共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown using (15)N nuclear relaxation measurements that the concentration-dependent rotational correlation time and chemical exchange broadening for selected resonances of rat CD2 domain 1 (CD2d1) are consistent with a model of low-affinity self-association of the protein molecules. The exchange broadening data, which at high protein concentrations highlight selected nuclei in the major C'-C-F-G beta-sheet face of the immunoglobulin fold, implicate a surface reminiscent of the major lattice contact within crystals of the intact CD2 ectodomain. In a separate study, we have also demonstrated that the beta-strand C' surface-exposed residue Glu41 possesses an anomalously elevated acidity constant (pK(a) = 6.7 at a protein concentration of 1.2 mM). Mutagenesis studies showed that the close contact of residue Glu41 with Glu29 (beta-strand C) is the primary cause of the high pK(a). However, the measured pK(a) of Glu41 also shows a weak dependence on protein concentration, implicating Glu41 in the mechanism of CD2d1 self-association. In the study presented here, we demonstrate a correlation of the pH dependence of the chemical shift and (15)N nuclear relaxation parameters measured for wild-type and mutant forms of CD2d1 with pH and the protonation state of Glu41. Self-association of CD2d1 molecules is promoted whenever the side chain charge of residue 41 is neutralized. These observations are consistent with a model for CD2d1 self-association that corresponds to the crystal structure lattice contact where the interatomic distances are consistent with Glu41 being in the protonated state. This study reinforces the conclusion that residue-specific chemical exchange broadening of protein resonances can arise from weak self-association phenomena. In addition, the electrostatic profile of rat CD2 interfacial residues parallels that of the homologous human CD2 in a manner that suggests a rationalization of similar exchange broadening observations. 相似文献
2.
《Cell communication & adhesion》2013,20(3):267-279
Quantitative analysis of binding of the bivalent recombinant soluble fusion protein, LFA-3/IgG1, shows that the fusion protein binds to human CD2+ PBLs primarily through low affinity (KD ~ 140 μM) but also through high avidity (90 nM) interactions. The concentration dependence for LFA-3/IgGl PBL binding took the form of two overlapping bell-shaped curves separated by a clear and reproducible minimum. This was accounted for in part by minor heterogeneity in the LFA-3/IgG 1 preparations, and potentially by the ability of the ligand to bind to both CD2 and Fc receptors (FcR), best evidenced by the distinct binding properties of the fusion protein to NK and T cells. The low affinity LFA-3/ IgG 1 binding to T cells is consistent with binding to CD2 only, and is in agreement with the low affinity reported for interactions between soluble forms of LFA-3 and CD2 by surface plasmon resonance technology. Moreover, as the low affinity determinations are similar for CD2 on resting and activated T cells, although the CD2 molecule has been reported to be altered to reveal new epitopes upon T cell activation, the binding data argue against multiple cell activation-dependent affinity states of CD2 for LFA-3 binding. This is distinct from that observed with other adhesion partners, and suggests that the different adhesion pathways utilize distinct mechanisms to mediate cell adhesion. 相似文献
3.
The exchange kinetics for the slowly exchanging amide hydrogens in three defensins, rabbit NP-2, rabbit NP-5, and human HNP-1, have been measured over a range of pH at 25°C using 1D and 2D NMR methods. These NHs have exchange rates 102 to 105 times slower than rates from unstructured model peptides. The observed distribution of exchange rates under these conditions can be rationalized by intramolecular hydrogen bonding of the individual NHs, solvent accessibility of the NHs, and local fluctuations in structure. The temperature dependencies of NH chemical shifts (NH temperature coefficients) were measured for the defensins and these values are consistent with the defensin structure. A comparison is made between NH exchange kinetics, NH solvent accessibility, and NH temperature coefficients of the defensins and other globular proteins. Titration of the histidine side chain in NP-2 was examined and the results are mapped to the three-dimensional structure. © 1994 Wiley-Liss, Inc. 相似文献
4.
Keith L. Constantine Mark S. Friedrichs Valentina Goldfarb Philip D. Jeffrey Steven Sheriff Luciano Mueller 《Proteins》1993,15(3):290-311
The dynamic behavior of the polypeptide backbone of a recombinant anti-digoxin antibody VL domain has been characterized by measurements of 15N T1 and T2 relaxation times, 1H–15N NOE values, and 1H–2H exchange rates. These data were acquired with 2D inverse detected heteronuclear 1H–15N NMR methods. The relaxation data are interpreted in terms of model free spectral density functions and exchange contributions to transverse relaxation rates R2 (= 1/T2). All characterized residues display low-amplitude picosecond timescale librational motions. Fifteen residues undergo conformational changes on the nanosecond timescale, and 24 residues have significant R2 exchange contributions, which reflect motions on the microsecond to millisecond timescale. For several residues, microsecond to millisecond motions of nearby aromatic rings are postulated to account for some or all of their observed R2 exchange contributions. The measured 1H–2H exchange rates are correlated with hydrogen bonding patterns and distances from the solvent accessible surface. The degree of local flexibility indicated by the NMR measurements is compared to crystallographic B-factors derived from X-ray analyses of the native Fab and the Fab/digoxin complex. In general, both the NMR and X-ray data indicate enhanced flexibility in the turns, hypervariable loops, and portions of β-strands A, B, and G. However, on a residue-specific level, correlations among the various NMR data, and between the NMR and X-ray data, are often absent. This is attributed to the different dynamic processes and environments that influence the various observables. The combined data indicate that certain regions of the VL domain, including the three hypervariable loops, undergo dynamic changes upon VL:VH association and/ or complexation with digoxin. Overall, the 26–10 VL domain exhibits relatively low flexibility on the ps–ns timescale. The possible functional consequences of this result are considered. © 1993 Wiley-Liss, Inc. 相似文献
5.
T.N. Huckerby I.A. Nieduszynski 《International journal of biological macromolecules》1982,4(5):269-274
Data are presented for 13C spin-lattice (T1) relaxation times and nuclear Overhauser enhancement (NOE) values in a range of heparinoid glycosaminoglycans. These paramaters are compared with T1and NOE values for simple dextrans of . For the heparinoid molecules, significant and consistent differences in relaxation times are observed for different ring carbons, for which simple models do not provide an adequate explanation. No such variations are found for the dextrans. Both families of polysaccharides exhibit NOE values significantly reduced from the theoretical maximum. These changes are discussed in terms of molecular rotational correlation times (τc) which are similar in magnitude to the resonance frequencies used for n.m.r. measurements. It is concluded that for the n.m.r. investigation of polysaccharides at high field strengths () considerable economy of time will be achieved by the use of INEPT experiments rather than conventional Overhauser signal enhancement via proton-noise decoupling. 相似文献
6.
The bifunctional protein U5-52K is associated with the spliceosomal 20 S U5 snRNP, and it also plays a role in immune response as CD2 receptor binding protein 2 (CD2BP2). U5-52K binds to the CD2 receptor via its GYF-domain specifically recognizing a proline-rich motif on the cytoplasmic surface of the receptor. The GYF-domain is also mediating the interaction of the proteins U5-52K and U5-15K within the spliceosomal U5 snRNP. Here we report the crystal structure of the complex of GYF-domain and U5-15K protein revealing the structural basis for the bifunctionality of the U5-52K protein. The complex structure unveils novel interaction sites on both proteins, as neither the polyproline-binding site of the GYF-domain nor the common ligand-binding cleft of thioredoxin-like proteins, to which U5-15K belongs, are involved in the interaction of U5-15K and U5-52K. 相似文献
7.
8.
Hayeong Kwon Kyuho Jeong Eun Mi Hwang Jae‐Yong Park Yunbae Pak 《Journal of cellular and molecular medicine》2011,15(4):888-908
Herein, we report that insulin‐activated extracellular signal‐regulated kinase (ERK) is translocated to the nuclear envelope by caveolin‐2 (cav‐2) and associates with lamin A/C in the inner nuclear membrane in response to insulin. We identified that the Ser154–Val155–Ser156 domain on the C‐terminal of cav‐2 is essential for insulin‐induced phosphorylation and nuclear targeting of ERK and cav‐2. In human embryonic kidney 293T cells, ERK was not activated and translocated to the nucleus by insulin in comparison to insulin‐like growth factor‐1 (IGF‐1). However, insulin‐stimulated activation of ERK was induced by exogenous addition of cav‐2. The activated ERK associated and translocated with the cav‐2 to the nucleus. In turn, cav‐2 promoted phospho‐ERK interaction with lamin A/C in the inner nuclear membrane. In contrast, ERK, but not cav‐2, was phosphorylated and translocated to the nucleus by IGF‐1. The nuclear targeted phospho‐ERK failed to localize in the nuclear envelope in response to IGF‐1. Together, our data demonstrate that translocation of phospho‐ERK to the nuclear envelope is mediated by Ser154–Val155–Ser156 domain of cav‐2 and this event is an insulin‐specific action. 相似文献
9.
The widespread importance of induced fit and order-disorder transition in RNA recognition by proteins and small molecules makes it imperative that RNA motional properties are characterized quantitatively. Until now, however, very few studies have been dedicated to the systematic characterization of RNA motion and to their changes upon protein or small-molecule binding. The U1A protein-RNA complexes provide some of the best-studied examples of the role of RNA motional changes upon protein binding. Here, we report (13)C NMR relaxation studies of base and ribose dynamics for the RNA internal loop target of human U1A protein located within the 3'-untranslated region (3'-UTR) of the mRNA coding for U1A itself. We also report the semi-quantitative analysis of both fast (nano- to picosecond) and intermediate (micro- to millisecond) motions for this paradigmatic RNA system. We measure (13)C T(1), T(1rho) and heteronuclear nuclear Overhauser effects (NOEs) for sugar and base nuclei, as well as the power dependence of T(1rho) at 500 MHz and 750 MHz, and analyze these results using the model-free formalism. The results provide a much clearer picture of the type of motions experienced by this RNA in the absence of the protein than was provided by the analysis of the structure based solely on NOEs and scalar couplings. They define a model where the RNA internal loop region "breathes" on a micro- to millisecond timescale with respect to the double-helical regions. Superimposed on this slower motion, the residues at the very tip of the loop undergo faster (nano- to picosecond) motions. We hypothesize that these motions allow the RNA to sample multiple conformations so that the protein can select a structure within the ensemble that optimizes intermolecular contacts. 相似文献
10.
Yoshida Y Ohkuri T Takeda C Kuroki R Izuhara K Imoto T Ueda T 《Biochemical and biophysical research communications》2007,358(1):292-297
The single nucleotide polymorphism interleukin-13 (IL-13) R110Q is associated with severe bronchial asthma because its lower affinity leads to the augmentation of local IL-13 concentration, resulting in an increase in the signal transduction via IL-13R. Since the mutation site does not directly bind to IL-13Ralpha2, we carried out NMR relaxation analyses of the wild-type IL-13 and IL-13-R110Q in order to examine whether the R110Q mutation affects the internal motions in IL-13 molecules. The results showed that the internal motion in the micro- to millisecond time scale on helix D, which is suggested to be important for the interaction between IL-13 and IL-13Ralpha2, is increased in IL-13-R110Q compared with that in the wild-type IL-13. It therefore appears that the difference in the internal motions on helix D between the wild-type IL-13 and IL-13-R110Q may be involved in their affinity differences with IL-13Ralpha2. 相似文献
11.
The 1:2 complexes of camphor enantiomers with alpha-cyclodextrin in (2)H(2)O manifest differences in longitudinal and transverse relaxation rates of camphor methyl protons owing to chiral recognition. The relaxation data obtained at two magnetic fields were quantitatively analyzed using the model of anisotropic overall tumbling with internal motion. In experimental conditions (guest-to-host ratio = 1:20, T = 300.6K), all camphor molecules are complexed. The complexes are not rigid but the rotational diffusion of camphor enantiomers embedded inside the capsules formed by two alpha-cyclodextrin hosts is well outside the extreme narrowing region. Both differences in the anisotropic overall tumbling and internal rotation of all methyl groups participate in enantiomeric differentiation of the relaxation rates. Anisotropic tumbling of camphor molecules provides information on the orientation of the guest in the host capsule that for the complex under study could not be obtained by other methods. 相似文献
12.
13.
14.
15.
Abbreviation: GEF – guanine nucleotide exchange factor. 相似文献
16.
DNA binding proteins are essential in all organisms, and they play important roles in both compacting and regulating the genetic material. All thermophilic and hyperthermophilic archaea encode one or more copies of Alba or Sso10b, which is a small, abundant, basic protein that binds DNA. Here, we present the crystal structure of Ape10b2 from Aeropyrum pernix K1 at 1.70 A. Although the overall structure resembles the known Alba protein fold, a significant conformational change was observed in the loop regions. Specifically, the L5 loop is slightly longer, as compared to those of other known proteins, and the flexibility of this loop may facilitate the interaction with double stranded DNA. In addition, we showed that Ape10b2 binds to 16 and 39 bp duplex DNAs with high affinity. On the basis of our analyses, we have created a putative protein-DNA complex model. 相似文献
17.
Marc Guenneugues Patrick Berthault Hervé Desvaux Maurice Goldman 《Journal of biomolecular NMR》1999,15(4):295-307
The 15N steady-state magnetization in the presence of off-resonance rf irradiation is an analytical function of the T1/T2 ratio and of the angle between the 15N effective field axis and the static magnetic field direction. This relation holds whatever the relaxation mechanisms due to motions on the nanosecond time scale, and the size of the spin system. If motions on the micro- to millisecond time scale are present (fast exchange), the same observable depends also on their spectral density at the frequency of the effective field. The cross-peak intensity in each 2D 15N-1H correlation map is directly related to the dynamic parameters, so that the characterization of fast exchange phenomena by this method is in principle less time-consuming than the separate measurement of self-relaxation rates. The theory of this approach is described. Its practical validity is experimentally evaluated on a 15N-labeled 61 amino acid neurotoxin. It turns out that existing equipments lead to non-negligible biases. Their consequences for the accuracy attainable, at present, by this method are investigated in detail. 相似文献
18.
Shi YH Song YL Lin DH Tan J Roller PP Li Q Long YQ Song GQ 《Biochemical and biophysical research communications》2005,330(4):1254-1261
The SAR study on a phage library-derived non-phosphorylated cyclic peptide ligand of Grb2-SH2 domain indicates that the configuration of the cyclization linkage is crucial for assuming the active binding conformation. When the thioether linkage was oxidized to the two chiral sulfoxides, the R-configured sulfoxide-cyclized peptide displayed 10-30 times more potency than the corresponding S-configured one in binding affinity to the Grb2-SH2 domain. In this paper, the solution structures of such a pair of sulfoxide-bridged cyclic peptide diastereoisomers, i.e., cyclo[CH(2)CO-Gla(1)-L-Y-E-N-V-G-NPG-Y-(R/S)C(O)(10)]-amide, were determined by NMR and molecular dynamics simulation. Results indicate that the consensus sequence of Y(3)-E(4)-N(5)-V(6) in both diastereoisomers adopt a beta-turn conformation; however, the R-configured peptide forms an extended structure with a circular backbone conformation, while the S-configured isomer forms a compact structure with key residues buried inside the molecule. The average root-mean-square deviations were found to be 0.756 and 0.804 A, respectively. It is apparent that the chiral S-->O group played a key role in the solution structures of the sulfoxide-bridged cyclic peptides. The R-sulfoxide group forms an intramolecular hydrogen bond with the C-terminal amide, conferring a more rigid conformation with all residues protruding outside except for Leu2, in which the Gla1 and Tyr3 share an overlapping function as previous SAR studies proposed. Additionally, the extended structure endows a more hydrophilic binding surface of the R-configured peptide to facilitate its capture by its targeted protein. In comparison, the S-configured sulfoxide was embedded inside the ligand peptide leading to a compact structure, in which the essential residues of Gla1, Tyr3, and Asn5 form multiple intramolecular hydrogen bonds resulting in an unfavorable conformational change and a substantial loss of the interaction with the protein. The solution structures disclosed by our NMR and molecular dynamics simulation studies provide a molecular basis for understanding how the chirality of the cyclization linkage remarkably discriminates in terms of the binding affinity, thus advancing the rational design of potent non-phosphorylated inhibitors of Grb2-SH2 domain as antitumor agents. 相似文献
19.
We have used NMR methods to determine the structure of the calcium complex of complement-like repeat 3 (CR3) from the low density lipoprotein receptor-related protein (LRP) and to examine its specific interaction with the receptor binding domain of human alpha(2)-macroglobulin. CR3 is one of eight related repeats that constitute a major ligand binding region of LRP. The structure is very similar in overall fold to homologous complement-like repeat CR8 from LRP and complement-like repeats LB1, LB2, and LB5 from the low density lipoprotein receptor and contains a short two-strand antiparallel beta-sheet, a one turn alpha-helix, and a high affinity calcium site with coordination from four carboxyls and two backbone carbonyls. The surface electrostatics and topography are, however, quite distinct from each of these other repeats. Two-dimensional (1)H,(15)N-heteronuclear single quantum coherence spectra provide evidence for a specific, though relatively weak (K(d) approximately 140 microM), interaction between CR3 and human alpha2-macroglobulin receptor binding domain that involves a contiguous patch of surface residues in the central region of CR3. This specific interaction is consistent with a mode of LRP binding to ligands that uses contributions from more than one domain to generate a wide array of different binding sites, each with overall high affinity. 相似文献
20.
FHA domains adopt a beta-sandwich fold with 11 strands. The first evidence of partially unfolded forms of a beta-sandwich is derived from native-state hydrogen exchange (NHX) of the forkhead-associated (FHA) domain from kinase-associated protein phosphatase from Arabidopsis. The folding kinetics of this FHA domain indicate that EX2 behavior prevails at pH 6.3. In the chevron plot, rollover in the folding arm and bends in the unfolding arm suggest folding intermediates. NHX of this FHA domain suggests a core of six most stable beta-strands and two loops, characterized by rare global unfolding events. Flanking this stable core are beta-strands and recognition loops with less stability, termed subglobal motifs. These suggest partially unfolded forms (near-native intermediates) with two levels of stability. The spatial separation of the subglobal motifs on the flanks suggests possible parallelism in their folding as additional beta-strands align with the stable core of six strands. Intermediates may contribute to differences in stabilities and m-values suggested by NHX or kinetics relative to chemical denaturation. Residual structure in the unfolded regime is suggested by superprotection of beta-strand 6 and by GdmCl-dependence of adjustments in amide NMR spectra and residual optical signal. The global folding stability depends strongly on pH, with at least 3 kcal/mol more stability at pH 7.3 than at pH 6.3. This FHA domain is hypothesized to fold progressively with initial hydrophobic collapse of its stable six-stranded core followed by addition of less stable flanking beta-strands and ordering of recognition loops. 相似文献