共查询到20条相似文献,搜索用时 0 毫秒
1.
We introduce a method of parameter estimation for a random effects cure rate model. We also propose a methodology that allows us to account for nonignorable missing covariates in this class of models. The proposed method corrects for possible bias introduced by complete case analysis when missing data are not missing completely at random and is motivated by data from a pair of melanoma studies conducted by the Eastern Cooperative Oncology Group in which clustering by cohort or time of study entry was suspected. In addition, these models allow estimation of cure rates, which is desirable when we do not wish to assume that all subjects remain at risk of death or relapse from disease after sufficient follow-up. We develop an EM algorithm for the model and provide an efficient Gibbs sampling scheme for carrying out the E-step of the algorithm. 相似文献
2.
We propose methods for Bayesian inference for a new class of semiparametric survival models with a cure fraction. Specifically, we propose a semiparametric cure rate model with a smoothing parameter that controls the degree of parametricity in the right tail of the survival distribution. We show that such a parameter is crucial for these kinds of models and can have an impact on the posterior estimates. Several novel properties of the proposed model are derived. In addition, we propose a class of improper noninformative priors based on this model and examine the properties of the implied posterior. Also, a class of informative priors based on historical data is proposed and its theoretical properties are investigated. A case study involving a melanoma clinical trial is discussed in detail to demonstrate the proposed methodology. 相似文献
3.
4.
5.
We present a method for estimating the parameters in random effects models for survival data when covariates are subject to missingness. Our method is more general than the usual frailty model as it accommodates a wide range of distributions for the random effects, which are included as an offset in the linear predictor in a manner analogous to that used in generalized linear mixed models. We propose using a Monte Carlo EM algorithm along with the Gibbs sampler to obtain parameter estimates. This method is useful in reducing the bias that may be incurred using complete-case methods in this setting. The methodology is applied to data from Eastern Cooperative Oncology Group melanoma clinical trials in which observations were believed to be clustered and several tumor characteristics were not always observed. 相似文献
6.
This paper outlines a multiple imputation method for handling missing data in designed longitudinal studies. A random coefficients model is developed to accommodate incomplete multivariate continuous longitudinal data. Multivariate repeated measures are jointly modeled; specifically, an i.i.d. normal model is assumed for time-independent variables and a hierarchical random coefficients model is assumed for time-dependent variables in a regression model conditional on the time-independent variables and time, with heterogeneous error variances across variables and time points. Gibbs sampling is used to draw model parameters and for imputations of missing observations. An application to data from a study of startle reactions illustrates the model. A simulation study compares the multiple imputation procedure to the weighting approach of Robins, Rotnitzky, and Zhao (1995, Journal of the American Statistical Association 90, 106-121) that can be used to address similar data structures. 相似文献
7.
Lianming Wang Christopher S. McMahan Michael G. Hudgens Zaina P. Qureshi 《Biometrics》2016,72(1):222-231
8.
T. Wojciechowski 《Biometrical journal. Biometrische Zeitschrift》1991,33(8):951-958
In many practical applications we deal with a problem of estimation of a density function of a vector x some components of which are discrete, while the remaining ones are continuous. Among many models that can be used in this case the most useful are the location model and the kernel model. The problem arises when the observed data contain missing values i.e. on some individuals some of the variables have not been observed with no particular pattern of missingness. An application of the EM algorithm will allow us to estimate the parameters of the location model from incomplete data. The method is described in Section 2. In Section 3 some suggestions how to deal with incompleteness when the kernel model is used are made. Finally, Section 4 contains an example. 相似文献
9.
Noncompliance is a common problem in experiments involving randomized assignment of treatments, and standard analyses based on intention-to-treat or treatment received have limitations. An attractive alternative is to estimate the Complier-Average Causal Effect (CACE), which is the average treatment effect for the subpopulation of subjects who would comply under either treatment (Angrist, Imbens, and Rubin, 1996, Journal of American Statistical Association 91, 444-472). We propose an extended general location model to estimate the CACE from data with noncompliance and missing data in the outcome and in baseline covariates. Models for both continuous and categorical outcomes and ignorable and latent ignorable (Frangakis and Rubin, 1999, Biometrika 86, 365-379) missing-data mechanisms are developed. Inferences for the models are based on the EM algorithm and Bayesian MCMC methods. We present results from simulations that investigate sensitivity to model assumptions and the influence of missing-data mechanism. We also apply the method to the data from a job search intervention for unemployed workers. 相似文献
10.
Case-deletion measures for models with incomplete data 总被引:9,自引:0,他引:9
11.
We consider a class of semiparametric models for the covariate distribution and missing data mechanism for missing covariate and/or response data for general classes of regression models including generalized linear models and generalized linear mixed models. Ignorable and nonignorable missing covariate and/or response data are considered. The proposed semiparametric model can be viewed as a sensitivity analysis for model misspecification of the missing covariate distribution and/or missing data mechanism. The semiparametric model consists of a generalized additive model (GAM) for the covariate distribution and/or missing data mechanism. Penalized regression splines are used to express the GAMs as a generalized linear mixed effects model, in which the variance of the corresponding random effects provides an intuitive index for choosing between the semiparametric and parametric model. Maximum likelihood estimates are then obtained via the EM algorithm. Simulations are given to demonstrate the methodology, and a real data set from a melanoma cancer clinical trial is analyzed using the proposed methods. 相似文献
12.
The diagnosis/prognosis problem has already been introduced by the authors in previous papers as a classification problem for survival data. In this paper, the specific aspects of the estimation of the survival functions in diagnostic classes and the evaluation of the posterior probabilities of the diagnostic classes are addressed; a latent random variable Z is defined to denote the classification of censored and uncensored individuals, where early censored individuals cannot be immediately classified as Z is not observed. Parameter estimation of the mixture survival model thus derived is carried out using a proper version of the EM algorithm with given prior probabilities on Z and diagnostic/prognostic information provided by the observable covariates is also included into the model. Numerical examples using AIDS data and a simulation study are used to better outline the main features of the model and of the estimation methodology. 相似文献
13.
14.
15.
16.
We propose a method for estimating parameters for general parametric regression models with an arbitrary number of missing covariates. We allow any pattern of missing data and assume that the missing data mechanism is ignorable throughout. When the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM algorithm by the method of weights proposed in Ibrahim (1990, Journal of the American Statistical Association 85, 765-769). We extend this method to continuous or mixed categorical and continuous covariates, and for arbitrary parametric regression models, by adapting a Monte Carlo version of the EM algorithm as discussed by Wei and Tanner (1990, Journal of the American Statistical Association 85, 699-704). In addition, we discuss the Gibbs sampler for sampling from the conditional distribution of the missing covariates given the observed data and show that the appropriate complete conditionals are log-concave. The log-concavity property of the conditional distributions will facilitate a straightforward implementation of the Gibbs sampler via the adaptive rejection algorithm of Gilks and Wild (1992, Applied Statistics 41, 337-348). We assume the model for the response given the covariates is an arbitrary parametric regression model, such as a generalized linear model, a parametric survival model, or a nonlinear model. We model the marginal distribution of the covariates as a product of one-dimensional conditional distributions. This allows us a great deal of flexibility in modeling the distribution of the covariates and reduces the number of nuisance parameters that are introduced in the E-step. We present examples involving both simulated and real data. 相似文献
17.
Yin G 《Biometrics》2005,61(2):552-558
Due to natural or artificial clustering, multivariate survival data often arise in biomedical studies, for example, a dental study involving multiple teeth from each subject. A certain proportion of subjects in the population who are not expected to experience the event of interest are considered to be \"cured\" or insusceptible. To model correlated or clustered failure time data incorporating a surviving fraction, we propose two forms of cure rate frailty models. One model naturally introduces frailty based on biological considerations while the other is motivated from the Cox proportional hazards frailty model. We formulate the likelihood functions based on piecewise constant hazards and derive the full conditional distributions for Gibbs sampling in the Bayesian paradigm. As opposed to the Cox frailty model, the proposed methods demonstrate great potential in modeling multivariate survival data with a cure fraction. We illustrate the cure rate frailty models with a root canal therapy data set. 相似文献
18.
This article analyzes quality of life (QOL) data from an Eastern Cooperative Oncology Group (ECOG) melanoma trial that compared treatment with ganglioside vaccination to treatment with high-dose interferon. The analysis of this data set is challenging due to several difficulties, namely, nonignorable missing longitudinal responses and baseline covariates. Hence, we propose a selection model for estimating parameters in the normal random effects model with nonignorable missing responses and covariates. Parameters are estimated via maximum likelihood using the Gibbs sampler and a Monte Carlo expectation maximization (EM) algorithm. Standard errors are calculated using the bootstrap. The method allows for nonmonotone patterns of missing data in both the response variable and the covariates. We model the missing data mechanism and the missing covariate distribution via a sequence of one-dimensional conditional distributions, allowing the missing covariates to be either categorical or continuous, as well as time-varying. We apply the proposed approach to the ECOG quality-of-life data and conduct a small simulation study evaluating the performance of the maximum likelihood estimates. Our results indicate that a patient treated with the vaccine has a higher QOL score on average at a given time point than a patient treated with high-dose interferon. 相似文献
19.
Some failure time data come from a population that consists of some subjects who are susceptible to and others who are nonsusceptible to the event of interest. The data typically have heavy censoring at the end of the follow-up period, and a standard survival analysis would not always be appropriate. In such situations where there is good scientific or empirical evidence of a nonsusceptible population, the mixture or cure model can be used (Farewell, 1982, Biometrics 38, 1041-1046). It assumes a binary distribution to model the incidence probability and a parametric failure time distribution to model the latency. Kuk and Chen (1992, Biometrika 79, 531-541) extended the model by using Cox's proportional hazards regression for the latency. We develop maximum likelihood techniques for the joint estimation of the incidence and latency regression parameters in this model using the nonparametric form of the likelihood and an EM algorithm. A zero-tail constraint is used to reduce the near nonidentifiability of the problem. The inverse of the observed information matrix is used to compute the standard errors. A simulation study shows that the methods are competitive to the parametric methods under ideal conditions and are generally better when censoring from loss to follow-up is heavy. The methods are applied to a data set of tonsil cancer patients treated with radiation therapy. 相似文献