首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We address the organization of workers in social insect societies. We distinguish between changes in behavioural role over the nurse to forager role sequence, which may depend on changes in physiology, and potentially more rapid changes of task within role. We investigated the association between role and nutrient status in the ant Leptothorax albipennis. Worker lipid stores were quantified using a new body size-controlled method, and were related to worker behaviour. Worker lipid stores were evenly distributed amongst colony members at the end of winter, splitting rapidly into two distinct modes (replete nurses and lean foragers) in spring. The proportion of lean foragers increased throughout spring and summer, until most colonies contained only workers of this type. Callow workers then eclosed with intermediate lipid stores. We developed a computer vision system that tracks all nest ants to extract detailed behaviour of individuals of known lipid stores. Lipid storage was negatively correlated with a worker's foraging propensity, and with measures of spatial occupation in the nest and of activity. Different colonies showed a similar quantitative correlation between lipid stores and behavioural role, suggesting that lipid stores were not only correlated with the relative organization of individuals within each nest, but may also have influenced their absolute role. We reviewed the literature and found evidence that nutrient status influences role predisposition in social insect workers. We conclude that the distribution of worker roles may be linked to the balance between foraging income and energetic consumption within the colony directly via worker nutrient status. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

2.
In social insects, groups of workers perform various tasks such as brood care and foraging. Transitions in workers from one task to another are important in the organization and ecological success of colonies. Regulation of genetic pathways can lead to plasticity in social insect task behaviour. The colony organization of advanced eusocial insects evolved independently in ants, bees, and wasps and it is not known whether the genetic mechanisms that influence behavioural plasticity are conserved across species. Here we show that a gene associated with foraging behaviour is conserved across social insect species, but the expression patterns of this gene are not. We cloned the red harvester ant (Pogonomyrmex barbatus) ortholog (Pbfor) to foraging, one of few genes implicated in social organization, and found that foraging behaviour in harvester ants is associated with the expression of this gene; young (callow) worker brains have significantly higher levels of Pbfor mRNA than foragers. Levels of Pbfor mRNA in other worker task groups vary among harvester ant colonies. However, foragers always have the lowest expression levels compared to other task groups. The association between foraging behaviour and the foraging gene is conserved across social insects but ants and bees have an inverse relationship between foraging expression and behaviour.  相似文献   

3.
Major Quantitative Trait Loci Affecting Honey Bee Foraging Behavior   总被引:12,自引:0,他引:12       下载免费PDF全文
We identified two genomic regions that affect the amount of pollen stored in honey bee colonies and influence whether foragers will collect pollen or nectar. We selected for the amount of pollen stored in combs of honey bee colonies, a colony-level trait, and then used random amplified polymorphic DNA (RAPD) markers and interval mapping procedures with data from backcross colonies to identify two quantitative trait loci (pln1 and pln2, LOD 3.1 and 2.3, respectively). Quantitative trait loci effects were confirmed in a separate cross by demonstrating the cosegregation of marker alleles with the foraging behavior of individual workers. Both pln1 and pln2 had an effect on the amount of pollen carried by foragers returning to the colony, as inferred by the association between linked RAPD marker alleles, D8-.3f and 301-.55, and the individual pollen load weights of returning foragers. The alleles of the two marker loci were nonrandomly distributed with respect to foraging task. The two loci appeared to have different effects on foraging behavior. Individuals with alternative alleles for the marker linked to pln2 (but not pln1) differed with respect to the nectar sugar concentration of their nectar loads.  相似文献   

4.
Temporal division of labor and foraging specialization are key characteristics of honeybee social organization. Worker honeybees (Apis mellifera) initiate foraging for food around their third week of life and often specialize in collecting pollen or nectar before they die. Variation in these fundamental social traits correlates with variation in worker reproductive physiology. However, the genetic and hormonal mechanisms that mediate the control of social organization are not understood and remain a central question in social insect biology. Here we demonstrate that a yolk precursor gene, vitellogenin, affects a complex suite of social traits. Vitellogenin is a major reproductive protein in insects in general and a proposed endocrine factor in honeybees. We show by use of RNA interference (RNAi) that vitellogenin gene activity paces onset of foraging behavior, primes bees for specialized foraging tasks, and influences worker longevity. These findings support the view that the worker specializations that characterize hymenopteran sociality evolved through co-option of reproductive regulatory pathways. Further, they demonstrate for the first time how coordinated control of multiple social life-history traits can originate via the pleiotropic effects of a single gene that affects multiple physiological processes.  相似文献   

5.
Temporal division of labor and foraging specialization are key characteristics of honeybee social organization. Worker honeybees (Apis mellifera) initiate foraging for food around their third week of life and often specialize in collecting pollen or nectar before they die. Variation in these fundamental social traits correlates with variation in worker reproductive physiology. However, the genetic and hormonal mechanisms that mediate the control of social organization are not understood and remain a central question in social insect biology. Here we demonstrate that a yolk precursor gene, vitellogenin, affects a complex suite of social traits. Vitellogenin is a major reproductive protein in insects in general and a proposed endocrine factor in honeybees. We show by use of RNA interference (RNAi) that vitellogenin gene activity paces onset of foraging behavior, primes bees for specialized foraging tasks, and influences worker longevity. These findings support the view that the worker specializations that characterize hymenopteran sociality evolved through co-option of reproductive regulatory pathways. Further, they demonstrate for the first time how coordinated control of multiple social life-history traits can originate via the pleiotropic effects of a single gene that affects multiple physiological processes.  相似文献   

6.
Nutritional provisioning is a critical component of life history strategies, and of particular interest in social insect colonies because of the role that division of labor plays in resource allocation. To explore the mechanisms that underlie colony nutritional strategies, I examined three populations of the ant Pheidole morrisi across a gradient of overwinter food scarcity over two seasons. P. morrisi colonies were found to employ amixed strategy of fat storage with regard to a longer overwinter period: members of both worker castes increase their percent-fat in a graded manner, while the proportion of a specialized subcaste of majors known as “repletes”, also increased within the colony. Geographic variation in other colony traits such as mean colony size, mean worker size, and minor/major caste ratio were also found, although not always in a manner clearly relating to fat storage. These results indicate that colony demography responds to seasonal fluctuations in food availability through behavioral alterations (increased fat stores and recruitment of replete workers) rather than physical alterations (changes in lean body sizes or caste ratio). The findings illustrate the dynamic role division of labor plays in the success of insect colonies confronting environmental variability. Received 9 May 2006; revised 19 July 2006; accepted 24 July 2006.  相似文献   

7.
The genetic diversity in social insect colonies that is generated by multiple mating or multiple queens has been hypothesized to promote worker task specialization and therefore facilitate division of labour. However, few studies have actually examined the mechanisms by which genotype may influence individual worker behaviour. In this study, we dissect possible genetic effects on worker task performance in the desert leaf-cutter ant. We hypothesize that genotype could affect worker behaviour via (1) the rate of age-related task switching (age polyethism schedule), (2) individual task preference, and/or (3) task performance rates. To discriminate among these possible mechanisms, we generated composite colonies of workers from different genetic sources and followed the behaviour of individually marked workers over their lifetimes. We found significant differences among matrilines (offspring of different queens) in overall task performance. In particular, we found a negative covariance in likelihood of foraging versus tending fungus inside the nest. Workers of different matrilines also varied in the age of transition from inside the nest to foraging, but did not vary in task performance rates. Our results suggest that division of labour in this system is affected by genetic influences on individual task preference and age-related task choice, but not on variation in activity level.  相似文献   

8.
Within-group communication is a fundamental feature of animal societies. In order for animal groups to function as adaptive units, the members must share information such that group mates respond appropriately to each others’ behavior. One important function of social communication is to affect the allocation of tasks among group members. Theoretical and empirical findings on a diverse array of social insect taxa show that interactions among workers often play important roles in structuring division of labor. We review worker interactions that regulate division of labor in insect societies, which we refer to as worker connectivity. We present a framework for synthesizing and analyzing the study of worker connectivity. The widespread reliance on worker connectivity among eusocial insect taxa and the diversity of communicative mechanisms used to recruit workers suggest that the nature of worker interactions has evolved by natural selection. We suggest that colony-level selection acting on variation in task allocation has been an important force in the evolution of mechanisms for worker connectivity. We also propose that there are important links between individual worker cognition and task allocation at the colony level. Evolutionary changes in the cognitive aspects of worker responses may affect task allocation as much as changes in the communicative signals themselves. Received 9 December 2006; revised 18 May 2007; accepted 30 May 2007.  相似文献   

9.
陈璇  胡福良 《昆虫知识》2009,46(3):490-494
蜜蜂Apisspp.是一种社会性昆虫。社会性昆虫在对它们群体自身数量和巢穴环境的调节方面表现出明显的稳态特点,Emerson将这种稳态调节称为社会性稳态。蜂群中花粉的储存量就具有稳态的特点。蜂群的花粉采集行为是由蜂群对花粉的需要决定的。关于蜜蜂花粉采集行为的调控机制,目前的研究主要集中于是哪些信息以及蜂群是如何识别这些信息从而调控其采粉行为,主要形成了直接识别和间接识别2种假说。对这2种假说进行综述。  相似文献   

10.
Honey bees collect distinct nutrient sources in the form ofnectar (energy) and pollen (nitrogen). We investigated the effectof varying energy stores on nectar and pollen foraging. We foundno significant changes in nectar foraging in response to changesin honey storage levels within colonies. Individual foragersdid not vary activity rates or nectar load sizes in responseto changes in honey stores, and colonies did not increase nectarintake rates when honey stores within the hive were decreased.This result contrasts with pollen foraging behavior, which isextremely sensitive to colony state. Our data show that individualforaging decisions during nectar collection and colony regulationof nectar intake are distincdy different from pollen foraging.The behavior of honey bees illustrates that foraging strategy(and therefore foraging models) can incorporate multiple currencies,including both energy and protein intake.[Behav Ecol 7: 286–291(1996)]  相似文献   

11.
We develop a simulation model of worker connectivity to analyze how variation in worker communication can influence task performance. The model generates predictions about how colony demography, worker communicative behavior, and worker cognition will affect the rate of recruitment of workers to a new task. The model explores some mechanisms for modulating the recruitment of workers. Under the conditions of our model– probabilistic interactions that lower worker’s response thresholds to tasks– worker recruitment follows a logistic growth pattern. The rate of recruiting workers increases exponentially toward an inflection point when 50% of the available force has been activated, then decreases toward the upper asymptote (all workers recruited). Many relevant features of colony design and worker behavior, including group size, probability of interacting, and strength of interaction effects on receivers, show a positive but decelerating effect on the rate of worker recruitment. We also identify features of worker cognition that can influence task recruitment, focusing on the time course of worker’s memories about previous interactions. Both learning (e.g., sensitization) and forgetting about previous interactions can influence the rate of worker recruitment to a task. The model suggests that worker cognition may be shaped by natural selection on task performance at the colony level. Forgetting about interactions may be especially costly, because it leads to unpredictable patterns of worker recruitment. We also show that social inhibition, when coupled with excitatory interactions, can effectively modulate worker recruitment at the colony level. Received 9 December 2006; revised 23 May 2007; accepted 30 May 2007.  相似文献   

12.
In some group-living organisms, labor is divided among individuals. This allocation to particular tasks is frequently stable and predicted by individual physiology. Social insects are excellent model organisms in which to investigate the interplay between physiology and individual behavior, as division of labor is an important feature within colonies, and individual physiology varies among the highly related individuals of the colony. Previous studies have investigated what factors are important in determining how likely an individual is, compared to nestmates, to perform certain tasks. One such task is foraging. Corpulence (i.e., percent lipid) has been shown to determine foraging propensity in honey bees and ants, with leaner individuals being more likely to be foragers. Is this a general trend across all social insects? Here we report data analyzing the individual physiology, specifically the percent lipid, of worker bumble bees (Bombus impatiens) from whom we also analyze behavioral task data. Bumble bees are also unusual among the social bees in that workers may vary widely in size. Surprisingly we find that, unlike other social insects, percent lipid is not associated with task propensity. Rather, body size closely predicts individual relative lipid stores, with smaller worker bees being allometrically fatter than larger worker bees.  相似文献   

13.
Flexibility in task performance is essential for a robust system of division of labour. We investigated what factors determine which social insect workers respond to colony-level changes in task demand. We used radio-frequency identification technology to compare the roles of corpulence, age, spatial location and previous activity (intra-nest/extra-nest) in determining whether worker ants (Temnothorax albipennis) respond to an increase in demand for foraging or brood care. The less corpulent ants took on the extra foraging, irrespective of their age, previous activity or location in the nest, supporting a physiological threshold model. We found no relationship between ants that tended the extra brood and corpulence, age, spatial location or previous activity, but ants that transported the extra brood to the main brood pile were less corpulent and had high previous intra-nest activity. This supports spatial task-encounter and physiological threshold models for brood transport. Our data suggest a flexible task-allocation system allowing the colony to respond rapidly to changing needs, using a simple task-encounter system for generalized tasks, combined with physiologically based response thresholds for more specialized tasks. This could provide a social insect colony with a robust division of labour, flexibly allocating the workforce in response to current needs.  相似文献   

14.
Honeybees selected for the colony level phenotype of storing large quantities of pollen (pollen hoarding) in the nest exhibit greater walking activity than those selected against pollen hoarding. In this study, we use a simple walking assay to demonstrate that walking activity increases with the proportion of high pollen-hoarding alleles in pure and backcrossed strains of bees (high-strain bees > offspring generated from a high backcross > offspring generated from a low backcross > low-strain bees). The trait is heritable but is not associated with markers linked to three quantitative trait loci (QTL) mapped for their effects on pollen hoarding with demonstrated pleiotropic effects on pollen and nectar foraging and learning behavior. However, locomotion in non-selected bees is correlated with responsiveness to sucrose, a trait that correlates with foraging and learning behavior. We propose that pollen-hoarding behavior involves a syndrome of behavioral traits with complex genetic and regulatory architectures that span sensory sensitivity, foraging behavior, and learning. We propose that locomotor activity is the component of this syndrome and reflects the early maturation of the bees that become pollen foragers.  相似文献   

15.
Insect societies colonies of ants, bees, wasps and termites--vary enormously in their social complexity. Social complexity is a broadly used term that encompasses many individual and colony-level traits and characteristics such as colony size, polymorphism and foraging strategy. A number of earlier studies have considered the relationships among various correlates of social complexity in insect societies; in this review, we build upon those studies by proposing additional correlates and show how all correlates can be integrated in a common explanatory framework. The various correlates are divided among four broad categories (sections). Under 'polyphenism' we consider the differences among individuals, in particular focusing upon 'caste' and specialization of individuals. This is followed by a section on 'totipotency' in which we consider the autonomy and subjugation of individuals. Under this heading we consider various aspects such as intracolony conflict, worker reproductive potential and physiological or morphological restrictions which limit individuals' capacities to perform a range of tasks or functions. A section entitled 'organization of work' considers a variety of aspects, e.g. the ability to tackle group, team or partitioned tasks, foraging strategies and colony reliability and efficiency. A final section, 'communication and functional integration', considers how individual activity is coordinated to produce an integrated and adaptive colony. Within each section we use illustrative examples drawn from the social insect literature (mostly from ants, for which there is the best data) to illustrate concepts or trends and make a number of predictions concerning how a particular trait is expected to correlate with other aspects of social complexity. Within each section we also expand the scope of the arguments to consider these relationships in a much broader sense of'sociality' by drawing parallels with other 'social' entities such as multicellular individuals, which can be understood as 'societies' of cells. The aim is to draw out any parallels and common causal relationships among the correlates. Two themes run through the study. The first is the role of colony size as an important factor affecting social complexity. The second is the complexity of individual workers in relation to the complexity of the colony. Consequently, this is an ideal opportunity to test a previously proposed hypothesis that 'individuals of highly social ant species are less complex than individuals from simple ant species' in light of numerous social correlates. Our findings support this hypothesis. In summary, we conclude that, in general, complex societies are characterized by large colony size, worker polymorphism, strong behavioural specialization and loss of totipotency in its workers, low individual complexity, decentralized colony control and high system redundancy, low individual competence, a high degree of worker cooperation wher tackling tasks, group foraging strategies, high tempo, multi-chambered tailor-made nests, high functional integration, relatively greater use of cues and modulatory signals to coordinate individuals and heterogeneous patterns of worker-worker interaction.  相似文献   

16.
Summary. A numerical model has been developed to calculate the total number of transits in each worker foraging category for the 170 days of development of a successful colony. Seven categories of workers are considered: two of outgoers (earth carriers and non-earth outgoers), and five of incomers (pulp, flesh, full fluid, and partial fluid carriers, and empty incomers). The model allows for variation in the length of the foraging day and for hypothetical smaller and larger colonies. Estimates of each category are given for the queen, smaller and larger worker colony. Estimates of 1.3–4.5 million, for smaller and larger colonies, each of incomer and outgoer transits are calculated from the model. The slight excess of outgoer over incomer transits could be accounted for, in part, by the mortality of workers away from the nest. Percentages of each worker category are given for the pre-exponential small-cell, exponential small-cell and large-cell colonies. It is hypothesized that there is a balance between fluid and solid transits for efficient brood rearing. There may be restraints in the social wasp system that restrict brood rearing. Estimates which are independent of the foraging model are calculated for the number of loads to create the nest cavity and build the pulp nest which broadly agree with the model outputs.Received 15 July 2004; revised 15 December 2004; accepted 23 December 2004.  相似文献   

17.
Summary Foragers of the neotropical swarm-founding waspPolybia occidentalis showed improved task performance, as indicated by foraging success rate, with foraging age. Foragers also spent significantly more time in the field on foraging trips as they aged, while foraging rate did not change with age. These patterns were not explained by directional changes in resource availability or colony need over time. We compare these results to earlier findings on changes in task performance with experience in social insect foragers, and suggest that increases in forager persistence in the field explain improved foraging success with experience.  相似文献   

18.
We conducted laboratory experiments to investigate the lethal and sublethal effects of clothianidin on bumble bee, Bombus impatiens Cresson, colony health and foraging ability. Bumble bee colonies were exposed to 6 ppb clothianidin, representing the highest residue levels found in field studies on pollen, and a higher dose of 36 ppb clothianidin in pollen. Clothianidin did not effect pollen consumption, newly emerged worker weights, amount of brood or the number of workers, males, and queens at either dose. The foraging ability of worker bees tested on an artificial array of complex flowers also did not differ among treatments. These results suggest that clothianidin residues found in seed-treated canola and possibly other crops will not adversely affect the health of bumble bee colonies or the foraging ability of workers.  相似文献   

19.
A study on the relationship between the age of comb and the activity of the hybrid Carniolan honey bee colonies in collecting pollen activity, worker brood production, colony strength, and honey yield was conducted. In comparison to colonies with combs aged 4-years, colonies with combs aged 1, 2 and 3-years significantly exceeded in the number returning workers, number returning workers with pollen loads, rate of storing pollen, rate of worker brood production, and size of colony population. Colonies with combs aged 1, 2 and 3-years produced significantly more honey than colonies with combs aged 4-years (5.25, 4.90 and 4.65 kg/colony vs. 4.45 kg/colony, respectively). It can be concluded that the foraging rate, gathering and storing pollen, brood production, colony population size, and honey yield significantly depended on the age of combs. Beekeepers can replace old combs with new ones to increase brood and honey production.  相似文献   

20.
Summary. The ability of worker ants to adapt their behaviour depending on the social environment of the colony is imperative for colony growth and survival. In this study we use the greenhead ant Rhytidoponera metallica to test for a relationship between colony size and foraging behaviour. We controlled for possible confounding ontogenetic and age effects by splitting large colonies into small and large colony fragments. Large and small colonies differed in worker number but not worker relatedness or worker/brood ratios. Differences in foraging activity were tested in the context of single foraging cycles with and without the opportunity to retrieve food. We found that workers from large colonies foraged for longer distances and spent more time outside the nest than foragers from small colonies. However, foragers from large and small colonies retrieved the first prey item they contacted, irrespective of prey size. Our results show that in R. metallica, foraging decisions made outside the nest by individual workers are related to the size of their colony.Received 23 March 2004; revised 3 June 2004; accepted 4 June 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号