour cell membranes of SL2 lymphosarcoma cells (a spontaneously arising, weakly immunogenic tumour) were solubilized with octylglucoside or sodium deoxycholate, and reconstituted membranes (proteoliposomes) were prepared by detergent removal. Mice immunized s.c. with reconstituted membranes were protected against an i. p. challenge with tumour cells. Although octylglucoside solubilized only 41% of the membrane proteins, the reconstituted membranes were as immunoprotective as crude membranes. (Glyco)proteins were probably the major membrane components in the reconstituted membranes that induce immunoprotection, as mice immunized with preparations constituted of (glyco)lipids from SL2 cells could not reject SL2 cells. If Freund's complete adjuvant was used with the first immunization injection, no potentiation of the elicited immune responses was observed. Besides the membrane TATA, SL2 cells contained an apparently non-membrane-bound TATA, which was found in the cytoplasm. It is concluded that detergent solubilization of membranes and subsequent preparation of reconstituted membranes can be used to obtain membrane tumour-associated antigens that retain activity for induction of protective tumour immunity. The major advantage of this method is that membrane proteins are solubilized and are subsequently presented on a membrane-like structure that resembles the tumour cell membrane. On theoretical and practical grounds it provides a promising alternative for whole-cell vaccines.  相似文献   

11.
A potential target for a cancer vaccine would be receptors, such as Tie-2 which are over expressed on tumour endothelium. Using computer aided motif predictions for possible HLA class I epitopes, we have identified peptides from Tie-2 that should bind with a range of affinities to HLA-A*0201. No direct correlation between predicted values and actual binding affinities was observed. Although, the programs did produce a number of false positives, two epitopes were predicted that bound with relatively high affinity when compared with an influenza peptide. We have previously identified a Tie-2 epitope and shown that it was only immunogenic when we substituted preferred amino acids at key anchor residues to increase binding affinity. In this study we used a similar approach to generate modified epitopes. When HLA-A2 transgenic mice were immunised with peptides, CTL killing of the target cells was only achieved when the wild type epitope was presented at moderate levels. Moreover, the efficiency of immunisation was increased when we linked CD4 epitopes to CD8 epitopes. Caution should therefore be employed in the use of both reverse immunology and anchor modification of CTL epitopes in the identification of CTL epitopes for cancer vaccines.This article is a symposium paper from the “Robert Baldwin Symposium: 50 years of Cancer Immunotherapy”, held in Nottingham, Great Britain, on 30th June 2005.  相似文献   

12.
Nucleolin is multifunctional protein mainly present in nucleoli but also detected in cytoplasm and plasma membranes. Extranuclear nucleolin differs from the nuclear form by its glycosylation. Studies on expression of nucleolin in breast cancer suggest a possible association to the metastatic cascade. In the present study, Vicia villosa lectin (VVL) precipitation followed by subsequent polyacrylamide gel electrophoresis and mass spectrometry analysis demonstrates nucleolin as a VVL-positive glycoprotein expressed in melanoma. The presence of VVL-positive nucleolin in the melanoma cell membrane and cytoplasm was confirmed by confocal microscopy. Using bioinformatic peptide prediction programs, nucleolin was shown to contain multiple possible MHC class-I binding peptides in its sequence which makes nucleolin an interesting melanoma marker and target for immunodiagnostic and possibly therapeutic purposes. This paper is an original contribution from the meeting which took place on 28–and 29 May, 2008, in Nottingham, UK, celebrating the contribution of Professor I.A. “Tony” Dodi (+29.1.2008) to the EU project “Network for the identification and validation of antigens and biomarkers in cancer and their application in clinical tumour immunology (ENACT)”.  相似文献   

13.
Immunoinformatics is an emergent branch of informatics science that long ago pullulated from the tree of knowledge that is bioinformatics. It is a discipline which applies informatic techniques to problems of the immune system. To a great extent, immunoinformatics is typified by epitope prediction methods. It has found disappointingly limited use in the design and discovery of new vaccines, which is an area where proper computational support is generally lacking. Most extant vaccines are not based around isolated epitopes but rather correspond to chemically-treated or attenuated whole pathogens or correspond to individual proteins extract from whole pathogens or correspond to complex carbohydrate. In this chapter we attempt to review what progress there has been in an as-yet-underexplored area of immunoinformatics: the computational discovery of whole protein antigens. The effective development of antigen prediction methods would significantly reduce the laboratory resource required to identify pathogenic proteins as candidate subunit vaccines. We begin our review by placing antigen prediction firmly into context, exploring the role of reverse vaccinology in the design and discovery of vaccines. We also highlight several competing yet ultimately complementary methodological approaches: sub-cellular location prediction, identifying antigens using sequence similarity, and the use of sophisticated statistical approaches for predicting the probability of antigen characteristics. We end by exploring how a systems immunomics approach to the prediction of immunogenicity would prove helpful in the prediction of antigens.  相似文献   

14.
Immunotherapy and immunoselection -- tumour escape as the final hurdle   总被引:3,自引:0,他引:3  
Pawelec G 《FEBS letters》2004,567(1):63-66
Tumours are immunogenic and are commonly infiltrated by anti-cancer effector cells. Why, then, are they not completely rejected by the host? Unfortunately, tumours are Darwinian paragons, winning the battle against the forces of natural immune selection. Some of the latter can even act as double-edged swords, actually being subverted to become pro-tumorigenic. Prevention or reversal of tumour escape from the immune response therefore offers the possibility of reconstituting effective anti-tumour immunity and remains the major challenge for 21st century tumour immunology.  相似文献   

15.
Immunotherapeutic potential of whole tumour cells   总被引:5,自引:0,他引:5  
Despite the identification of tumour antigens and their subsequent generation in subunit form for use as cancer vaccines, whole tumour cells remain a potent vehicle for generating anti-tumour immunity. This is because tumour cells express an array of target antigens for the immune system to react against, avoiding problems associated with major histocompatibility complex (MHC)-restricted epitope identification for individual patients. Furthermore, whole cells are relatively simple to propagate and are potentially efficient at contributing to the process of T cell priming. However, whole cells can also possess properties that allow for immune evasion, and so the question remains of how to enhance the immune response against tumour cells so that they are rejected. Scenarios where whole tumour cells may be utilised in immunotherapy include autologous tumour cell vaccines generated from resected primary tumour, allogeneic (MHC-disparate) cross-reactive tumour cell line vaccines, and immunotherapy of tumours in situ. Since tumour cells are considered poorly immunogenic, mainly because they express self-antigens in a non-stimulatory context, the environment of the tumour cells may have to be modified to become stimulatory by using immunological adjuvants. Recent studies have re-evaluated the relative roles of direct and cross-priming in generating anti-tumour immunity and have highlighted the need to circumvent immune evasion.  相似文献   

16.
The development of vaccines is a multifactorial process that has evolved and expanded, particularly over the last decades. The search for immunogenic vaccines that are also acceptably safe and tolerable enacted continuous technological advances in this field. In this regard, the technology applied to vaccines can historically be divided into 3 approaches: the empirical approach, the modern approach, and the new technological wave. The empirical approach for vaccine development includes whole micro-organisms, attenuation, inactivation, cell cultures and sub-unit vaccines. The modern approach contributed to leaps and bounds to vaccine development using chemical conjugation, as well as recombinant protein DNA technology and reverse vaccinology. Lastly, the new technological wave includes, among others, bioconjugation, viral vectors, synthetic biology, self-amplification of messenger RNA, generalized modules for membrane antigens, structural vaccinology and the new adjuvants.  相似文献   

17.
Our genome consists to about 8% of human endogenous retroviral (HERV) sequences. These HERVs have been discussed to be linked to human diseases for decades. Recently, a detailed analysis of a HERV-H sequence located on chromosome Xp22.3 revealed a strong expression in a subset of gastrointestinal cancers whereas expression in normal tissues and in other cancer entities was low. In the present study, we used the reverse immunology approach to test the immunological potential of this HERV-H ORF on Xp22.3. A total of ten peptides displaying HLA-A2.1-binding motifs were selected from the predicted env protein sequence. Stimulation of peripheral T cells with retroviral peptides (RVPs) presented by autologous antigen-presenting cells clearly resulted in sustained proliferation of predominantly CD8(+) T cells. High numbers of IFN-γ-secreting T cells were detectable after several weekly stimulations with RVP mixes. Reactivity observed in RVP-Mix-stimulated cultures was attributable to RVP03, RVP09 and to a lower extend to RVP08, suggesting those to be highly immunogenic epitopes. Besides killing of RVP-loaded target cells, up to 40% specific lysis of colorectal carcinoma cell lines endogenously expressing this HERV-H Xp22.3 ORF was achieved. These data demonstrate that human T cells can be sensitized toward HERV peptides and moreover posses a high lytic potential toward HERV-H expressing CRC cells. Additionally, these data hint toward endogenous ENV protein expression followed by proteasomal degradation and presentation in the context of HLA molecules. Finally, our data strengthen the view that HERV-encoded sequences should be considered as a new class of tumor-specific antigens.  相似文献   

18.
The European Searchable Tumour line Database (ESTDAB) () is a freely available and fully searchable database of melanoma-derived cell lines, which have been characterised for over 250 immunologically relevant markers by a consortium of European scientists. The database is linked to a cell bank, which can provide melanoma cell lines to non-profit investigators for a nominal handling charge. All cells are fully HLA typed at the genomic and surface expression levels. The expression of a number of surface antigens, apoptotic markers, tumour-associated antigens and extracellular matrix proteins has also been determined. Cytokine secretion has been tested and polymorphisms in cytokine genes have been identified. Glycans at the cell surface were identified and glycosyltransferase activity quantified. Cell lines with a particular constellation of these parameters can be sought online via the ESTDAB interface, which is included as part of the Immuno-Polymorphism Database (IPD) section of the European Bioinformatics Institute’s (EBI) website. This paper is a focussed research review from the meeting which took place on the 28th–29th May 2008 in Nottingham, UK, celebrating the contribution of Prof. I.A. “Tony” Dodi (29.1.2008) to the EU project “Network for the identification and validation of antigens and biomarkers in cancer and their application in clinical tumour immunology (ENACT).”  相似文献   

19.
SPECIFICITY is one of the chief hallmarks of immune reactions. In many cases, specificity has been defined by reactivity against some antigens and not against others, but the results of direct tests may be misleading. In many cases, in transplantation and tumour immunology, direct reactivity may be absent in spite of the presence of the antigen. With HL-A antigens, the CYNAP phenomenon (cytotoxicity negative, absorption positive) has been described1. Virus-induced tumours may have relatively small amounts of tumour specific cell surface antigens which are detectable only by absorption tests2,3. In addition, immune reactions may occur against a particular antigen on one material and against different antigens on another material. With antibody reactions, specificity can be confirmed by the appropriate absorption experiments4,5. With cellular immune reactions, comparable demonstration of specificity has been very difficult.  相似文献   

20.
Trypanosoma carassii is a kinetoplastid parasite infecting cyprinid fish with a high prevalence in nature. Antibodies have been shown to play a protective role in the immune response against this parasite in common carp, Cyprinus carpio. To identify immunogenic and putative protective T. carassii antigens we constructed a lambdaTriplEx2 expression library of the parasite and screened this with pooled carp immune serum collected 6 weeks post-infection. Screening of the library not only revealed ribosomal proteins but identified ubiquitin and a homologue of the receptor for activated C kinase (RACK) as immunogenic proteins. Equivalents of all these proteins have been identified as immunogenic in expression library screenings of other Trypanosomatida, suggesting an evolutionary conservation of their immunogenicity. The possibility that ubiquitin and/or the homologue of RACK could represent protective antigens and be targets for the design of novel therapies is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号