首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture.

Methods

Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray.

Results

MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs). miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types.

Discussion

The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types.  相似文献   

2.

Introduction

Recent evidence suggests that tissue accumulation of senescent p16INK4a-positive cells during the life span would be deleterious for tissue functions and could be the consequence of inherent age-associated disorders. Osteoarthritis (OA) is characterized by the accumulation of chondrocytes expressing p16INK4a and markers of the senescence-associated secretory phenotype (SASP), including the matrix remodeling metalloproteases MMP1/MMP13 and pro-inflammatory cytokines interleukin-8 (IL-8) and IL-6. Here, we evaluated the role of p16INK4a in the OA-induced SASP and its regulation by microRNAs (miRs).

Methods

We used IL-1-beta-treated primary OA chondrocytes cultured in three-dimensional setting or mesenchymal stem cells differentiated into chondrocyte to follow p16INK4a expression. By transient transfection experiments and the use of knockout mice, we validate p16INK4a function in chondrocytes and its regulation by one miR identified by means of a genome-wide miR-array analysis.

Results

p16INK4a is induced upon IL-1-beta treatment and also during in vitro chondrogenesis. In the mouse model, Ink4a locus favors in vivo the proportion of terminally differentiated chondrocytes. When overexpressed in chondrocytes, p16INK4a is sufficient to induce the production of the two matrix remodeling enzymes, MMP1 and MMP13, thus linking senescence with OA pathogenesis and bone development. We identified miR-24 as a negative regulator of p16INK4a. Accordingly, p16INK4a expression increased while miR-24 level was repressed upon IL-1-beta addition, in OA cartilage and during in vitro terminal chondrogenesis.

Conclusions

We disclosed herein a new role of the senescence marker p16INK4a and its regulation by miR-24 during OA and terminal chondrogenesis.  相似文献   

3.

Background

Hepatocellular carcinoma (HCC) is a classical example of inflammation-linked cancer and is characterized by hypervascularity suggesting rich angiogenesis. Cycloxygenase-2 (COX-2) is a potent mediator of inflammation and is considered to upregulate angiogenesis. The aims of the study are (1) to analyze expression of Cox-2 mRNA, Cox-2 protein, miR-16, miR-21 and miR-101 in HCC and adjacent liver parenchyma in cirrhotic and noncirrhotic liver, (2) to investigate the relation between COX-2 expression, miR-21 expression and angiogenic factors in these tissues and (3) to investigate the association between miR-16 and miR-101 and COX-2 expression.

Methods

Tissue samples of HCC and adjacent liver parenchyma of 21 noncirrhotic livers and 20 cirrhotic livers were analyzed for COX-2 expression at the mRNA level (qRT-PCR) and at the protein level by Western blot and immunohistochemistry. Gene expression of VEGFA, VEGFR1, VEGFR2, Ang-1, Ang-2 and Tie-2 were correlated with COX-2 levels. miR-16, miR-21 and miR-101 gene expression levels were quantified in HCC tumor tissue.

Results

COX-2 mRNA and protein levels were lower in HCC as compared to adjacent liver parenchyma both in cirrhotic and noncirrhotic liver. COX-2 protein localized mainly in vascular and sinusoidal endothelial cells and in Kupffer cells. At the mRNA level but not at the protein level, COX-2 correlated with mRNA levels of angiogenic factors VEGFR1, Ang-1, and Tie2. miR-21 expression was higher in cirrhotic tissues versus noncirrhotic tissues. MiR-101 expression was lower in cirrhotic versus noncirrhotic adjacent liver parenchyma. None of the miRNAs correlelated with COX-2 expression. miR-21 correlated negatively with Tie-2 receptor in adjacent liver parenchyma.

Conclusions

In human HCC, COX-2 mRNA but not COX-2 protein levels are associated with expression levels of angiogenic factors. MiR-21 levels are not associated with angiogenic molecules. MiR-16 and miR-101 levels do not correlate with COX-2 mRNA and protein levels.  相似文献   

4.
5.

Introduction

We have examined expression of microRNAs (miRNAs) in ependymomas to identify molecular markers of value for clinical management. miRNAs are non-coding RNAs that can block mRNA translation and affect mRNA stability. Changes in the expression of miRNAs have been correlated with many human cancers.

Materials and Methods

We have utilized TaqMan Low Density Arrays to evaluate the expression of 365 miRNAs in ependymomas and normal brain tissue. We first demonstrated the similarity of expression profiles of paired frozen tissue (FT) and paraffin-embedded specimens (FFPE). We compared the miRNA expression profiles of 34 FFPE ependymoma samples with 8 microdissected normal brain tissue specimens enriched for ependymal cells. miRNA expression profiles were then correlated with tumor location, histology and other clinicopathological features.

Results

We have identified miRNAs that are over-expressed in ependymomas, such as miR-135a and miR-17-5p, and down-regulated, such as miR-383 and miR-485-5p. We have also uncovered associations between expression of specific miRNAs which portend a worse prognosis. For example, we have identified a cluster of miRNAs on human chromosome 14q32 that is associated with time to relapse. We also found that miR-203 is an independent marker for relapse compared to the parameters that are currently used. Additionally, we have identified three miRNAs (let-7d, miR-596 and miR-367) that strongly correlate to overall survival.

Conclusion

We have identified miRNAs that are differentially expressed in ependymomas compared with normal ependymal tissue. We have also uncovered significant associations of miRNAs with clinical behavior. This is the first report of clinically relevant miRNAs in ependymomas.  相似文献   

6.
7.

Background

Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the kidney excretory function and is strongly associated with increased early and long-term patient morbidity and mortality. Early diagnosis of AKI is challenging; therefore we profiled plasma microRNA in an effort to identify potential diagnostic circulating markers of renal failure. The goal of the present study was to investigate the dynamic relationship of circulating and renal microRNA profiles within the first 24 hours after bilateral ischemia-reperfusion kidney injury in mice.

Methodology/Principal Findings

Bilateral renal ischemia was induced in C57Bl/6 mice (n = 10 per group) by clamping the renal pedicle for 27 min. Ischemia-reperfusion caused highly reproducible, progressive, concordant elevation of miR-714, miR-1188, miR-1897-3p, miR-877*, and miR-1224 in plasma and kidneys at 3, 6 and 24 hours after acute kidney injury compared to the sham-operated mice (n = 5). These dynamics correlated with histologic findings of kidney injury and with a conventional plasma marker of renal dysfunction (creatinine). Pathway analysis revealed close association between miR-1897-3p and Nucks1 gene expression, which putative downstream targets include genes linked to renal injury, inflammation and apoptosis.

Conclusions/Significance

Systematic profiling of renal and plasma microRNAs in the early stages of experimental AKI provides the first step in advancing circulating microRNAs to the level of promising novel biomarkers.  相似文献   

8.
9.
10.

Purpose

Aberrant microRNA (miRNA) expression is associated with cancer and has potential diagnostic and prognostic value in various malignancies. In this study, we investigated miRNA profiling as a complementary tool to improve our understanding of breast cancer (BC) biology and to assess whether miRNA expression could predict clinical outcome of BC patients.

Experimental Design

Global miRNA expression profiling using microarray technology was conducted in 56 systemically untreated BC patients who had corresponding mRNA expression profiles available. Results were further confirmed using qRT-PCR in an independent dataset of 89 ER-positive BC patients homogeneously treated with tamoxifen only. MiR-210 functional analyses were performed in MCF7 and MDA-MB-231 BC cell lines using lentiviral transduction.

Results

Estrogen receptor (ER) status, tumor grade and our previously developed gene expression grade index (GGI) were associated with distinct miRNA profiles. Several miRNAs were found to be clinically relevant, including miR-210, its expression being associated with tumor proliferation and differentiation. Furthermore, miR-210 was associated with poor clinical outcome in ER-positive, tamoxifen-treated BC patients. Interestingly, the prognostic performance of miR-210 was similar to several reported multi-gene signatures, highlighting its important role in BC differentiation and tumor progression. Functional analyses in BC cell lines revealed that miR-210 is involved in cell proliferation, migration and invasion.

Conclusions

This integrated analysis combining miRNA and mRNA expression demonstrates that miRNA expression provides additional biological information beyond mRNA expression. Expression of miR-210 is linked to tumor proliferation and appears to be a strong potential biomarker of clinical outcome in BC.  相似文献   

11.

Purpose

microRNAs have emerged as key regulators of gene expression, and their altered expression has been associated with tumorigenesis and tumor progression. Thus, microRNAs have potential as both cancer biomarkers and/or potential novel therapeutic targets. Although accumulating evidence suggests the role of aberrant microRNA expression in endometrial carcinogenesis, there are still limited data available about the prognostic significance of microRNAs in endometrial cancer. The goal of this study is to investigate the prognostic value of selected key microRNAs in endometrial cancer by the analysis of archival formalin-fixed paraffin-embedded tissues.

Experimental Design

Total RNAs were extracted from 48 paired normal and endometrial tumor specimens using Trizol based approach. The expression of miR-26a, let-7g, miR-21, miR-181b, miR-200c, miR-192, miR-215, miR-200c, and miR-205 were quantified by real time qRT-PCR expression analysis. Targets of the differentially expressed miRNAs were quantified using immunohistochemistry. Statistical analysis was performed by GraphPad Prism 5.0.

Results

The expression levels of miR-200c (P<0.0001) and miR-205 (P<0.0001) were significantly increased in endometrial tumors compared to normal tissues. Kaplan-Meier survival analysis revealed that high levels of miR-205 expression were associated with poor patient overall survival (hazard ratio, 0.377; Logrank test, P = 0.028). Furthermore, decreased expression of a miR-205 target PTEN was detected in endometrial cancer tissues compared to normal tissues.

Conclusion

miR-205 holds a unique potential as a prognostic biomarker in endometrial cancer.  相似文献   

12.
13.

Background

Recent reports suggest that immigrants from Middle Eastern countries are a high-risk group for type 2 diabetes (T2D) compared with Swedes, and that the pathogenesis of T2D may be ethnicity-specific. Deregulation of microRNA (miRNA) expression has been demonstrated to be associated with T2D but ethnic differences in miRNA have not been investigated. The aim of this study was to explore the ethnic specific expression (Swedish and Iraqi) of a panel of 14 previously identified miRNAs in patients without T2D (including those with prediabetes) and T2D.

Methods

A total of 152 individuals were included in the study (84 Iraqis and 68 Swedes). Nineteen Iraqis and 14 Swedes were diagnosed with T2D. Expression of the 14 selected miRNAs (miR-15a, miR-20, miR-21, miR-24, miR-29b, miR-126, miR-144, miR-150, miR-197, miR-223, miR-191, miR-320a, miR-486-5p, and miR-28-3p) in plasma samples was measured by real-time PCR.

Results

In the whole study population, the expression of miR-24 and miR-29b was significantly different between T2D patients and controls after adjustment for age, sex, waist circumference, family history of T2D, and a sedentary lifestyle. Interestingly, when stratifying the study population according to country of birth, we found that higher expression of miR-144 was significantly associated with T2D in Swedes (OR = 2.43, p = 0.035), but not in Iraqis (OR = 0.54, p = 0.169). The interaction test was significant (p = 0.017).

Conclusion

This study suggests that the association between plasma miR-144 expression and T2D differs between Swedes and Iraqis.  相似文献   

14.

Background

MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate cell homeostasis by inhibiting translation or degrading mRNA of target genes, and thereby can act as tumor suppressor genes or oncogenes. The role of microRNAs in medulloblastoma has only recently been addressed. We hypothesized that microRNAs differentially expressed during normal CNS development might be abnormally regulated in medulloblastoma and are functionally important for medulloblastoma cell growth.

Methodology and Principal Findings

We examined the expression of microRNAs in medulloblastoma and then investigated the functional role of one specific one, miR-128a, in regulating medulloblastoma cell growth. We found that many microRNAs associated with normal neuronal differentiation are significantly down regulated in medulloblastoma. One of these, miR-128a, inhibits growth of medulloblastoma cells by targeting the Bmi-1 oncogene. In addition, miR-128a alters the intracellular redox state of the tumor cells and promotes cellular senescence.

Conclusions and Significance

Here we report the novel regulation of reactive oxygen species (ROS) by microRNA 128a via the specific inhibition of the Bmi-1 oncogene. We demonstrate that miR-128a has growth suppressive activity in medulloblastoma and that this activity is partially mediated by targeting Bmi-1. This data has implications for the modulation of redox states in cancer stem cells, which are thought to be resistant to therapy due to their low ROS states.  相似文献   

15.

Background

Heightened inflammation, including expression of COX-2, is associated with COPD pathogenesis. RelB is an NF-κB family member that attenuates COX-2 in response to cigarette smoke by a mechanism that may involve the miRNA miR-146a. There is no information on the expression of RelB in COPD or if RelB prevents COX-2 expression through miR-146a.

Methods

RelB, Cox-2 and miR-146a levels were evaluated in lung fibroblasts and blood samples derived from non-smokers (Normal) and smokers (At Risk) with and without COPD by qRT-PCR. RelB and COX-2 protein levels were evaluated by western blot. Human lung fibroblasts from Normal subjects and smokers with and without COPD, along with RelB knock-down (siRNA) in Normal cells, were exposed to cigarette smoke extract (CSE) in vitro and COX-2 mRNA/protein and miR-146a levels assessed.

Results

Basal expression of RelB mRNA and protein were significantly lower in lung cells derived from smokers with and without COPD, the latter of which expressed more Cox-2 mRNA and protein in response to CSE. Knock-down of RelB in Normal fibroblasts increased Cox-2 mRNA and protein induction by CSE. Basal miR-146a levels were not different between the three groups, and only Normal fibroblasts increased miR-146a expression in response to smoke. There was a positive correlation between systemic RelB and Cox-2 mRNA levels and circulating miR-146a levels were higher only in GOLD stage I subjects.

Conclusions

Our data indicate that RelB attenuates COX-2 expression in lung structural cells, such that loss of pulmonary RelB may be an important determinant in the aberrant, heightened inflammation associated with COPD pathogenesis.  相似文献   

16.

Rationale

Sepsis is a common cause of death in the intensive care unit with mortality up to 70% when accompanied by multiple organ dysfunction. Rapid diagnosis and the institution of appropriate antibiotic therapy and pressor support are therefore critical for survival. MicroRNAs are small non-coding RNAs that play an important role in the regulation of numerous cellular processes, including inflammation and immunity.

Objectives

We hypothesized changes in expression of microRNAs during sepsis may be of diagnostic value in the intensive care unit (ICU).

Methods

Massively parallel sequencing of microRNAs was utilised for screening microRNA candidates. Putative microRNAs were validated using quantitative real-time PCR (qRT-PCR). This study includes data from both a training cohort (UK) and an independent validation cohort (Sweden). A linear discriminant statistical model was employed to construct a diagnostic microRNA signature.

Results

A panel of known and novel microRNAs were detectable in the blood of patients with sepsis. After qRT-PCR validation, microRNA miR-150 and miR-4772-5p-iso were able to discriminate between patients who have systemic inflammatory response syndrome and patients with sepsis. This finding was also validated in independent cohort with an average diagnostic accuracy of 86%. Fractionating the cellular components of blood reveals miR-4772-5p-iso is expressed differentially in monocytes. Functional experiments using primary human monocytes demonstrate that it expressed in response to TLR ligation.

Conclusions

Taken together, these data provide a novel microRNA signature of sepsis that should allow rapid point-of-care diagnostic assessment of patients on ICU and also provide greater insight into the pathobiology of this severe disease.  相似文献   

17.
18.

Background

MicroRNAs are a family of 19- to 25-nucleotides noncoding small RNAs that primarily function as gene regulators. Aberrant microRNA expression has been described for several human malignancies, and this new class of small regulatory RNAs has both oncogenic and tumor suppressor functions. Despite this knowledge, there is little information regarding microRNAs in plasma especially because microRNAs in plasma, if exist, were thought to be digested by RNase. Recent studies, however, have revealed that microRNAs exist and escape digestion in plasma.

Methodology/Principal Findings

We performed microRNA microaray to obtain insight into microRNA deregulation in the plasma of a leukemia patient. We have revealed that microRNA-638 (miR-638) is stably present in human plasmas, and microRNA-92a (miR-92a) dramatically decreased in the plasmas of acute leukemia patients. Especially, the ratio of miR-92a/miR-638 in plasma was very useful for distinguishing leukemia patients from healthy body.

Conclusions/Significance

The ratio of miR-92a/miR-638 in plasma has strong potential for clinical application as a novel biomarker for detection of leukemia.  相似文献   

19.

Background

The H3K4 demethylase retinoblastoma binding protein 2 (RBP2) is involved in the pathogenesis of gastric cancer, but its role and regulation in hepatocellular carcinoma (HCC) is unknown. We determined the function of RBP2 and its regulation in HCC in vitro and in human tissues.

Methods

We analyzed gene expression in 20 specimens each of human HCC and normal liver tissue by quantitative real-time PCR and immunohistochemistry. Proliferation was analyzed by foci formation and senescence by β-galactosidase staining. Promoter activity was detected by luciferase reporter assay.

Results

The expression of RBP2 was stronger in cancerous than non-cancerous tissues, but that of its binding microRNA, Homo sapiens miR-212 (hsa-miR-212), showed an opposite pattern. SiRNA knockdown of RBP2 significantly upregulated cyclin-dependent kinase inhibitors (CDKIs), with suppression of HCC cell proliferation and induction of senescence. Overexpression of hsa-miR-212 suppressed RBP2 expression, with inhibited cell proliferation and induced cellular senescence, which coincided with upregulated CDKIs; with low hsa-miR-212 expression, CDKIs were downregulated in HCC tissue. Inhibition of hsa-miR-212 expression upregulated RBP2 expression. Luciferase reporter assay detected the direct binding of hsa-miR-212 to the RBP2 3′ UTR.

Conclusions

RBP2 is overexpressed in HCC and negatively regulated by hsa-miR-212. The hsa-miR-212–RBP2–CDKI pathway may be important in the pathogenesis of HCC.  相似文献   

20.

Background

The brain is a major site of microRNA (miRNA) gene expression, but the spatial expression patterns of miRNAs within the brain have not yet been fully covered.

Methodology/Principal Findings

We have characterized the regional expression profiles of miRNAs in five distinct regions of the adult rat brain: amygdala, cerebellum, hippocampus, hypothalamus and substantia nigra. Microarray profiling uncovered 48 miRNAs displaying more than three-fold enrichment between two or more brain regions. Notably, we found reciprocal expression profiles for a subset of the miRNAs predominantly found (> ten times) in either the cerebellum (miR-206 and miR-497) or the forebrain regions (miR-132, miR-212, miR-221 and miR-222).

Conclusions/Significance

The results indicate that some miRNAs could be important for area-specific functions in the brain. Our data, combined with previous studies in mice, provides additional guidance for future investigations of miRNA functions in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号