首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Th1-type immune responses, mediated by IL-12-induced IFN-gamma, protect the host from most viral infections. To investigate the role of IL-12 and IFN-gamma on the development of Coxsackievirus B3 (CB3)-induced myocarditis, we examined the level of inflammation, viral replication, and cytokine production in IL-12Rbeta1- and IFN-gamma-deficient mice following CB3 infection. We report that IL-12Rbeta1 deficiency results in decreased viral replication and inflammation in the heart, while IFN-gamma deficiency exacerbates CB3 replication. Importantly, decreased IL-1beta and IL-18 levels in IL-12Rbeta1-deficient hearts correlated directly with decreased myocardial inflammation. Because IL-1beta and IL-18 were associated with myocardial inflammation, we examined the effect of TLR4 deficiency on CB3 infection and myocarditis. We found that TLR4-deficient mice also had significantly reduced levels of myocarditis, viral replication, and IL-1beta/IL-18, just as we had observed in IL-12Rbeta1-deficient mice. This is the first report that TLR4 influences CB3 replication. These results show that IL-12Rbeta1 and TLR4 exacerbate CB3 infection and myocarditis while IFN-gamma protects against viral replication. The remarkable similarities between the effects of IL-12Rbeta1 and TLR4 suggest that these receptors share common downstream pathways that directly influence IL-1beta and IL-18 production, and confirm that IL-1beta and IL-18 play a significant role in the pathogenesis of CB3-induced myocarditis. These findings have important implications not only for the pathogenesis of myocarditis, but for other autoimmune diseases triggered by viral infections.  相似文献   

2.
Complement and complement receptors (CR) play a central role in immune defense by initiating the rapid destruction of invading microorganisms, amplifying the innate and adaptive immune responses, and mediating solubilization and clearance of immune complexes. Defects in the expression of C or CR have been associated with loss of tolerance to self proteins and the development of immune complex-mediated autoimmune diseases such as systemic lupus erythematosus. In this study, we examined the role of CR on coxsackievirus B3 (CVB3)-induced myocarditis using mice deficient in CR1/2. We found that CR1/2 deficiency significantly increased acute CVB3 myocarditis and pericardial fibrosis resulting in early progression to dilated cardiomyopathy and heart failure. The increase in inflammation was not due to increased viral replication, which was not significantly altered in the hearts of CR1/2-deficient mice, but was associated with increased numbers of macrophages, IL-1beta levels, and immune complex deposition in the heart. The complement regulatory protein, CR1-related gene/protein Y (Crry), was increased on cardiac macrophage populations, while immature B220(low) B cells were increased in the spleen of CR1/2-deficient mice during acute CVB3-induced myocarditis. These results show that expression of CR1/2 is not necessary for effective clearance of CVB3 infection, but prevents immune-mediated damage to the heart.  相似文献   

3.
IL-12 and IFN-gamma positively regulate each other and type 1 inflammatory responses, which are believed to cause tissue damage in autoimmune diseases. We investigated the role of the IL-12/IFN-gamma (Th1) axis in the development of autoimmune myocarditis. IL-12p40-deficient mice on a susceptible background resisted myocarditis. In the absence of IL-12, autospecific CD4(+) T cells proliferated poorly and showed increased Th2 cytokine responses. However, IFN-gamma-deficient mice developed fatal autoimmune disease, and blockade of IL-4R signaling did not confer susceptibility to myocarditis in IL-12p40-deficient mice, demonstrating that IL-12 triggers autoimmunity by a mechanism independent of the effector cytokines IFN-gamma and IL-4. In conclusion, our results suggest that the IL-12/IFN-gamma axis is a double-edged sword for the development of autoimmune myocarditis. Although IL-12 mediates disease by induction/expansion of Th1-type cells, IFN-gamma production from these cells limits disease progression.  相似文献   

4.
Infections are thought to be important in the pathogenesis of many heart diseases. Coxsackievirus B3 (CVB3) has been linked to chronic dilated cardiomyopathy, a common cause of progressive heart disease, heart failure and sudden death. We show here that the sarcoma (Src) family kinase Lck (p56lck) is required for efficient CVB3 replication in T-cell lines and for viral replication and persistence in vivo. Whereas infection of wild-type mice with human pathogenic CVB3 caused acute and very severe myocarditis, meningitis, hepatitis, pancreatitis and dilated cardiomyopathy, mice lacking the p56lck gene were completely protected from CVB3-induced acute pathogenicity and chronic heart disease. These data identify a previously unknown function of Src family kinases and indicate that p56lck is the essential host factor that controls the replication and pathogenicity of CVB3.  相似文献   

5.
Infections with the group B coxsackieviruses either can be asymptomatic or can lead to debilitating chronic diseases. To elucidate the mechanism by which these viruses cause chronic disease, we developed a mouse model of chronic pancreatitis by using a virulent variant of coxsackievirus B4, CVB4-V. Infection with CVB4-V results in an early, severe pancreatitis, which can lead to mortality or progress to chronic pancreatitis. Chronic pancreatitis, in this model, is due to immunopathological mechanisms. We investigated whether interleukin-12 (IL-12) could modulate the outcome of CVB4-V infection. Eighty-five percent of the infected mice treated with 500 ng of IL-12 survived, whereas all untreated mice succumbed. To understand the mechanism underlying the beneficial effect of IL-12, we investigated the role of gamma interferon (IFN-gamma). Three lines of evidence suggest that the protective effect of IL-12 is due to IFN-gamma. First, administration of IL-12 increased the production of endogenous IFN-gamma in CVB4-V-infected mice. Both NK and NKT cells were identified as the source of IFN-gamma. Second, IFN-gamma knockout mice treated with IL-12 succumbed to infection with CVB4-V. Third, wild-type mice treated with IFN-gamma survived infection with CVB4-V. Due to the antiviral effects of IFN-gamma, we examined whether IL-12 treatment affected viral replication. Administration of IL-12 did not decrease viral replication in the pancreas, but it did prevent extensive tissue damage and the subsequent development of chronic pancreatitis. The data suggest that IL-12 treatment during CVB4-V infection is able to suppress the immunopathological mechanisms that lead to chronic disease.  相似文献   

6.
The Th17/interleukin (IL)-17 axis controls inflammation and might be important in the pathogenesis of experimental autoimmune myocarditis (EAM) and other autoimmune diseases. However, the mechanism underlying the increased Th17 cell response in coxsackievirus-induced myocarditis remains unclear. This study aimed to elucidate the regulatory mechanisms affected by blocking IL-17A responses in acute virus-induced myocarditis (AVMC) mice. The results showed that IL-17A and COX-2 proteins were significantly increased in the cardiac tissue of acute myocarditis, as were Th17 cells in the spleen. Using anti-mouse IL-17Ab to block IL-17A on day 7 of the viral myocarditis led to decreased expressions of cardiac tumor-necrosis factor alpha, IL-17A and transforming growth factor beta in AVMC mice compared to isotype control mice. COX-2 and prostaglandin E2 proteins were dramatically elevated, followed by marked reductions in CVB3 replication and myocardial injury. These results hint that the Th17/IL-17 axis is intimately associated with viral replication in acute myocarditis via induction of COX-2 and prostaglandin E2.  相似文献   

7.
Infections by coxsackievirus B3 (CVB3) have previously been shown to cause acute and chronic myocarditis characterized by a heavy mononuclear leukocyte infiltration and myocyte necrosis. Because clinical and experimental evidence suggested that cardiac damage may result from immunologic rather than viral mechanisms, we examined in this study the in vitro interaction of CVB3 with human monocytes. CVB3 was capable of infecting freshly harvested monocytes as revealed by immunofluorescence and release of infectious virus particles. Virus infection did not reduce monocyte viability but, on the contrary, enhanced spreading and adherence. In a dose-dependent manner, CVB3 stimulated the release of cytokines from monocytes. Whereas a potent production of TNF-alpha, IL-1 beta, and IL-6 was dependent on exposure to infectious CVB3, IFN release was also induced by UV-inactivated virus. On a molecular level, CVB3 stimulated cytokine gene expression as shown by a marked TNF-alpha, IL-1 beta, and IL-6 mRNA accumulation. Supernatants of CVB3-infected monocytes displayed cytotoxic activity against Girardi heart cells which could be abrogated by an anti-TNF-alpha antiserum. These data suggest that CVB3-induced cytokine release from monocytes may participate in virus-induced organ damage such as myocarditis, which may either occur by a direct cytotoxicity of cytokines or by activation of cytotoxic lymphocytes.  相似文献   

8.
Zhang Y  Zhu H  Ye G  Huang C  Yang Y  Chen R  Yu Y  Cui X 《Life sciences》2006,78(17):1998-2005
Coxsackievirus B3 (CVB3) is a major pathogen for acute and chronic viral myocarditis. The aim of this study was to investigate the antiviral effects of sophoridine, an alkaloid extracted from Chinese medicinal herb, Sophora flavescens, against CVB3, and the underlying pharmacokinetics. First, we determined the antiviral effects of sophoridine against CVB3 in in vitro (primarily cultured myocardial cells), in vivo (BALB/c mice) and serum pharmacological experiments. Then, we determined the pharmacokinetic behavior in serum samples of SD rats after oral administration by HPLC. Finally, we determined the effects of sophoridine on the production of cytokines in a murine viral myocarditis model by measuring mRNA expression of some important cytokines in hearts of infected BALB/c mice by RT-PCR. We found that sophoridine exhibited obvious antiviral effects both in vitro and in vivo, and serum samples obtained from rats with oral administration of sophoridine reduced the virus titers in infected myocardial cells. The serum concentration profile correlated closely with antiviral activity profile. Moreover, sophoridine significantly enhanced mRNA expression of IL-10 and IFN-gamma, but decreased TNF-alpha mRNA expression. In conclusion, sophoridine possesses antiviral activities against CVB3, by regulating cytokine expression, and it is likely that sophoridine itself, not its metabolites, is mainly responsible for the antiviral activities. Therefore, sophoridine may represent a potential therapeutic agent for viral myocarditis.  相似文献   

9.
Th17 cells have been implicated in the pathogenesis of myocarditis. Interleukin (IL)-17A produced by Th17 cells is dispensable for viral myocarditis but essential for the progression to dilated cardiomyopathy (DCM). This study investigated whether the adenoviral transfer of the IL-17 receptor A reduces myocardial remodeling and dysfunction in viral myocarditis leading to DCM. In a mouse model of Coxsackievirus B3 (CVB3)-induced chronic myocarditis, the delivery of the adenovirus-containing IL-17 receptor A (Ad-IL17RA:Fc) reduced IL-17A production and decreased the number of Th17 cells in the spleen and heart, leading to the down-regulation of systemic TNF-α and IL-6 production. Cardiac function improved significantly in the Ad-IL17R:Fc- compared with the Ad-null-treated mice 3 months after the first CVB3 infection. Ad-IL17R:Fc reduced the left ventricle dilation and decreased the mortality in viral myocarditis, leading to DCM (56% in the Ad-IL17R:Fc versus 76% in the Ad-null group). The protective effects of Ad-IL17R-Fc on remodeling correlated with the attenuation of myocardial collagen deposition and the reduction of fibroblasts in CVB3-infected hearts, which was accompanied by the down-regulation of A distintegrin and metalloprotease with thrombospondin type 1 motifs (ADAMTS-1), Matrix metalloproteinase-2(MMP-2), and collagen subtypes I and III in the heart. Moreover, in cultured cardiac fibroblasts, IL-17A induced the expression of ADAMTS-1, MMP-2, and collagen subtypes I and III and increased the proliferation of fibroblasts. We determined that the delivery of IL-17-RA:Fc reduces cardiac remodeling, improves function, and decreases mortality in viral myocarditis leading to DCM, possibly by suppressing fibrosis. Therefore, the adenoviral transfer of the IL-17 receptor A may represent an alternative therapy for chronic viral myocarditis and its progression to DCM.  相似文献   

10.
Clinical and laboratory investigations have demonstrated the involvement of viruses and bacteria as potential causative agents in cardiovascular disease and have specifically found coxsackievirus B3 (CVB3) to be a leading cause. Experimental data indicate that cytokines are involved in controlling CVB3 replication. Therefore, recombinant CVB3 (CVB3rec) variants expressing the T-helper-1 (T(H)1)-specific gamma interferon (IFN-gamma) or the T(H)2-specific interleukin-10 (IL-10) as well as the control virus CVB3(muIL-10), which produce only biologically inactive IL-10, were established. Coding regions of murine cytokines were cloned into the 5' end of the CVB3 wild type (CVB3wt) open reading frame and were supplied with an artificial viral 3Cpro-specific Q-G cleavage site. Correct processing releases active cytokines, and the concentration of IFN-gamma and IL-10 was analyzed by enzyme-linked immunosorbent assay and bioassays. In mice, CVB3wt was detectable in pancreas and heart tissue, causing massive destruction of the exocrine pancreas as well as myocardial inflammation and heart cell lysis. Most of the CVB3wt-infected mice revealed virus-associated symptoms, and some died within 28 days postinfection. In contrast, CVB3rec variants were present only in the pancreas of infected mice, causing local inflammation with subsequent healing. Four weeks after the first infection, surviving mice were challenged with the lethal CVB3H3 variant, causing casualties in the CVB3wt- and CVB3(muIL-10)-infected groups, whereas almost none of the CVB3(IFN-gamma)- and CVB3(IL-10)-infected mice died and no pathological disorders were detectable. This study demonstrates that expression of immunoregulatory cytokines during CVB3 replication simultaneously protects mice against a lethal disease and prevents virus-caused tissue destruction.  相似文献   

11.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

12.
TC Moore  KL Bush  L Cody  DM Brown  TM Petro 《Journal of virology》2012,86(19):10841-10851
During Theiler's murine encephalomyelitis virus (TMEV) infection of macrophages, it is thought that high interleukin-6 (IL-6) levels contribute to the demyelinating disease found in chronically infected SJL/J mice but absent in B10.S mice capable of clearing the infection. Therefore, IL-6 expression was measured in TMEV-susceptible SJL/J and TMEV-resistant B10.S macrophages during their infection with TMEV DA strain or responses to lipopolysaccharide (LPS) or poly(I · C). Unexpectedly, IL-6 production was greater in B10.S macrophages than SJL/J macrophages during the first 24 h after stimulation with TMEV, LPS, or poly(I · C). Further experiments showed that in B10.S, SJL/J, and RAW264.7 macrophage cells, IL-6 expression was dependent on extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) and enhanced by exogenous IL-12. In SJL/J and RAW264.7 macrophages, exogenous IL-6 resulted in decreased TMEV replication, earlier activation of STAT1 and STAT3, production of nitric oxide, and earlier upregulation of several antiviral genes downstream of STAT1. However, neither inhibition of IL-6-induced nitric oxide nor knockdown of STAT1 diminished the early antiviral effect of exogenous IL-6. In addition, neutralization of endogenous IL-6 from SJL/J macrophages with Fab antibodies did not exacerbate early TMEV infection. Therefore, endogenous IL-6 expression after TMEV infection is dependent on ERK MAPK, enhanced by IL-12, but too slow to decrease viral replication during early infection. In contrast, exogenous IL-6 enhances macrophage control of TMEV infection through preemptive antiviral nitric oxide production and antiviral STAT1 activation. These results indicate that immediate-early production of IL-6 could protect macrophages from TMEV infection.  相似文献   

13.
Excellent animal models are available for virus-induced and autoimmune heart disease that are remarkably similar to human disease. Developing good animal models for heart disease is crucial because cardiovascular disease is now the leading cause of death in the United States and is estimated to be the leading cause of death in the world by the year 2020. A significant proportion of heart disease in Western populations is associated with inflammation. Myocarditis, or inflammation of the heart muscle, is the major cause of sudden death in young adults. Although most individuals recover from acute myocarditis, genetically susceptible individuals may go on to develop chronic myocarditis and dilated cardiomyopathy (DCM) resulting in congestive heart failure. In this article, we describe a model of autoimmune myocarditis and DCM induced by inoculation with heart-passaged coxsackievirus B3 (CVB3). Intraperitoneal inoculation of susceptible mice with CVB3 induces acute cardiac inflammation from days 7 to 14 postinfection (pi) that progresses to chronic myocarditis and DCM from day 28 to at least 56 pi. The model of CVB3-induced myocarditis presented here allows dissection of the contribution of viral infection and xenobiotics on immune dysregulation and inflammation in the heart. An improved understanding of the interaction between environmental exposures and the development of heart disease represents a clear challenge for immunotoxicologists.  相似文献   

14.
The role of natural killer cells in the temporal development of coxsackievirus B3-induced myocarditis in adolescent CD-1 male mice was examined. Inoculation of purified CVB3m induced maximum NK cell activity in the splenic populations at 3 days postinoculation (p.i.) as assessed by lysis of YAC-1 cells; maximum virus titers in heart tissues were also found at day 3 p.i. Mice depleted of NK cells after injection of anti-asialo GM1 antiserum i.v. had decreased NK cell activity, increased CVB3m titers in heart tissues, and exacerbated myocarditis. Although lesion number was not increased in heart tissues of the latter mice, lesions in these mice exhibited increased myocyte degeneration and dystrophic calcification above that found in lesions of mice inoculated with CVB3m only. No alteration in interferon titers were observed in CVB3m-infected mice treated with anti-asialo GM1 antiserum as compared with normal CVB3m-infected mice. Measurements of splenic NK cell activity in mice inoculated with doses of 10(2) to 10(8) PFU of CVB3m per mouse or UV-irradiated virus suggest that replication of CVB3m is required for NK cell activation. An amyocarditic variant of CVB3m (ts5R) was shown to replicate in heart tissues and to elicit NK cell activity comparable to that elicited by CVB3m. Therefore, the data suggest that NK cell activation depends on virus replication and that these cells provide some protection against CVB3m-induced myocarditis by limiting virus replication in heart tissues.  相似文献   

15.
Nonobese diabetic (NOD) mice spontaneously develop diabetes with a strong female prevalence; however, the mechanisms for this gender difference in susceptibility to T cell-mediated autoimmune diabetes are poorly understood. This investigation was initiated to find mechanisms by which sex hormones might affect the development of autoimmune diabetes in NOD mice. We examined the expression of IFN-gamma, a characteristic Th1 cytokine, and IL-4, a characteristic Th2 cytokine, in islet infiltrates of female and male NOD mice at various ages. We found that the most significant difference in cytokine production between sexes was during the early stages of insulitis at 4 wk of age. IFN-gamma was significantly higher in young females, whereas IL-4 was higher in young males. CD4(+) T cells isolated from lymph nodes of female mice and activated with anti-CD3 and anti-CD28 Abs produced more IFN-gamma, but less IL-4, as compared with males. Treatment of CD4(+) T cells with estrogen significantly increased, whereas testosterone treatment decreased the IL-12-induced production of IFN-gamma. We then examined whether the change in IL-12-induced IFN-gamma production by treatment with sex hormones was due to the regulation of STAT4 activation. We found that estrogen treatment increased the phosphorylation of STAT4 in IL-12-stimulated T cells. We conclude that the increased susceptibility of female NOD mice to the development of autoimmune diabetes could be due to the enhancement of the Th1 immune response through the increase of IL-12-induced STAT4 activation by estrogen.  相似文献   

16.
H Wang  Y Ding  J Zhou  X Sun  S Wang 《Phytomedicine》2009,16(2-3):146-155
The aim of this study was to investigate the antiviral effects of salidroside, a major component of Rhodiola rosea L. First, the antiviral effects of salidroside against coxsackievirus B3 (CVB3) were determined in vitro and in vivo. Then, the effect of salidroside on the mRNA expression of some important cytokines was measured in hearts of infected BALB/c mice by RT-PCR. Salidroside exhibited obvious antiviral effects both in in vitro and in vivo experiments. Salidroside was found to modulate the mRNA expression of interferon-gamma (IFN-gamma), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-alpha), and interleukin-2 (IL-2). In conclusion, salidroside possesses antiviral activities against CVB3 and it may represent a potential therapeutic agent for viral myocarditis.  相似文献   

17.
Myocarditis and dilated cardiomyopathy (DCM) are often caused by viral infections and occur more frequently in men than in women, but the reasons for the sex difference remain unclear. The aim of this study was to assess whether gene changes in the heart during coxsackievirus B3 (CVB3) myocarditis in male and female BALB/c mice predicted worse DCM in males. Although myocarditis (P = 4.2 × 10(-5)) and cardiac dilation (P = 0.008) were worse in males, there was no difference in viral replication in the heart. Fibrotic remodeling genes, such as tissue inhibitor of metalloproteinase (TIMP)-1 and serpin A 3n, were upregulated in males during myocarditis rather than during DCM. Using gonadectomy and testosterone replacement, we showed that testosterone increased cardiac TIMP-1 (P = 0.04), serpin A 3n (P = 0.007), and matrix metalloproteinase (MMP)-8 (P = 0.04) during myocarditis. Testosterone increased IL-1β levels in the heart (P = 0.02), a cytokine known to regulate cardiovascular remodeling, and IL-1β in turn increased cardiac serpin A 3n mRNA (P = 0.005). We found that 39 of 118 (33%) genes identified in acute DCM patients were significantly altered in the heart during CVB3 myocarditis in mice, including serpin A 3n (3.3-fold change, P = 0.0001). Recombinant serpin A 3n treatment induced cardiac fibrosis during CVB3 myocarditis (P = 0.0008) while decreasing MMP-3 (P = 0.04) and MMP-9 (P = 0.03) levels in the heart. Thus, serpin A 3n was identified as a gene associated with fibrotic cardiac remodeling and progression to DCM in male myocarditis patients and mice.  相似文献   

18.
Infection of mouse macrophages by Toxoplasma gondii renders the cells resistant to proinflammatory effects of LPS triggering. In this study, we show that cell invasion is accompanied by rapid and sustained activation of host STAT3. Activation of STAT3 did not occur with soluble T. gondii extracts or heat-killed tachyzoites, demonstrating a requirement for live parasites. Parasite-induced STAT3 phosphorylation and suppression of LPS-triggered TNF-alpha and IL-12 was intact in IL-10-deficient macrophages, ruling out a role for this anti-inflammatory cytokine in the suppressive effects of T. gondii. Most importantly, Toxoplasma could not effectively suppress LPS-triggered TNF-alpha and IL-12 synthesis in STAT3-deficient macrophages. These results demonstrate that T. gondii exploits host STAT3 to prevent LPS-triggered IL-12 and TNF-alpha production, revealing for the first time a molecular mechanism underlying the parasite's suppressive effect on macrophage proinflammatory cytokine production.  相似文献   

19.
20.

Background

Viral myocarditis, which is most prevalently caused by Coxsackievirus B3 (CVB3) infection, is a serious clinical condition characterized by cardiac inflammation. However, efficient therapies targeting inflammation are still lacking and much needed. A20, also known as tumor necrosis factor alpha induced protein 3 (TNFAIP3) is a key negative regulator of inflammation. But whether A20 may affect cardiac inflammation during acute viral myocarditis remains to be elucidated. The aim of this study was to investigate the potential protective effect of A20 on CVB3-induced myocarditis.

Methodology/Principal Findings

Mice were intraperitoneally inoculated with CVB3 to establish acute viral myocarditis model. We found that the expression of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and monocyte chemotactic protein-1 (MCP-1) were markedly and persistently increased during the progression of CVB3-induced myocarditis, and positively correlated with the disease severity. Notably, intravenous injection in vivo with adenovirus expressed A20 (Ad-A20) remarkably reduced CVB3-induced pro-inflammatory cytokines production and alleviated the severity of myocarditis. Further, we observed that nuclear factor-kappaB (NF-κB) signaling which mediates inflammatory response was significantly inhibited in CVB3-infected mice with Ad-A20 treatment. Finally, we revealed that A20 was required to inhibit CVB3-induced NF-κB signaling by restricting TNF receptor associated factor 6 (TRAF6) ubiquitylation.

Conclusion/Significance

This study demonstrates the protective role of A20 against CVB3-induced myocarditis, which may provide a new therapeutic strategy for the treatment of viral myocarditis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号