首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
A significant rise in systemic blood pressure (of up to 160–225%) mainly produced by an increase in total peripheral vascular resistance was observed after micro-injecting glycine caudally into the ventrolateral medulla in cats (to a depth of no more than 700 µm from the ventral surface). This was accompanied by a less pronounced alteration in cardiac output and heartbeat. Using horseradish peroxidase retrograde axonal transport techniques, direct connections were identified from a number of neuronal groups located caudally on the ventrolateral medulla (including those lying in close proximity to the ventral surface) to the mediodorsal lateral tegmental field. These neuronal groups are not identical to known groups of catecholaminergic neurons. The findings obtained complement our comprehension of the mechanisms governing interaction at the dorsal and ventral bulbar areas involved in regulation of vascular tone.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 10–18, January–February, 1990.  相似文献   

2.
Differences in the location of putative inhibitory (F-type) synapses were revealed during research into the ultrastructural organization of the chemically sensitive cat ventrolateral medulla (VLM). These synapses are made up of axonal terminals filled with flattened synaptic vesicles with the long axis measuring 60–80 nm. They are mainly located in the caudal portion of the test area, while S-type synapses with spherical electron-transparent synaptic vesicals, with a mean diameter of 50 nm, are distributed fairly evenly within the confines of the test area. It is postulated that neuronal structure of the chemically sensitive cat VLM have a different functional significance in the exerting of central neurogenous control over circulatory function.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 300–305, May–June, 1989.  相似文献   

3.
Although the role played by the caudal ventrolateral medulla in the regulation of the cardiovascular system has been extensively investigated, little is known about the role played by this area in the regulation of airway caliber. Therefore, in alpha-chloralose-anesthetized dogs, we used both electrical and chemical means to stimulate the caudal ventrolateral medulla while we monitored changes in total lung resistance breath by breath. We found that electrical stimulation (25 microA) of 26 sites in this area significantly decreased total lung resistance from 7.1 +/- 0.4 to 5.7 +/- 0.3 cmH2O.1-1.s (P less than 0.001). The bronchodilation evoked by electrical stimulation was unaffected by beta-adrenergic blockade but was abolished by cholinergic blockade. In addition, chemical stimulation of seven sites in the caudal ventrolateral medulla with microinjections of DL-homocysteic acid (0.2 M; 66 nl), which stimulates cell bodies but not fibers of passage, also decreased total lung resistance from 8.3 +/- 1.1 to 6.5 +/- 0.8 cmH2O.l-1.s (P less than 0.01). In contrast, microinjections of DL-homocysteic acid into the nucleus ambiguus (n = 6) increased total lung resistance from 7.5 +/- 0.5 to 9.2 +/- 0.4 cmH2O.l-1.s (P less than 0.05). We conclude that the caudal ventrolateral medulla contains a pool of cell bodies whose excitation causes bronchodilation by withdrawing cholinergic input to airway smooth muscle.  相似文献   

4.
We have previously reported that the anticholinergic properties of cocaine may be important in cocaine induced apneusis. We have studied the effects of the cholinergic muscarinic antagonist atropine (ATR) on cocaine induced apneusis at the caudal chemosensitive areas of the ventrolateral medulla oblongata (CVLM). Experiments were performed in urethane anesthetized and tracheotomized cats with the CVLM surgically exposed. Topical application of ATR (44 mM ) to the CVLM produced significant decrements in minute ventilation (V(E)) and mean arterial blood pressure (MABP) (P<0.05) but the effects on tidal volume (V(T)), respiratory frequency (f) and heart rate (HR) were not significant. Administration of cocaine (37 mM) to ATR pretreated animals increased the incidence of cocaine induced respiratory arrest to more than twofold greater than when cocaine was administered in the absence of pretreatment. The ATR pretreated animals that did not experience inspiratory arrest after cocaine were shown to exhibit significant decrements in f and V(E) as a consequence of prolonged inspiratory pauses. The reduction in MABP after cocaine in ATR pretreated animals was also significant. These results suggest that ATR enhances the central respiratory toxicity of cocaine by acting synergistically at CVLM chemosensitive sites.  相似文献   

5.
Activation of neurons in the ventrolateral region of the periaqueductal gray (vlPAG) can elicit a decrease in renal sympathetic nerve activity and blood pressure. The present study investigated whether the vlPAG-evoked sympathoinhibitory response depends on neurons in the caudal midline medulla (CMM). In pentobarbital-anesthetized rats, activation of neurons in the vlPAG evoked a decrease in renal sympathetic nerve activity to 29.4 +/- 4.8% below baseline levels and arterial blood pressure fell 8.9 +/- 1.6 mmHg (n = 20). Microinjection of the GABA agonist muscimol into sympathoinhibitory regions of the CMM significantly attenuated the vlPAG-evoked sympathoinhibition to 17.9 +/- 4.1% below baseline and the depressor response to 4.3 +/- 1.2 mmHg. At 65% (13/20) of the sites examined, the vlPAG-evoked sympathoinhibition was responsive to CMM muscimol microinjection and attenuated from 34.2% to 11.5%, with the depressor response reduced from 14.8 to 3 mmHg. Microinjection of muscimol at the remaining 35% of the CMM sympathoinhibitory sites was ineffective on the vlPAG-evoked sympathoinhibition and depressor response. These data indicate that sympathoinhibitory and hypotensive responses elicited by activation of neurons in the vlPAG can be mediated by neurons in the sympathoinhibitory region of the CMM. The finding that the vlPAG-evoked response is not affected by muscimol at all CMM sympathoinhibitory sites also suggests that sympathoinhibitory sites in the CMM are not homogeneous and can mediate functionally different responses.  相似文献   

6.
We determined the effect of microinjection of ANG-(1-7) and ANG II into two key regions of the medulla that control the circulation [rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively)] on baroreflex control of heart rate (HR) in anesthetized rats. Reflex bradycardia and tachycardia were induced by increases and decreases in mean arterial pressure produced by intravenous phenylephrine and sodium nitroprusside, respectively. The pressor effects of ANG-(1-7) and ANG II (25 pmol) after RVLM microinjection (11 +/- 0.8 and 10 +/- 2 mmHg, respectively) were not accompanied by consistent changes in HR. In addition, RVLM microinjection of these angiotensin peptides did not alter the bradycardic or tachycardic component of the baroreflex. CVLM microinjections of ANG-(1-7) and ANG II produced hypotension (-11 +/- 1.5 and -11 +/- 1.9 mmHg, respectively) that was similarly not accompanied by significant changes in HR. However, CVLM microinjections of angiotensins induced differential changes in the baroreflex control of HR. ANG-(1-7) attenuated the baroreflex bradycardia (0.26 +/- 0.06 ms/mmHg vs. 0.42 +/- 0.08 ms/mmHg before treatment) and facilitated the baroreflex tachycardia (0.86 +/- 0.19 ms/mmHg vs. 0.42 +/- 0.10 ms/mmHg before treatment); ANG II produced the opposite effect, attenuating baroreflex tachycardia (0.09 +/- 0.06 ms/mmHg vs. 0.31 +/- 0.07 ms/mmHg before treatment) and facilitating the baroreflex bradycardia (0.67 +/- 0.16 ms/mmHg vs. 0.41 +/- 0.05 ms/mmHg before treatment). The modulatory effect of ANG II and ANG-(1-7) on baroreflex sensitivity was completely abolished by peripheral administration of methylatropine. These results suggest that ANG II and ANG-(1-7) at the CVLM produce a differential modulation of the baroreflex control of HR, probably through distinct effects on the parasympathetic drive to the heart.  相似文献   

7.
To investigate whether the caudal ventrolateral medulla (CVLM) participates in the regulation of gallbladder motility, we studied the effects of microinjection of L-glutamate and other agents into the CVLM on gallbladder pressure (GP) in anesthetized rabbits. A frog bladder connected with a force transducer was inserted into the gallbladder to record the change of GP. Microinjection of L-glutamate into the CVLM decreased GP, While micnoinjection of gamma-amino-butyric acid (GABA) increased GP. Microinjection of ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, into CVLM increased GP, while microinjection of 6-cyano-7-nitroquinoxaline-2,3-(1H,4H)-dione (CNQX), a competitive (+/-)-a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptor antagonist, had no significant effect on GP. The effects of L-glutamate was abolished by ketamine, but not by CNQX. Intravenous injection of phentolamine or transection of the spinal cord eliminated the effects of L-glutamate on GP. These results indicate that [1] CVLM participated in the regulation of gallbladder motility; [2] endogenous L-glutamate in CVLM is involved in the regulation mediated by NMDA receptors, the output of which is sent through sympathetic nerve and alpha-adrenergic receptors.  相似文献   

8.
延髓尾端有两个调节心血管活动的区域,尾端腹外侧延髓除了作为外周压力感受器传入冲动的中继站外,可能还有一压力感受器非依赖的,对头端腹外侧延髓的抑制作用。此外,尾端腹外侧延髓还提供一种非兴奋性氨基酸介导的兴奋冲动,影响头端腹外侧延髓,尾端加压区神经元是支持头端腹外侧延髓交感前运动神经元静息活性的主要突触来源,对维持血管张力起一定作用。  相似文献   

9.
The objective of the present study was to determine the contribution of the autonomic nervous system and nitric oxide to the depressor effect produced by unilateral microinjection of ANG-(1-7) and ANG II into the caudal ventrolateral medulla (CVLM). Unilateral microinjection of ANG-(1-7), ANG II (40 pmol), or saline (100 nl) was made into the CVLM of male Wistar rats anesthetized with urethane before and after intravenous injection of 1) methyl-atropine, 2.5 mg/kg; 2) prazosin, 25 microg/kg; 3) the nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), 5 mg/kg; or 4) the specific inhibitor of neuronal NOS, 7-nitroindazole (7-NI), 45 mg/kg. Arterial pressure and heart rate (HR) were continuously monitored. Microinjection of ANG-(1-7) or ANG II into the CVLM produced a significant decrease in mean arterial pressure (MAP; -11 +/- 1 mmHg, n = 12 and -10 +/- 1 mmHg, n = 10, respectively) that was not accompanied by consistent changes in HR or in cardiac output. The effect of ANG-(1-7) was abolished after treatment with methyl-atropine (-3 +/- 0.6 mmHg, n = 9) or L-NAME (-2.3 +/- 0.5 mmHg, n = 8) or 7-NI (-2.8 +/- 0.6 mmHg, n = 5). In contrast, these treatments did not significantly interfere with the ANG II effect (-10 +/- 2.6 mmHg, n = 8; -8 +/- 1.5 mmHg, n = 8; and -12 +/- 3.6 mmHg, n = 6; respectively). Peripheral treatment with prazosin abolished the hypotensive effect of ANG-(1-7) and ANG II. Microinjection of saline did not produce any significant change in MAP or in HR. These results suggest that the hypotensive effect produced by ANG II at the CVLM depends on changes in adrenergic vascular tonus and, more importantly, the hypotensive effect produced by ANG-(1-7) also involves a nitric oxide-related mechanism.  相似文献   

10.
11.
We investigated the role played by the caudal ventrolateral (CVL) medulla in the reflex and central neural control of airway caliber in chloralose-anesthetized dogs. Changes in total lung resistance were evoked by four different stimuli. These changes were compared before and after bilateral injection of either ibotenic acid (75 nl; 100 mM) or cobalt chloride (75 nl; 50 mM) into the CVL medulla. The four stimuli used to change lung resistance were static muscular contraction, electrical stimulation of thin fiber afferents in the sciatic nerve, electrical stimulation of the posterior diencephalon, and hypoxia. The first three stimuli have been shown to decrease total lung resistance, whereas the latter stimulus has been shown to increase resistance. We found that injection of both ibotenic acid, which destroys cell bodies but not fibers of passage, and cobalt, which prevents synaptic transmission, either abolished or greatly attenuated the decrease in total lung resistance evoked by static contraction, by sciatic nerve stimulation, and by posterior diencephalic stimulation. We also found that injection of ibotenic acid and cobalt attenuated the reflex increase in lung resistance evoked by hypoxia. In control experiments, we found that bilateral injection of ibotenic acid into the dorsal medulla had no effect on the changes in total lung resistance evoked by these four stimuli. We conclude that the CVL medulla plays an important role in the reflex and central control of airway caliber.  相似文献   

12.
The purpose of this study was to describe the distribution and activity pattern of respiratory neurons located in the ventrolateral medulla (VLM) of the dog. Spike activity of 129 respiratory neurons was recorded in 23 ketamine-anesthetized spontaneously breathing dogs. Pontamine blue dye was used to mark the location of each neuron. Most VLM neurons displaying respiratory related spike patterns were located in a column related closely to ambigual and retroambigual nuclei. Both inspiratory and expiratory neurons were present with inspiratory units being grouped more rostrally. The predominant inspiratory neuron firing pattern was "late" inspiratory, although eight "early" types were located. All expiratory firing patterns were the late expiratory variety. Each neuron burst pattern was characterized by determining burst duration (BD), spikes per burst (S/B), peak frequency (PF), time to peak frequency (TPF), rate of rise to peak frequency (PF/TPF), and mean frequency. CO2-induced minute ventilation increases were associated with decreases in BD and TPF and increases in PF, S/B, and PF/TPF. In 11 experiments the relative influences of vagotomy and tracheal occlusion on late inspiratory units were compared. Tracheal occlusion increased late inspiratory BD and S/B but did not alter PF/TPF. Vagotomy increased BD and S/B beyond those obtained by tracheal occlusion and, in some neurons, decreased the PF/TPF. We conclude that the location of respiratory units in the VLM of the dog is similar to that in other species, the discharge pattern of VLM respiratory units is similar to those in cat VLM, and vagotomy and tracheal occlusion affect discharge patterns differently.  相似文献   

13.
In experiments on conscious rats it was found that preliminary microinjection of 100 nl 100 microM glutamic acid to the rostral commissural part of the solitary tract nucleus or to the caudal ventrolateral medulla increased a rise in colonic temperature induced by systemically applied endotoxin (3 microg/kg Escherichia coli lipopolysaccharide, i.p.) as compared to animals with intrabulbar injection of vehicle (control group). Preliminary microinjection of glutamate to the caudal commissural part of the solitary tract nucleus levelled the endotoxin-induced temperature response. After glutamate treatment of the caudal ventrolateral medulla there was a significant decrease in the noradrenaline content and decrease in the adrenaline level in the caudal (not significant) and rostral ventrolateral medulla (significant), as well as a small rise in noradrenergic activity at the solitary tract nucleus as compared to control animals. The post-mortem measurement of the optical density of brainstem tissues revealed its significant attenuation at the solitary tract nucleus and caudal ventrolateral medulla after glutamate as compared with these structures after vehicle. The involvement of monoaminergic systems of both structures under study in the initiation and control of temperature responses during endotoxemia is suggested.  相似文献   

14.
15.
Glycine injection to the identified area of the RVLM leads to the development of a characteristic depressor reaction, due to a decrease of the total peripheral vascular resistance (TRP). Glycine injection to the identified area of CVLM results in the developing pressor reaction also due to the changes of TRP. Glycine injection to CVLM under preliminary functional switch-off the RVLM neuronal activity is not accompanied by the development of pressor reaction. This can be an evidence that CVLM sympathoinhibitory neurones act on cardiohemodynamics by their interaction with RVLM sympathoexcitatory neurones. Turn off of the tonically active sympathoinhibitory CVLM neurones does not affect the character of the reactions depending on the inhibition or excitation of sympathoexcitatory RVLM neurones.  相似文献   

16.
We used an optical imaging technique to investigate whether axons of neurons in the caudal end of the ventrolateral medulla (CeVLM), as well as axons of neurons in the rostral ventrolateral medulla (RVLM), project to neurons in the intermediolateral cell column (IML) of the spinal cord. Brain stem-spinal cord preparations from neonatal normotensive Wistar-Kyoto and spontaneously hypertensive rats were stained with a voltage-sensitive dye, and responses to electrical stimulation of the IML at the Th2 level were detected as changes in fluorescence intensity with an optical imaging apparatus (MiCAM-01). The results were as follows: 1) depolarizing responses to IML stimulation during low-Ca high-Mg superfusion were detected on the ventral surface of the medulla at the level of the CeVLM, as well as at the level of the RVLM, 2) depolarizing responses were also detected on cross sections at the level of the CeVLM, and they had a latency of 24.0 +/- 5.5 (SD) ms, 3) antidromic action potentials in response to IML stimulation were demonstrated in the CeVLM neurons where optical images were detected, and 4) glutamate application to the CeVLM increased the frequency of excitatory postsynaptic potentials (EPSPs) and induced depolarization of the IML neurons. The optical imaging findings suggested a novel axonal and functional projection from neurons in the CeVLM to the IML. The increase in EPSPs of the IML neurons in response to glutamate application suggests that the CeVLM participates in the regulation of sympathetic nerve activity and blood pressure and may correspond to the caudal pressor area.  相似文献   

17.
18.
The gastrointestinal hormone CCK inhibits a subset of presympathetic neurons in the rostroventrolateral medulla (RVLM) that may be responsible for driving the sympathetic vasomotor outflow to the gastrointestinal circulation. We tested the hypothesis that the central neurocircuitry of this novel sympathoinhibitory reflex involves a relay in the caudal ventrolateral medullary (CVLM) depressor area. Blood pressure and greater splanchnic sympathetic nerve discharge (SSND) or lumbar sympathetic nerve discharge (LSND) were monitored in anesthetised, paralyzed male Sprague-Dawley rats. The effects of phenylephrine (PE, 10 microg/kg iv; baroreflex activation), phenylbiguanide (PBG, 10 microg/kg iv; von Bezold-Jarisch reflex) and CCK (4 or 8 microg/kg iv) on SSND or LSND, were tested before and after bilateral injection of 50-100 nl of the GABAA agonist muscimol (1.75 mM; n=6, SSND; n=7, LSND) or the excitatory amino acid antagonist kynurenate (55 mM; n=7, SSND) into the CVLM. PE and PBG elicited splanchnic and lumbar sympathoinhibitory responses that were abolished by bilateral muscimol or kynurenate injection into the CVLM. Similarly, the inhibitory effect of CCK on SSND was abolished after neuronal inhibition within the CVLM. In contrast, CCK-evoked lumbar sympathoexcitation was accentuated following bilateral CVLM inhibition. In control experiments (n=7), these agents were injected outside the CVLM and had no effect on splanchnic sympathoinhibitory responses to PE, PBG, and CCK. In conclusion, neurons in the CVLM are necessary for the splanchnic but not lumbar sympathetic vasomotor reflex response to CCK. This strengthens the view that subpopulations of RVLM neurons supply sympathetic vasomotor outflow to specific vascular territories.  相似文献   

19.
延髓腹外侧区的有关神经化学物质在调节心血管...   总被引:2,自引:0,他引:2  
范伟 《生理科学进展》1991,22(4):329-332
  相似文献   

20.
Effects of injecting 1 µl 1·10–5–5·10–4 M gamma-aminobutyric acid (GABA) into the neuronal structures of the chemically sensitive area of the bulbar ventrolateral surface and clearly-defined borders of this area with GABA-sensitive cells were investigated in cats anesthetized by a mixture of chloralose and urethane. It was found that GABA, interacting with bicuculline-sensitive GABAa receptors, exercises an inhibitory effect on the activity of neuronal structures of the ventrolateral surface involved in governing blood pressure, heart rate, and vascular tonus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 327–334, May–June, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号