首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway or stem from the phosphorolytic cleavage of the N-glycosidic bond of ribonucleosides. The two major pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, can be readily interconverted by phosphopentomutase. Ribose-5-phosphate is also the direct precursor of 5-phosphoribosyl-1-pyrophosphate, which is used for both de novo and salvage synthesis of nucleotides. On the other hand, the phosphorolysis of deoxyribonucleosides is the major source of deoxyribose phosphates. While the destiny of the nucleobase stemming from nucleoside phosphorolysis has been extensively investigated, the fate of the sugar moiety has been somehow neglected. However, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. Nevertheless, many aspects of pentose phosphate metabolism, and the possible involvement of these compounds in a number of cellular processes still remain obscure. The comprehension of the role played by pentose phosphates may be greatly facilitated by the knowledge of their steady-state intracellular levels and of their changes in response to variations of intra- and extracellular signals.  相似文献   

2.
Glucosamine-6-phosphate synthase (GlmS) channels ammonia from glutamine at the glutaminase site to fructose 6-phosphate (Fru6P) at the synthase site. Escherichia coli GlmS is composed of two C-terminal synthase domains that form the dimer interface and two N-terminal glutaminase domains at its periphery. We report the crystal structures of GlmS alone and in complex with the glucosamine-6-phosphate product at 2.95 Å and 2.9 Å resolution, respectively. Surprisingly, although the whole protein is present in this crystal form, no electron density for the glutaminase domain was observed, indicating its mobility. Comparison of the two structures with that of the previously reported GlmS-Fru6P complex shows that, upon sugar binding, the C-terminal loop, which forms the major part of the channel walls, becomes ordered and covers the synthase site. The ordering of the glutaminase domains likely follows Fru6P binding by the anchoring of Trp74, which acts as the gate of the channel, on the closed C-terminal loop. This is accompanied by a major conformational change of the side chain of Lys503# of the neighboring synthase domain that strengthens the interactions of the synthase domain with the C-terminal loop and completely shields the synthase site. The concomitant conformational change of the Lys503#-Gly505# tripeptide places catalytic His504# in the proper position to open the sugar and buries the linear sugar, which is now in the vicinity of the catalytic groups involved in the sugar isomerization reaction. Together with the previously reported structures of GlmS in complex with Fru6P or glucose 6-phosphate and a glutamine analogue, the new structures reveal the structural changes occurring during the whole catalytic cycle.  相似文献   

3.
Purified trehalose-6-phosphate synthase (TPS) of Saccharomyces cerevisiae was effective over a wide range of substrates, although differing with regard to their relative activity. Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity, particularly when a pyrimidine glucose nucleotide like UDPG was used, rather than a purine glucose nucleotide like GDPG. A high Vmax and a low Km value of UDPG show its greater affinity with TPS than GDPG or TDPG. Among the glucosyl acceptors TPS showed maximum activity with G-6-P which was followed by M-6-P and F-6-P. Effect of heparin was also extended to the purification of TPS activity, as it helped to retain both stability and activity of the final purified enzyme. Metal co-factors, specifically MnCl2 and ZnCl2 acted as stimulators, while enzyme inhibitors had very little effect on TPS activity. Metal chelators like CDTA, EGTA stimulated enzyme activity by chelation of metal inhibitors. Temperature and pH optima of the purified enzyme were determined to be 40 °C and pH 8.5 respectively. Enzyme activity was stable at 0–40 °C and at alkaline pH.  相似文献   

4.
A model of carbohydrate metabolism during differentiation in Dictyostelium discoideum has been used to investigate which enzyme kinetic mechanism(s) might be operative for glycogen phosphorylase in vivo. The model, which has been described previously, is capable of simulating experimentally observed changes in metabolite concentrations and fluxes during differentiation under both the standard starvation condition and in the presence of glucose (25 mM). The concentrations of saccharide end products of differentiation under these 2 conditions differ substantially.Glycogen phosphorylase is described in the model by a rapid equilibrium random bi bi mechanism and the effect of substituting 4 other kinetic mechanisms was examined. Each of these mechanisms in the model allows simulations compatible with the saccharide accumulation patterns found during differentiation in the absence of glucose. However, in the presence of glucose, only a reversible mechanism (random or ordered) is compatible with the experimental data. It is concluded that glycogen degradation in vivo is controlled by an enzyme catalyzing a reversible reaction, the rate of which is inversely related to the glucose-1-P concentration.  相似文献   

5.
Creatine phosphate, nucleotides and glycolytic phosphate esters were estimated in extract of beating, in situ freeze clamped, 1312 to 1912 day fetal rat hearts by automated phosphate ester chromatography. Creatine phosphate increased more than 4-fold to almost 9 n moles per mg. protein at 1912 days, while ATP remained relatively constant at about 19 to 21 n moles per mg. protein. Most other nucleotides decreased as gestation advanced. ATP rather than creatine phosphate appears to be the major energy source of fetal rat heart. Except for glucose-6-phosphate, which increased, the glycolytic phosphate esters decreased only very slightly with advancing gestational age, suggesting a relatively stable basal glycolytic activity. Methodology includes correction for phosphate esters of whole blood trapped in extracts of in situ freeze clamped tissues.  相似文献   

6.
The pattern of glycolytic intermediates in the lens of alloxan-diabetic rats was indicative of regulation at phosphofructokinase. The changes in metabolites influencing phosphofructokinase activity in the diabetic, relative to the normal, rat lens were: glucose 6-phosphate, 182%; fructose 6-phosphate, 107%; fructose diphosphate, 57%. There was also a marked decrease in phosphoenolpyruvate, pyruvate, lactate and ATP but no significant change in other triose phosphates or cyclic AMP. The resuts are considered in relation to the early changes in [Ca2+] known to occur in lens in diabetes and to the coordinating effect of fructose diphosphate on flux through the glycolytic route.  相似文献   

7.
Since the 1970s, with Heinrich as a pioneer in the field, numerous kinetic models of erythrocyte glycolysis have been constructed. A functional comparison of eight of these models indicates that the production of ATP and GSH in the red blood cell is largely controlled by the demand reactions. The rate characteristics for the supply and demand blocks indicate a good homeostatic control of ATP and GSH concentrations at different work loads for the pathway, while the production rates of ATP and GSH can be adjusted as needed by the demand reactions.  相似文献   

8.

Background

Trehalose is the most important multifunctional, non-reducing disaccharide found in nature. It is synthesized in yeast by an enzyme complex: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP).

Methods

In the present study TPS is purified using a new methodology from Candida utilis cells by inclusion of 100 mM l-arginine during cell lysis and in the mobile phase of high performance gel filtration liquid chromatography (HPGFLC).

Results

An electrophoretically homogenous TPS that was purified was a 60 kDa protein with 22.1 fold purification having a specific activity of 2.03 U/mg. Alignment of the N-terminal sequence with TPS from Saccharomyces cerevisiae confirmed the 60 kDa protein to be TPS. Optimum activity of TPS was observed at a protein concentration of 1 μg, at a temperature of 37 °C and pH 8.5. Aggregation mediated enzyme regulation was indicated. Metal cofactors, especially MnCl2, MgCl2 and ZnSO4, acted as stimulators. Metal chelators like CDTA and EGTA stimulated enzyme activity. Among the four glucosyl donors, the highest Vmax and lowest Km values were calculated as 2.96 U/mg and 1.36 mM when adenosine di phosphate synthase (ADPG) was used as substrate. Among the glucosyl acceptors, glucose-6-phosphate (G-6-P) showed maximum activity followed by fructose-6-phosphate (F-6-P). Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity with different glucosyl donors.

General significance

Substrate specificity, Vmax and Km values provided an insight into an altered trehalose metabolic pathway in the C. utilis strain where ADPG is the preferred substrate rather than the usual substrate uridine diphosphaphate glucose (UDPG). The present work employs a new purification strategy as well as highlights an altered pathway in C. utilis.  相似文献   

9.
A glyphosate (N-[phosphonomethyl]glycine)-insensitive 5-enolpyruvylshikimic acid-3-phosphate (EPSP) synthase has been purified from a strain of Klebsiella pneumoniae which is resistant to this herbicide [(1984) Arch. Microbiol. 137, 121-123] and its properties compared with those of the glyphosate-sensitive EPSP synthase of the parent strain. The apparent Km values of the insensitive enzyme for phosphoenolpyruvate (PEP) and shikimate 3-phosphate (S-3-P) were increased 15.6- and 4.3-fold, respectively, as compared to those of the sensitive enzyme, and significant differences were found for the optimal pH and temperature, as well as the isoelectric points of the two enzymes. While PEP protected both enzymes against inactivation by N-ethylmaleimide, 3-bromopyruvate, and phenylglyoxal, glyphosate protected only the sensitive enzyme.  相似文献   

10.
Fructose 6-phosphate from several commercial sources was shown to be contaminated with fructose 2,6-bisphosphate. This contaminant was identified by its activation of PPi:fructose 6-phosphate phosphotransferase, extreme acid lability and behaviour on ion-exchange chromatography. The apparent kinetic properties of PPi:fructose 6-phosphate phosphotransferase from castor bean endosperm were considerably altered when contaminated fructose 6-phosphate was used as a substrate. Varying levels of fructose 2,6-bisphosphate in the substrate may account for differences that have been observed in the properties of the above enzyme from several plant sources.  相似文献   

11.
A New Isoflavonoid from Belamcanda chinensis (L.) DC.   总被引:2,自引:0,他引:2  
A new isoflavonoid, 5, 6, 7, 3'-terahydroxy-8, 4', 5'-trimethoxyisoflavone (1), along with 10 known isoflavonoids, namely 5, 6, 7, 4'-tetrahydroxy-8-methoxyisoflavone (2), irilone (3), genistein (4), tectorigenin (5), irigenin (6), irisflorentin (7), dichotomitin (8), dimethyltectorigenin (9), iridin (10), and tectoridin (11), was isolated from the alcohol extract of the rhizomes of Belamcanda chinensis (L.) DC. The structures of these compounds were elucidated on the basis of results of spectroscopic analysis.  相似文献   

12.
Some antitumor derivatives of ellipticine deprived of mutagenic properties   总被引:1,自引:0,他引:1  
Seven derivatives of the antitumor alkaloid ellipticine were assayed for activity against murine leukaemia L1210 and for mutagenicity in Ames' Salmonella-microsomes test. Not only did the results show a complete lack of correlation between these two properties, but it was possible to choose a highly efficient analog which was completely devoid of mutagenic and hence, probably, carcinogenic effect. The lack of interaction of this product (2-methyl-9-hydroxyellipticinium acetate) with Cytochrome P-450 of hepatic monooxygenases prevents the formation of reactive intermediates and their subsequent binding to DNA. These data are discussed in view of the currently admitted mode of action of ellipticines i.e., intercalation in DNA and their therapeutic use.  相似文献   

13.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) is a rate-limiting enzyme in the hexoamine biosynthetic pathway and plays an important role in type 2 diabetes. We now report the first structures of the isomerase domain of the human GFAT in the presence of cyclic glucose-6-phosphate and linear glucosamine-6-phosphate. The C-terminal tail including the active site displays a rigid conformation, similar to the corresponding Escherichia coli enzyme. The diversity of the CF helix near the active site suggests the helix is a major target for drug design. Our study provides insights into the development of therapeutic drugs for type 2 diabetes.  相似文献   

14.
Low concentrations of HgCl2 elicited, in Saccharomyces cerevisiae, a transitory increase in the ATP level followed by a decrease of its concentration, until almost disappearance. At 1 microM HgCl2, the increase in ATP lasted for about 30 min, while at 10 microM the increase was only observed in the first 5 min of treatment. The initial burst of ATP was accompanied by a decrease in the level of hexose phosphates, whereas during the decrease of ATP an increase in the inosine and hexose phosphates levels took place. The treatment with HgCl2 inhibited the plasma membrane proton ATPase but not the activities of hexokinase or 6-phosphofructokinase.  相似文献   

15.
16.
17.
Recent expansion of immunocompromised population has led to significant rise in zygomycosis caused by filamentous fungus Rhizopus oryzae. Due to emergence of fungal resistance and side-effects of antifungal drugs, there is increased demand for novel drug targets. The current study elucidates molecular interactions of peptide drugs with G-6-P synthase (catalyzing the rate-limiting step of fungal cell wall biosynthetic pathway) of R.oryzae by molecular docking studies. The PDB structures of enzyme in R.oryzae are not known which were predicted using I-TASSER server and validated with PROCHECK. Peptide inhibitors, FMDP and ADGP previously used against enzyme of E.coli (PDBid: 1XFF), were used for docking studies of enzyme in R.oryzae by SchrödingerMaestro v9.1. To investigate binding between enzyme and inhibitors, Glide and Induced Fit docking were performed. IFD results of 1XFF with FMDP yielded C1, R73, W74, T76, G99 and D123 as the binding sites. C379 and Q427 appear to be vital for binding of R.oryzae enzymes to inhibitors. The comparison results of IFD scores of enzyme in R.oryzae and E.coli (PDBid: 2BPL) yield appreciable score, hinting at the probable effectiveness of inhibitors FMDP and ADGP against R.oryzae, with ADGP showing an improved enzyme affinity. Moreover, the two copies of gene G-6-P synthase due to extensive fungal gene duplication, in R. oryzae eliminating the problem of drug ineffectiveness could act as a potential antifungal drug target in R. oryzae with the application of peptide ligands.  相似文献   

18.
Glucosamine 6-phosphate (GlcN-6-P) synthase is an ubiquitous enzyme that catalyses the first committed step in the reaction pathway that leads to formation of uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), a precursor of macromolecules that contain amino sugars. Despite sequence similarities, the enzyme in eukaryotes is tetrameric, whereas in prokaryotes it is a dimer. The activity of eukaryotic GlcN-6-P synthase (known as Gfa1p) is regulated by feedback inhibition by UDP-GlcNAc, the end product of the reaction pathway, whereas in prokaryotes the GlcN-6-P synthase (known as GlmS) is not regulated at the post-translational level. In bacteria and fungi the enzyme is essential for cell wall synthesis. In human the enzyme is a mediator of insulin resistance. For these reasons, Gfa1p is a target in anti-fungal chemotherapy and in therapeutics for type-2 diabetes. The crystal structure of the Gfa1p isomerase domain from Candida albicans has been analysed in complex with the allosteric inhibitor UDP-GlcNAc and in the presence of glucose 6-phosphate, fructose 6-phosphate and an analogue of the reaction intermediate, 2-amino-2-deoxy-d-mannitol 6-phosphate (ADMP). A solution structure of the native Gfa1p has been deduced using small-angle X-ray scattering (SAXS). The tetrameric Gfa1p can be described as a dimer of dimers, with each half similar to the related enzyme from Escherichia coli. The core of the protein consists of the isomerase domains. UDP-GlcNAc binds, together with a metal cation, in a well-defined pocket on the surface of the isomerase domain. The residues responsible for tetramerisation and for binding UDP-GlcNAc are conserved only among eukaryotic sequences. Comparison with the previously studied GlmS from E. coli reveals differences as well as similarities in the isomerase active site. This study of Gfa1p focuses on the features that distinguish it from the prokaryotic homologue in terms of quaternary structure, control of the enzymatic activity and details of the isomerase active site.  相似文献   

19.
20.
A specific antiserum against met5-enkepha-lin-arg6-phe7 was raised and used to study the distribution and characterization of met5-enkephalin-arg6-phe7-like immunoreactive material in rat brains by radioimmunoassay and immunohistochemical procedures. The antiserum appears to be directed to the COOH-terminus of the peptide, as it fails to cross-react with met5-enkeph-alin, met3-enkephalin-arg6, met5-enkephalin-arg6-arg7, met6-enkephalin-lys6, and leu-enkephalin. However, it cross-reacts with phe-met-arg-phe by about 10% and with phe-met-arg-phe-NH2 to an insignificant degree. The highest content of met5-enkephalin-arg6-phe7 was found in the striatum, which contains a dense network of immunoreactive varicose fibers and terminals, as well as immunoreac tive cell bodies. The met5-enkephalin-arg6-phe7 in striatum can be released in a Ca2+-dependent manner by a depolarizing concentration of KC1, raising the possibility of a neu-roregulatory role for met5-enkephalin-arg6-phe7. Characterization of the immunoreactive material by gel filtration and high pressure liquid chromatography revealed the presence of multiple forms of immunoreactive material in some brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号