首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial nutrients in drinking water.   总被引:5,自引:5,他引:0       下载免费PDF全文
Regrowth of coliform bacteria in distribution systems has been a problem for a number of water utilities. Efforts to solve the regrowth problem have not been totally successful. The current project, which was conducted at the New Jersey American Water Co.-Swimming River Treatment Plant, showed that the occurrence of coliform bacteria in the distribution system could be associated with rainfall, water temperatures greater than 15 degrees C, total organic carbon levels greater than 2.4 mg/liter, and assimilable organic carbon levels greater than 50 micrograms of acetate carbon equivalents per liter. A multiple linear regression model based on free chlorine residuals present in dead-end sections of the distribution system and temperature predicted 83.8% of the heterotrophic plate count bacterial variation. To limit the growth of coliform bacteria in drinking water, the study concludes that assimilable organic carbon levels should be reduced to less than 50 micrograms/liter.  相似文献   

2.
Bacterial nutrients in drinking water   总被引:29,自引:0,他引:29  
Regrowth of coliform bacteria in distribution systems has been a problem for a number of water utilities. Efforts to solve the regrowth problem have not been totally successful. The current project, which was conducted at the New Jersey American Water Co.-Swimming River Treatment Plant, showed that the occurrence of coliform bacteria in the distribution system could be associated with rainfall, water temperatures greater than 15 degrees C, total organic carbon levels greater than 2.4 mg/liter, and assimilable organic carbon levels greater than 50 micrograms of acetate carbon equivalents per liter. A multiple linear regression model based on free chlorine residuals present in dead-end sections of the distribution system and temperature predicted 83.8% of the heterotrophic plate count bacterial variation. To limit the growth of coliform bacteria in drinking water, the study concludes that assimilable organic carbon levels should be reduced to less than 50 micrograms/liter.  相似文献   

3.
《L' Année biologique》1998,37(3):117-161
The maintenance of the quality of water from the outlet of the treatment plant to the consumer tap is a major concern of water distributors. From a biological point of view, this maintenance must be characterized by a stability of biological features, namely bacterial growth from biodegradable organic matter, and protozoan bacterivory which must be not detectable. However, drinking water distribution systems are continuously exposed to a flow of biodegradable organic matter, which can represent around 20–30 % of the total dissolved organic carbon, and a flow of allochthonous microorganisms (bacteria, fungi, protozoa…), coming from the water treatment plant but also from incidents (breaks/repairs) on the distribution network itself. Apart from these microorganisms (heterotrophic bacteria in particular) can grow in this ultra-oligotrophic environment and colonize the all drinking water distribution system. The highest density of microorganisms occurs on the surface of pipewalls where they are organized in microcolonies (biofilm) that are mixed with corrosion products and inorganic precipitates. Five groups of organisms have been identified in distribution networks, in both the water phase and the biofilm: bacterial cells, protozoa, yeast, fungi and algae. The majority of these organisms are not pathogens, nevertheless potentially pathogen bacteria (Legionella…), fecal bacteria (coliforms, E. coli…), and pathogen protozoan cysts (Giardia intestinalis, Cryptosporidium parvum…) can transitorily find favorable conditions for their proliferation in the networks. Bacteria grow from the biodegradable fraction of dissolved organic matter while protozoa grow from dissolved organic matter, other protozoa but especially from bacterial prey items. The protozoan bacterivory was extensively studied in marine aquatic environments and in rivers, lakes,… but very rarely in drinking water distribution networks. Actually, proofs of the protozoan grazing on fixed and free-living bacterial cells were given by photography or film of biofilms accumulation on coupons that were previously immersed in potable water or by direct microscopic observation of bacteria in food vacuole of protozoa from potable water. A single and recent study has estimated protozoan bacterivory rate from laboratory experiences using fluorescent markers. It appears that in an experimental distribution system fed with biologically treated water (ozone/filtration through granular activated carbon), only ciliates present in the biofilm have a measurable grazing activity, estimated at 2 bacteria·ciliate−1·h−1 on average.Bacterial dynamics in drinking water distribution systems is complex and related to different parameters, like the biodegradable fraction of dissolved organic carbon, the presence of a residual of disinfectant, the nature and the state of pipewalls, the relative biomass of free and fixed bacterial, and grazing impact.The preservation of the biological stability of potable water during its storage in reservoir or its transport through the distribution systems can be achieved by (a) the use of chemical disinfectants (in particular by addition of chlorine) which is the widely used technique, or (b) the use of new techniques such as nanofiltration that can eliminate bacteria and significantly decrease the concentrations of organic matter at the inlet of the distribution network and in the potable water.
  • (a)The use of oxidant, usually chlorine, induces a number of problems, in particular the development of oxidation by-products like trihalomethans (THM), among which some are recognized as carcinogenic products for animals. In addition, chlorine added at the outlet of treatment plant is consumed in the network and the maintenance of a residual of chlorine along an entire distribution network would need high concentrations of chlorine at the outlet of the treatment plant. This may be incompatible with standards for both residual chlorine and its by-products. Nevertheless, chlorine has a disinfectant effect on planctonic bacteria, if considering that only around 10 % of free bacterial cells are living cells, i.e. are able of respiratory oxidation. However, some studies show that bacteria fixed on granular activated carbon particles can be resistant to chlorine, as well as bacteria in aggregates. Thus, the addition of chlorine in potable water does not inhibit the formation of a biofilm at the surface of pipewalls. In the same way, protozoa transported by potable water can resist to chlorine.
  • (b)The above disadvantages permitted the development of membrane filtration techniques like the nanofiltration, which is at the junction between reverse osmosis and ultrafiltration, and which seems to be an interesting alternative to conventional treatments because it presents the advantage to (i) decrease very strongly the concentrations of dissolved organic carbon (on average 90 % for DOC (Dissolved Organic Carbon) and 99 % for BDOC (Biodegradable Dissolved Organic Carbon)), (ii) to remove a very high proportion of almost the entire microorganisms (99 %), precursors of chlorination by-products, and micropollutans, (iii) to decrease the musty flavor of water (2-fold) and (iv) to produce a water that needs low concentration of chlorine.
  相似文献   

4.
The regrowth of micro-organisms in the water distribution system is assisted by the presence of biodegradable organic matter (BDOC). The low concentration of available organic carbon in this type of water favours the growth of bacteria belonging to the Pseudomonadaceae family, as this group can grow better at low concentrations of substrate than other bacteria also present in the distribution system. Although the genus Aeromonas has already been adopted as an indicator of this potential regrowth, members of the Pseudomonadaceae have not yet been proposed as indicators of potential bacterial regrowth in the water distribution system. The results are presented of a year-long study of the Barcelona distribution system in which the presence of Pseudomonas and Aeromonas was analysed and the validity of these micro-organisms as indicators of potential regrowth in the distribution system was assessed. It seems that, at least in the drinking waters of the Barcelona area, Pseudomonas is a better indicator of potential bacterial regrowth than Aeromonas.  相似文献   

5.
Changes in the bacterial quality of drinking water were examined in the supply system of tropical Dar es Salaam, Tanzania. The water treatment fulfilled WHO standard guidelines. However, the water quality allowed for significant regrowth of bacteria, demonstrating that the WHO guidelines are insufficient to check whether or not the drinking water has an acceptable regrowth potential. An experimental pipe system was examined on site. A growth model was established, based on a zero order bacterial detachment kinetics for the biofilms colonizing the inner surface of the pipes, with a release rate factor R, and a first order growth kinetics in the water flowing in the pipes with a growth rate factor . The rate factors were estimated to be R=1.9×108 m-2 h-1 and =2.5 h-1. It was concluded that growth in the biofilm played a dominant role in the bio-stabilization processes, while the initial microbial quality of the water works water and the growth in the water phase were of minor importance. The bio-stabilization process is understood herein as the reduction in the concentration of nutrients and assimilable organic carbon in the water, and thus as the reduction of the growth potential of the water. Bacterial growth and recontamination were examined during storage at the user site. The results showed that heterotrophic bacteria grew, while faecal coliforms decayed during storage. It was concluded that the users handled the water hygienically.The authors are with the Technical University of Denmark, IMT, CDC-Build, 208 DK-2800 Lyngby, Denmark  相似文献   

6.
This pilot study compares the compositions of bacterial biofilms in pipe networks supplied with water containing either high levels of biodegradable organic matter (BOM) or low levels of BOM (conventionally or biologically treated, respectively). The Microbial Identification System for fatty acid analysis was utilized in this study to identify a large number of organisms (>1,400) to determine population changes in both conventionally and biologically treated water and biofilms. Data generated during this study indicated that suspended bacteria have little impact on biofilms, and despite treatment (conventional or biological), suspended microbial populations were similar following disinfection. Prechlorination with free chlorine resulted not only in reduced plate count values but also in a dramatic shift in the composition of the bacterial population to predominately gram-positive bacteria. Chlorination of biologically treated water produced the same shifts toward gram-positive bacteria. Removal of assimilable organic carbon by the biologically active filters slowed the rate of biofilm accumulation, but biofilm levels were similar to those found in conventionally treated water within several weeks. Iron pipes stimulated the rate of biofilm development, and bacterial levels on disinfected iron pipes exceeded those for chlorinated polyvinyl chloride pipes. The study showed that the iron pipe surface dramatically influenced the composition, activity, and disinfection resistance of biofilm bacteria.  相似文献   

7.
This pilot study compares the compositions of bacterial biofilms in pipe networks supplied with water containing either high levels of biodegradable organic matter (BOM) or low levels of BOM (conventionally or biologically treated, respectively). The Microbial Identification System for fatty acid analysis was utilized in this study to identify a large number of organisms (>1,400) to determine population changes in both conventionally and biologically treated water and biofilms. Data generated during this study indicated that suspended bacteria have little impact on biofilms, and despite treatment (conventional or biological), suspended microbial populations were similar following disinfection. Prechlorination with free chlorine resulted not only in reduced plate count values but also in a dramatic shift in the composition of the bacterial population to predominately gram-positive bacteria. Chlorination of biologically treated water produced the same shifts toward gram-positive bacteria. Removal of assimilable organic carbon by the biologically active filters slowed the rate of biofilm accumulation, but biofilm levels were similar to those found in conventionally treated water within several weeks. Iron pipes stimulated the rate of biofilm development, and bacterial levels on disinfected iron pipes exceeded those for chlorinated polyvinyl chloride pipes. The study showed that the iron pipe surface dramatically influenced the composition, activity, and disinfection resistance of biofilm bacteria.  相似文献   

8.
Fluorescence in situ hybridization (FISH) was used for direct detection of Escherichia coli on pipe surfaces and coupons in drinking water distribution networks. Old cast iron main pipes were removed from water distribution networks in France, England, Portugal, and Latvia, and E. coli was analyzed in the biofilm. In addition, 44 flat coupons made of cast iron, polyvinyl chloride, or stainless steel were placed into and continuously exposed to water on 15 locations of 6 distribution networks in France and Latvia and examined after 1 to 6 months exposure to the drinking water. In order to increase the signal intensity, a peptide nucleic acid (PNA) 15-mer probe was used in the FISH screening for the presence or absence of E. coli on the surface of pipes and coupons, thus reducing occasional problems of autofluorescence and low fluorescence of the labeled bacteria. For comparison, cells were removed from the surfaces and examined with culture-based or enzymatic (detection of beta-d-glucuronidase) methods. An additional verification was made by using PCR. Culture method indicated presence of E. coli in one of five pipes, whereas all pipes were positive with the FISH methods. E. coli was detected in 56% of the coupons using PNA FISH, but no E. coli was detected using culture or enzymatic methods. PCR analyses confirmed the presence of E. coli in samples that were negative according to culture-based and enzymatic methods. The viability of E. coli cells in the samples was demonstrated by the cell elongation after resuscitation in low-nutrient medium supplemented with pipemidic acid, suggesting that the cells were present in an active but nonculturable state, unable to grow on agar media. E. coli contributed to ca. 0.001 to 0.1% of the total bacterial number in the samples. The presence and number of E. coli did not correlate with any of physical and/or chemical characteristic of the drinking water (e.g., temperature, chlorine, or biodegradable organic matter concentration). We show here that E. coli is present in the biofilms of drinking water networks in Europe. Some of the cells are metabolically active but are often not detected due to limitations of traditionally used culture-based methods, indicating that biofilm should be considered as a reservoir that must be investigated further in order to evaluate the risk for human health.  相似文献   

9.
Biofilters of granular activated carbon (GAC) are responsible for the removal of organic matters in drinking water treatments. PreBiofilters, which operate as the first unit in a surface water treatment train, are a cost-effective pretreatment for conventional surface water treatment and provide more consistent downstream water quality. This study investigated bacterial communities from the samples of raw surface water, biofilm on the PreBiofilter, and filtrates for surface water pretreatment. A bench-scale pilot plant of PreBiofilter was constructed to pretreat surface water from the Canoochee River, GA, USA. PreBiofilter exhibited a significant reduction of total organic carbon and dissolved organic carbon. The evenness and Shannon diversity of bacterial operational taxonomic units (OTUs) were significantly higher on the biofilm of PreBiofilter than in raw water and filtrates. Similar bacteria communities were observed in the raw water and filtrates using relative abundance of bacterial OTUs. However, the bacterial communities in the filtrates became relatively similar to those in the biofilm using presence/absence of bacterial OTUs. GAC biofilm or raw water and filtrates greatly contributed to the abundance of bacteria; whereas, bacteria sheared from colonized biofilm and entered filtrates. Evenly distributed, diverse and unique bacteria in the biofilm played an important role to remove organic matters from surface water for conventional surface water pretreatment.  相似文献   

10.
Water treatment technologies are needed that can remove perchlorate from drinking water without introducing organic chemicals that stimulate bacterial growth in water distribution systems. Hydrogen is an ideal energy source for bacterial degradation of perchlorate as it leaves no organic residue and is sparingly soluble. We describe here the isolation of a perchlorate-respiring, hydrogen-oxidizing bacterium (Dechloromonas sp. strain HZ) that grows with carbon dioxide as sole carbon source. Strain HZ is a Gram-negative, rod-shaped facultative anaerobe that was isolated from a gas-phase anaerobic packed-bed biofilm reactor treating perchlorate-contaminated groundwater. The ability of strain HZ to grow autotrophically with carbon dioxide as the sole carbon source was confirmed by demonstrating that biomass carbon (100.9%) was derived from CO2. Chemolithotrophic growth with hydrogen was coupled with complete reduction of perchlorate (10 mM) to chloride with a maximum doubling time of 8.9 h. Strain HZ also grew using acetate as the electron donor and chlorate, nitrate, or oxygen (but not sulphate) as an electron acceptor. Phylogenetic analysis of the 16S rRNA sequence placed strain HZ in the genus Dechloromonas within the beta subgroup of the Proteobacteria. The study of this and other novel perchlorate-reducing bacteria may lead to new, safe technologies for removing perchlorate and other chemical pollutants from drinking water.  相似文献   

11.
The colonization of granular activated carbon columns by bacteria can have both beneficial and potentially detrimental consequences. Bacterial growth on the carbon surface can remove adsorbed organics and thus partially regenerate the carbon bed. However, growth can also increase the levels of bacteria in the column effluents, which can adversely affect downstream uses of the treated water. This study of a sand column and several activated carbon columns demonstrated that considerable marine bacterial growth occurred in both sand and carbon columns and that this growth increased the number of bacteria in column effluents. Activated carbon supported approximately 50% more bacteria than did sand. Bacterial growth on activated carbon was reduced by increasing the flow rate through a carbon column and increasing the carbon particle size. Scanning electron micrographs showed that bacteria preferred to attach in the protected crevices on both the sand and carbon surface. The results of this study indicated that the colonization of activated carbon by marine bacteria was enhanced because of carbon's high surface area, its rough surface texture, and its ability to absorb organic materials.  相似文献   

12.
Aims: To examine whether phosphorus and biodegradable organic carbon interact to impact biofilm density and physiological function of biofilm‐forming bacteria under conditions relevant to chlorinated drinking water distribution systems. Materials and Results: The 2 × 2 factorial experiments with low and high levels of phosphorus and biodegradable organic carbon were performed on 4 ‐week‐old drinking water biofilms in four separate pipe systems in the presence of chlorine. Experimental results revealed that biofilm heterotrophic plate count levels increased with the increase in biodegradable organic carbon concentration, showed no response to increases in levels of phosphorus and was not affected by interaction between phosphorus and biodegradable organic carbon. However, a significant positive interaction between phosphorus and biodegradable organic carbon was found to exist on biofilm mass and physiological function and/or metabolic potentials of biofilm communities; the effects of biodegradable organic carbon on biofilm mass and physiological function of biofilm‐forming bacteria were accelerated in going from low to high level of phosphorus. Conclusions: Biodegradable organic carbon was found to be the primary nutrient in regulating biofilm formation in drinking water regardless of the presence of chlorine. It can be therefore concluded that the removal of an easily biodegradable organic carbon is necessary to minimize the biofilm growth potential induced by the intrusion of phosphorus. Significance and Impact of the Study: Phosphorus introduced to drinking water may interact with biodegradable organic carbon, thus leading to measurable impact on the biofilm formation.  相似文献   

13.
Assimilable organic carbon (AOC) is an important parameter governing the growth of heterotrophic bacteria in drinking water. Despite the recognition that variations in treatment practices (e.g., disinfection, coagulation, selection of filter media, and watershed protection) can have dramatic impacts on AOC levels in drinking water, few water utilities routinely measure AOC levels because of the difficulty of the method. To simplify the method, the Pseudomonas fluorescens P-17 and Spirillum sp. strain NOX test bacteria were mutagenized by using luxCDABE operon fusion and inducible transposons to produce bioluminescent strains. The growth of these strains can easily be monitored with a programmable luminometer to determine the maximum cell yield via luminescence readings, and these values can be fitted to the classical Monod growth curve to determine bacterial growth kinetics and the maximum growth rate. Standard curves using acetate carbon (at concentrations ranging from 0 to 1,000 μg/liter) resulted in coefficients of determination (r2) between luminescence units and acetate carbon levels of 0.95 for P-17 and 0.89 for NOX. The bioluminescence test was used to monitor reclaimed water, in which average AOC levels range between 150 and 1,400 μg/liter acetate carbon equivalents. Comparison of the conventional AOC assay and the bioluminescent assay produced an r2 of 0.92.Biodegradable organic matter is used by heterotrophic bacteria for carbon and energy. Easily biodegradable carbon can lead to high levels of bacterial growth (2, 7, 8). The assimilable organic carbon (AOC) assay offers a standardized measurement of the heterotrophic bacterial growth potential of treated water and was originally developed by van der Kooij (13, 14). van der Kooij''s method utilized two bacterial strains (Pseudomonas fluorescens P-17 and Spirillum sp. strain NOX) chosen for their nutritional requirements. AOC test results are considered to be more an indicator of the biological growth potential of the water and less a direct measurement of biodegradable carbon because the limiting nutrient may not be carbon (10). AOC is an important parameter governing the growth of bacteria in drinking water. AOC levels as low as 10 μg/liter can result in excessive growth of heterotrophic plate count bacteria in the absence of a chlorine residual. Even in the presence of a chlorine residual, AOC levels of >100 μg/liter have been associated with problems related to coliform and mycobacterium regrowth and possible regulatory noncompliance. High organic carbon levels, warm temperatures, and low levels of disinfectant residuals lead to water distribution system problems, including iron pipe corrosion, the growth of opportunistic pathogens (e.g., Mycobacterium avium, Aeromonas hydrophila, and Legionella pneumophila) in distribution system pipe biofilms, and bacterial regrowth in distributed water (9, 11, 13, 15). In distributed water, bacterial regrowth is perhaps the most significant mechanism for water quality deterioration between the treatment plant and the end user.AOC is the fraction of natural organic matter that is most readily used by bacteria for multiplication and is of greatest interest to drinking water utilities. Despite the recognition that variations in treatment practices (e.g., disinfection, coagulation, selection of filter media, and watershed protection) can have dramatic impacts on AOC levels in drinking water, few water utilities routinely measure AOC levels because of the complexity and difficulty of the method. Previous work attempted to simplify the method by measuring ATP instead of determining plate counts (10), but problems with commercial ATP measurement reagents discouraged utility laboratory adoption of this technique (3). The plate count and ATP methods are complex, time-consuming, and cumbersome, requiring a week or more of turnaround time before results are available. The methods are also expensive because of the technical labor involved in assaying ATP levels from filter-concentrated cells or in spread plating samples and determining plate CFU counts. These issues hindered routine determination of AOC levels and, therefore, strategies to optimize treatment for AOC removal. To simplify the method, P-17 and NOX test bacteria were mutagenized with luxCDABE operon fusion and inducible transposons to produce bioluminescent strains (4), but the engineered strains were shown to be marginally effective in low-sensitivity analog luminometers.The present work describes a rapid AOC test that uses the bioluminescent strains in conjunction with a sensitive, photon-counting luminometer. Combining the instrumentation and the bioluminescent derivatives has resulted in an easy-to-use AOC test that has been successfully applied to various water matrices. Standard curves were developed to determine the responses of the bioluminescent strains to various acetate carbon concentrations. Luminescence levels were converted to acetate carbon equivalents (based on standard curves) by using the Monod model, and maximum growth yield values were evaluated and compared. In addition, a yearlong study was conducted to measure the biological stability within reclaimed-water distribution systems from four geographically diverse reclaimed-water facilities that employed a variety of physical, chemical, and biological treatment combinations to treat wastewater effluents. In this study, average AOC levels were 10 times higher than those typically found in drinking water distribution systems and ranged from 150 to 1,400 μg/liter.  相似文献   

14.
Heterotrophic bacteria were enumerated from the Seattle drinking water catchment basins and distribution system. The highest bacterial recoveries were obtained by using a very dilute medium containing 0.01% peptone as the primary carbon source. Other factors favoring high recovery were the use of incubation temperatures close to that of the habitat and an extended incubation (28 days or longer provided the highest counts). Total bacterial counts were determined by using acridine orange staining. With one exception, all acridine orange counts in chlorinated samples were lower than those in prechlorinated reservoir water, indicating that chlorination often reduces the number of acridine orange-detectable bacteria. Source waters had higher diversity index values than did samples examined following chlorination and storage in reservoirs. Shannon index values based upon colony morphology were in excess of 4.0 for prechlorinated source waters, whereas the values for final chlorinated tap waters were lower than 2.9. It is not known whether the reduction in diversity was due solely to chlorination or in part to other factors in the water treatment and distribution system. Based upon the results of this investigation, we provide a list of recommendations for changes in the procedures used for the enumeration of heterotrophic bacteria from drinking waters.  相似文献   

15.
Examination and characterization of distribution system biofilms.   总被引:17,自引:11,他引:6       下载免费PDF全文
Investigations concerning the role of distribution system biofilms on water quality were conducted at a drinking water utility in New Jersey. The utility experienced long-term bacteriological problems in the distribution system, while treatment plant effluents were uniformly negative for coliform bacteria. Results of a monitoring program showed increased coliform levels as the water moved from the treatment plant through the distribution system. Increased coliform densities could not be accounted for by growth of the cells in the water column alone. Identification of coliform bacteria showed that species diversity increased as water flowed through the study area. All materials in the distribution system had high densities of heterotrophic plate count bacteria, while high levels of coliforms were detected only in iron tubercles. Coliform bacteria with the same biochemical profile were found both in distribution system biofilms and in the water column. Assimilable organic carbon determinations showed that carbon levels declined as water flowed through the study area. Maintenance of a 1.0-mg/liter free chlorine residual was insufficient to control coliform occurrences. Flushing and pigging the study area was not an effective control for coliform occurrences in that section. Because coliform bacteria growing in distribution system biofilms may mask the presence of indicator organisms resulting from a true breakdown of treatment barriers, the report recommends that efforts continue to find methods to control growth of coliform bacteria in pipeline biofilms.  相似文献   

16.
Heterotrophic bacteria were enumerated from the Seattle drinking water catchment basins and distribution system. The highest bacterial recoveries were obtained by using a very dilute medium containing 0.01% peptone as the primary carbon source. Other factors favoring high recovery were the use of incubation temperatures close to that of the habitat and an extended incubation (28 days or longer provided the highest counts). Total bacterial counts were determined by using acridine orange staining. With one exception, all acridine orange counts in chlorinated samples were lower than those in prechlorinated reservoir water, indicating that chlorination often reduces the number of acridine orange-detectable bacteria. Source waters had higher diversity index values than did samples examined following chlorination and storage in reservoirs. Shannon index values based upon colony morphology were in excess of 4.0 for prechlorinated source waters, whereas the values for final chlorinated tap waters were lower than 2.9. It is not known whether the reduction in diversity was due solely to chlorination or in part to other factors in the water treatment and distribution system. Based upon the results of this investigation, we provide a list of recommendations for changes in the procedures used for the enumeration of heterotrophic bacteria from drinking waters.  相似文献   

17.
Phosphorus and bacterial growth in drinking water.   总被引:23,自引:4,他引:19       下载免费PDF全文
The availability of organic carbon is considered the key factor to regulate microbial regrowth in drinking water network. However, boreal regions (northern Europe, Russia, and North America) contain a large amount of organic carbon in forests and peatlands. Therefore, natural waters (lakes, rivers, and groundwater) in the northern hemisphere generally have a high content of organic carbon. We found that microbial growth in drinking water in Finland is highly regulated not only by organic carbon but also by the availability of phosphorus. Microbial growth increased up to a phosphate concentration of 10 micrograms of PO4-P liter-1. Inorganic elements other than phosphorus did not affect microbial growth in drinking water. This observation offers novel possibilities to restrict microbial growth in water distribution systems by developing technologies to remove phosphorus efficiently from drinking water.  相似文献   

18.
Examination and characterization of distribution system biofilms   总被引:14,自引:0,他引:14  
Investigations concerning the role of distribution system biofilms on water quality were conducted at a drinking water utility in New Jersey. The utility experienced long-term bacteriological problems in the distribution system, while treatment plant effluents were uniformly negative for coliform bacteria. Results of a monitoring program showed increased coliform levels as the water moved from the treatment plant through the distribution system. Increased coliform densities could not be accounted for by growth of the cells in the water column alone. Identification of coliform bacteria showed that species diversity increased as water flowed through the study area. All materials in the distribution system had high densities of heterotrophic plate count bacteria, while high levels of coliforms were detected only in iron tubercles. Coliform bacteria with the same biochemical profile were found both in distribution system biofilms and in the water column. Assimilable organic carbon determinations showed that carbon levels declined as water flowed through the study area. Maintenance of a 1.0-mg/liter free chlorine residual was insufficient to control coliform occurrences. Flushing and pigging the study area was not an effective control for coliform occurrences in that section. Because coliform bacteria growing in distribution system biofilms may mask the presence of indicator organisms resulting from a true breakdown of treatment barriers, the report recommends that efforts continue to find methods to control growth of coliform bacteria in pipeline biofilms.  相似文献   

19.
Granular activated carbon (GAC) beds may be used for removal of dissolved organic matter during the treatment of drinking water. However, they might also change the microbiological quality of the water entering the distribution system either by changing the predominant bacteria or the bacterial density of the treated water. A 3-year pilot plant study of water treatment using GAC beds was conducted at the Baxter Water Treatment Plant in Philadelphia. During the study, bacteria were isolated from the raw water and from the effluents of the GAC treatment units. At the end of the study, bacteria were also isolated from the GAC units and from sand beds operated in parallel with the GAC units. Bacterial genera in the GAC effluents and in the GAC units themselves were similar to those found in the raw water and in the sand beds. Prechlorination and (or) preozonation of the water before GAC treatment had no noticeable effect on the bacterial genera found as compared with GAC unit having no predisinfection. The bacterial genera found in this study were similar to those found in seven other studies of GAC water treatment that used a variety of treatment schemes and a variety of heterotrophic plate count techniques to evaluate bacterial populations. From these several studies it appears that GAC treatment does not change the nature of the bacterial populations associated with drinking water.  相似文献   

20.
AIMS: This study investigated the influence of water chemistry on copper solvation (cuprosolvency) by pure culture biofilms of heterotrophic bacteria isolated from copper plumbing. METHODS AND RESULTS: Heterotrophic bacteria isolated from copper plumbing biofilms including Acidovorax delafieldii, Flavobacterium sp., Corynebacterium sp., Pseudomonas sp. and Stenotrophomonas maltophilia were used in laboratory coupon experiments to assess their potential for cuprosolvency. Sterile copper coupons were exposed to pure cultures of bacteria to allow biofilm formation and suspended in drinking waters with different chemical compositions. Sterile coupons not exposed to bacteria were used as controls. After 5 days of incubation, copper release and biofilm accumulation was quantified. The results demonstrated that cuprosolvency in the control experiments was influenced by water pH, total organic carbon (TOC) and conductivity. Cuprosolvency in the presence of biofilms correlated with the chemical composition of the water supplies particularly pH, Langeliers Index, chloride, alkalinity, TOC and soluble phosphate concentrations. CONCLUSIONS: The results suggest water quality may influence cuprosolvency by biofilms present within copper plumbing pipes. SIGNIFICANCE AND IMPACT OF THE STUDY: The potential for water chemistry to influence cuprosolvency by biofilms may contribute to the sporadic nature of copper corrosion problems in distribution systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号