共查询到20条相似文献,搜索用时 0 毫秒
1.
Epigenetic regulation by histone methylation and histone variants 总被引:10,自引:0,他引:10
Epigenetics is the study of heritable changes in gene expression that are not mediated at the DNA sequence level. Molecular mechanisms that mediate epigenetic regulation include DNA methylation and chromatin/histone modifications. With the identification of key histone-modifying enzymes, the biological functions of many histone posttranslational modifications are now beginning to be elucidated. Histone methylation, in particular, plays critical roles in many epigenetic phenomena. In this review, we provide an overview of recent findings that shape the current paradigms regarding the roles of histone methylation and histone variants in heterochromatin assembly and the maintenance of the boundaries between heterochromatin and euchromatin. We also highlight some of the enzymes that mediate histone methylation and discuss the stability and inheritance of this modification. 相似文献
2.
3.
Dynamic regulation of histone lysine methylation by demethylases 总被引:2,自引:0,他引:2
4.
Schneider J Wood A Lee JS Schuster R Dueker J Maguire C Swanson SK Florens L Washburn MP Shilatifard A 《Molecular cell》2005,19(6):849-856
The Set1-containing complex COMPASS, which is the yeast homolog of the human MLL complex, is required for mono-, di-, and trimethylation of lysine 4 of histone H3. We have performed a comparative global proteomic screen to better define the role of COMPASS in histone trimethylation. We report that both Cps60 and Cps40 components of COMPASS are required for proper histone H3 trimethylation, but not for proper regulation of telomere-associated gene silencing. Purified COMPASS lacking Cps60 can mono- and dimethylate but is not capable of trimethylating H3(K4). Chromatin immunoprecipitation (ChIP) studies indicate that the loss subunits of COMPASS required for histone trimethylation do not affect the localization of Set1 to chromatin for the genes tested. Collectively, our results suggest a molecular requirement for several components of COMPASS for proper histone H3 trimethylation and regulation of telomere-associated gene expression, indicating multiple roles for different forms of histone methylation by COMPASS. 相似文献
5.
The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation 总被引:11,自引:0,他引:11
Krogan NJ Dover J Wood A Schneider J Heidt J Boateng MA Dean K Ryan OW Golshani A Johnston M Greenblatt JF Shilatifard A 《Molecular cell》2003,11(3):721-729
6.
7.
8.
Histone methylation is believed to play important roles in epigenetic memory in various biological processes. However, questions
like whether the methylation marks themselves are faithfully transmitted into daughter cells and through what mechanisms are
currently under active investigation. Previously, methylation was considered to be irreversible, but the recent discovery
of histone lysine demethylases revealed a dynamic nature of histone methylation regulation on four of the main sites of methylation
on histone H3 and H4 tails (H3K4, H3K9, H3K27 and H3K36). Even so, it is still unclear whether demethylases specific for the
remaining two sites, H3K79 and H4K20, exist. Furthermore, besides histone proteins, the lysine methylation and demethylation
also occur on non-histone proteins, which are probably subjected to similar regulation as histones. This review discusses
recent progresses in protein lysine methylation regulation focusing on the above topics, while referring readers to a number
of recent reviews for the biochemistry and biology of these enzymes 相似文献
9.
10.
Role of histone and DNA methylation in gene regulation 总被引:3,自引:0,他引:3
11.
12.
Linker histones of the H1 family are among the most abundant components of chromatin. In this issue of Cell, the effect of H1 downregulation on gene expression is examined. Although a 50% reduction of histone H1 levels in embryonic stem cells affects chromatin structure globally, the expression of very few genes is altered. Intriguingly, this study reveals a new link between H1 and DNA methylation. 相似文献
13.
14.
Epigenetic silencing is one of the mechanisms leading to inactivation of a tumor suppressor gene, either by DNA methylation or histone modification in a promoter regulatory region. Mitogen inducible gene 6 (MIG-6), mainly known as a negative feedback inhibitor of the epidermal growth factor receptor (EGFR) family, is a tumor suppressor gene that is associated with many human cancers. To determine if MIG-6 is inactivated by epigenetic alteration, we identified a group of human lung cancer and melanoma cell lines in which its expression is either low or undetectable and studied the effects of methylation and of histone deacetylation on its expression. The DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) induced MIG-6 expression in melanoma cell lines but little in lung cancer lines. By contrast, the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) induced MIG-6 expression in lung cancer lines but had little effect in melanoma lines. However, the MIG-6 promoter itself did not appear to be directly affected by either methylation or histone deacetylation, indicating an indirect regulatory mechanism. Luciferase reporter assays revealed that a short segment of exon 1 in the MIG-6 gene is responsible for TSA response in the lung cancer cells; thus, the MIG-6 gene can be epigenetically silenced through an indirect mechanism without having a physical alteration in its promoter. Furthermore, our data also suggest that MIG-6 gene expression is differentially regulated in lung cancer and melanoma. 相似文献
15.
16.
Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6 总被引:24,自引:0,他引:24
Dover J Schneider J Tawiah-Boateng MA Wood A Dean K Johnston M Shilatifard A 《The Journal of biological chemistry》2002,277(32):28368-28371
The DNA of eukaryotes is wrapped around nucleosomes and packaged into chromatin. Covalent modifications of the histone proteins that comprise the nucleosome alter chromatin structure and have major effects on gene expression. Methylation of lysine 4 of histone H3 by COMPASS is required for silencing of genes located near chromosome telomeres and within the rDNA (Krogan, N. J, Dover, J., Khorrami, S., Greenblatt, J. F., Schneider, J., Johnston, M., and Shilatifard, A. (2002) J. Biol. Chem. 277, 10753-10755; Briggs, S. D., Bryk, M., Strahl, B. D., Cheung, W. L., Davie, J. K., Dent, S. Y., Winston, F., and Allis, C. D. (2001) Genes. Dev. 15, 3286-3295). To learn about the mechanism of histone methylation, we surveyed the genome of the yeast Saccharomyces cerevisiae for genes necessary for this process. By analyzing approximately 4800 mutant strains, each deleted for a different non-essential gene, we discovered that the ubiquitin-conjugating enzyme Rad6 is required for methylation of lysine 4 of histone H3. Ubiquitination of histone H2B on lysine 123 is the signal for the methylation of histone H3, which leads to silencing of genes located near telomeres. 相似文献
17.
18.
19.