首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The iterated prisoner's dilemma game, or IPD, has now established itself as the orthodox paradigm for theoretical investigations of the evolution of cooperation; but its scope is restricted to reciprocity, which is only one of three categories of cooperation among unrelated individuals. Even within that category, a cooperative encounter has in general three phases, and the IPD has nothing to say about two of them. To distinguish among mechanisms of cooperation in nature, future theoretical work on the evolution of cooperation must distance itself from economics and develop games as a refinement of ethology's comparative approach.  相似文献   

2.
Evolution of cooperation among genetically unrelated individuals has been of considerable concern in various fields such as biology, economics, and psychology. The evolution of cooperation is often explained by reciprocity. Under reciprocity, cooperation can prevail in a society because a donor of cooperation receives reciprocation from the recipient of the cooperation, called direct reciprocity, or from someone else in the community, called indirect reciprocity. Nowak and Sigmund [1993. Chaos and the evolution of cooperation. Proc. Natl. Acad. Sci. USA 90, 5091-5094] have demonstrated that directly reciprocal cooperation in two-person prisoner's dilemma games with mutation of strategies can be maintained dynamically as periodic or chaotic oscillation. Furthermore, Eriksson and Lindgren [2005. Cooperation driven by mutations in multi-person Prisoner's Dilemma. J. Theor. Biol. 232, 399-409] have reported that directly reciprocal cooperation in n-person prisoner's dilemma games (n>2) can be maintained as periodic oscillation. Is dynamic cooperation observed only in direct reciprocity? Results of this study show that indirectly reciprocal cooperation in n-person prisoner's dilemma games can be maintained dynamically as periodic or chaotic oscillation. This is, to our knowledge, the first demonstration of chaos in indirect reciprocity. Furthermore, the results show that oscillatory dynamics are observed in common in the evolution of reciprocal cooperation whether for direct or indirect.  相似文献   

3.
Understanding the evolutionary origin and persistence of cooperative behavior is a fundamental biological problem. The standard "prisoner's dilemma," which is the most widely adopted framework for studying the evolution of cooperation through reciprocal altruism between unrelated individuals, does not allow for varying degrees of cooperation. Here we study the continuous iterated prisoner's dilemma, in which cooperative investments can vary continuously in each round. This game has been previously considered for a class of reactive strategies in which current investments are based on the partner's previous investment. In the standard iterated prisoner's dilemma, such strategies are inferior to strategies that take into account both players' previous moves, as is exemplified by the evolutionary dominance of "Pavlov" over "tit for tat." Consequently, we extend the analysis of the continuous prisoner's dilemma to a class of strategies in which current investments depend on previous payoffs and, hence, on both players' previous investments. We show, both analytically and by simulation, that payoff-based strategies, which embody the intuitively appealing idea that individuals invest more in cooperative interactions when they profit from these interactions, provide a natural explanation for the gradual evolution of cooperation from an initially noncooperative state and for the maintenance of cooperation thereafter.  相似文献   

4.
The evolution of cooperation is a central problem in biology and the social sciences. While theoretical work using the iterated prisoner's dilemma (IPD) has shown that cooperation among non-kin can be sustained among reciprocal strategies (i.e. tit-for-tat), these results are sensitive to errors in strategy execution, cyclical invasions by free riders, and the specific ecology of strategies. Moreover, the IPD assumes that a strategy's probability of playing the PD game with other individuals is independent of the decisions made by others. Here, we remove the assumption of independent pairing by studying a more plausible cooperative dilemma in which players can preferentially interact with a limited set of known partners and also deploy longer-term accounting strategies that can counteract the effects of random errors. We show that cooperative strategies readily emerge and persist in a range of noisy environments, with successful cooperative strategies (henceforth, cliquers) maintaining medium-term memories for partners and low thresholds for acceptable cooperation (i.e. forgiveness). The success of these strategies relies on their cliquishness-a propensity to defect with strangers if they already have an adequate number of partners. Notably, this combination of medium-term accounting, forgiveness, and cliquishness fits with empirical studies of friendship and other long-term relationships among humans.  相似文献   

5.
We used data from four chacma baboon, Papio cynocephalus ursinus, troops, living in two populations, to test the raise the stakes (RTS) strategy of reciprocity. Female baboons did not raise the stakes either within or across grooming bouts. Instead they time-matched grooming contributions and divided grooming into short episodes. In addition, analysis of the grooming behaviour of frequently versus infrequently grooming dyads did not reveal differences in grooming patterns predicted by the RTS strategy. We suggest time constraints preclude the escalation of grooming bout length as required by RTS; the data were more consistent with a strategy of give as good as you get. However, this strategy could not explain all the patterns observed, and we conclude that biological market theory represents a more appropriate framework for investigating female grooming dynamics than dyadic games based on the iterated prisoner's dilemma. We suggest that competitive altruism among individuals acts as a market force influencing an individual's value as a grooming partner. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

6.
Tanimoto J 《Bio Systems》2008,92(1):82-90
This paper reports an intelligent agent equipped with two-layer finite state machines (FSMs) that can communicate by turning lighting on and off, leading to social cooperation that solves the dilemma situation, modeled by a one-shot 2x2 game. This communication between two gaming agents can be observed in hero- and leader-type dilemma games, where alternating reciprocity, repeating cooperation (C)-defeat (D) after D-C, is the equal pareto optimum instead of a sequence of mutual cooperation that is the equal pareto optimum for a prisoner's dilemma (PD) game.  相似文献   

7.
Explaining the evolution of cooperation among non-relatives is one of the major challenges for evolutionary biology. In this study, we experimentally examined human cooperation in the iterated Snowdrift game (ISD), which has received little attention so far, and compared it with human cooperation in the iterated Prisoner's Dilemma (IPD), which has become the paradigm for the evolution of cooperation. We show that iteration in the ISD leads to consistently higher levels of cooperation than in the IPD. We further demonstrate that the most successful strategies known for the IPD (generous Tit-for-Tat and Pavlov) were also successfully used in the ISD. Interestingly, we found that female players cooperated significantly more often than male players in the IPD but not in the ISD. Moreover, female players in the IPD applied Tit-for-Tat-like or Pavlovian strategies significantly more often than male players, thereby achieving significantly higher pay-offs than male players did. These data demonstrate that the willingness to cooperate does not only depend on the type of the social dilemma, but also on the class of individuals involved. Altogether, our study shows that the ISD can potentially explain high levels of cooperation among non-relatives in humans. In addition, the ISD seems to reflect the social dilemma more realistically than the IPD because individuals obtain immediate direct benefits from the cooperative acts they perform and costs of cooperation are shared between cooperators.  相似文献   

8.
Evolutionary dynamics of the continuous iterated prisoner's dilemma   总被引:1,自引:0,他引:1  
The iterated prisoner's dilemma (IPD) has been widely used in the biological and social sciences to model dyadic cooperation. While most of this work has focused on the discrete prisoner's dilemma, in which actors choose between cooperation and defection, there has been some analysis of the continuous IPD, in which actors can choose any level of cooperation from zero to one. Here, we analyse a model of the continuous IPD with a limited strategy set, and show that a generous strategy achieves the maximum possible payoff against its own type. While this strategy is stable in a neighborhood of the equilibrium point, the equilibrium point itself is always vulnerable to invasion by uncooperative strategies, and hence subject to eventual destabilization. The presence of noise or errors has no effect on this result. Instead, generosity is favored because of its role in increasing contributions to the most efficient level, rather than in counteracting the corrosiveness of noise. Computer simulation using a single-locus infinite alleles Gaussian mutation model suggest that outcomes ranging from a stable cooperative polymorphism to complete collapse of cooperation are possible depending on the magnitude of the mutational variance. Also, making the cost of helping a convex function of the amount of help provided makes it more difficult for cooperative strategies to invade a non-cooperative equilibrium, and for the cooperative equilibrium to resist destabilization by non-cooperative strategies. Finally, we demonstrate that a much greater degree of assortment is required to destabilize a non-cooperative equilibrium in the continuous IPD than in the discrete IPD. The continuous model outlined here suggests that incremental amounts of cooperation lead to rapid decay of cooperation and thus even a large degree of assortment will not be sufficient to allow cooperation to increase when cooperators are rare. The extreme degree of assortment required to destabilize the non-cooperative equilibrium, as well as the instability of the cooperative equilibrium, may help explain why cooperation in Prisoner's Dilemmas is so rare in nature.  相似文献   

9.
Social dilemmas and the evolutionary conundrum of cooperation are traditionally studied through various kinds of game theoretical models such as the prisoner's dilemma, public goods games, snowdrift games or by-product mutualism. All of them exemplify situations which are characterized by different degrees of conflicting interests between the individuals and the community. In groups of interacting individuals, cooperators produce a common good benefitting the entire group at some cost to themselves, whereas defectors attempt to exploit the resource by avoiding the costly contributions. Based on synergistic or discounted accumulation of cooperative benefits a unifying theoretical framework was recently introduced that encompasses all games that have traditionally been studied separately (Hauert, Michor, Nowak, Doebeli, 2005. Synergy and discounting of cooperation in social dilemmas. J. Theor. Biol., in press.). Within this framework we investigate the effects of spatial structure with limited local interactions on the evolutionary fate of cooperators and defectors. The quantitative effects of space turn out to be quite sensitive to the underlying microscopic update mechanisms but, more general, we demonstrate that in prisoner's dilemma type interactions spatial structure benefits cooperation-although the parameter range is quite limited-whereas in snowdrift type interactions spatial structure may be beneficial too, but often turns out to be detrimental to cooperation.  相似文献   

10.
The evolution of cooperation is an enduring conundrum in biology and the social sciences. Two social dilemmas, the prisoner's dilemma and the snowdrift game have emerged as the most promising mathematical metaphors to study cooperation. Spatial structure with limited local interactions has long been identified as a potent promoter of cooperation in the prisoner's dilemma but in the spatial snowdrift game, space may actually enhance or inhibit cooperation. Here we investigate and link the microscopic interaction between individuals to the characteristics of the emerging macroscopic patterns generated by the spatial invasion process of cooperators in a world of defectors. In our simulations, individuals are located on a square lattice with Moore neighborhood and update their strategies by probabilistically imitating the strategies of better performing neighbors. Under sufficiently benign conditions, cooperators can survive in both games. After rapid local equilibration, cooperators expand quadratically until global saturation is reached. Under favorable conditions, cooperators expand as a large contiguous cluster in both games with minor differences concerning the shape of embedded defectors. Under less favorable conditions, however, distinct differences arise. In the prisoner's dilemma, cooperators break up into isolated, compact clusters. The compact clustering reduces exploitation and leads to positive assortment, such that cooperators interact more frequently with other cooperators than with defectors. In contrast, in the snowdrift game, cooperators form small, dendritic clusters, which results in negative assortment and cooperators interact more frequently with defectors than with other cooperators. In order to characterize and quantify the emerging spatial patterns, we introduce a measure for the cluster shape and demonstrate that the macroscopic patterns can be used to determine the characteristics of the underlying microscopic interactions.  相似文献   

11.
Previous game-theoretic models of reciprocity have assumed that populations are large and organisms effectively sessile. This paper analyzes an iterated prisoner's dilemma among non-sessile organisms in a finite population, on the assumption that an individual's chance of remaining in one place is not influenced by a partner's behavior. This mode of interaction is suitable for analyzing potentially cooperative behaviors that are secondary to the advantage of group formation, e.g. allogrooming among social mammals. The analysis yields necessary conditions for stable reciprocity in terms of three parameters, namely, a benefit/cost ratio, the probability of further interaction and the probability of partner retention. The results suggest that, in highly mobile organisms such as fish, birds and mammals, reciprocity may be stable only if the population is small and the relative benefit and future interaction probability are both large.  相似文献   

12.
Tanimoto J  Sagara H 《Bio Systems》2007,90(3):728-737
It is recognized that bilateral cooperation (C), a reward-state in other words, emergently comes up in a 2 × 2 prisoner's dilemma game, if you assume a strategy set with a memory concept. Also observed is a mixture state of cooperation (C) and defect (D), saint- and temptation-state in other words, to obtain a higher payoff than R (R reciprocity) in a hero or leader game that is a chicken-type dilemma game; this phenomenon is called alternating reciprocity (AR) or ST reciprocity. Observing a holistic 2 × 2 game world including trivial games and various dilemma games, where 2-length memory and infinite interactions are assumed, the paper reports on the specific mechanism of AR. It is observed there are three different phases relating to AR, which can be explained by the stress of the dilemma.  相似文献   

13.
N Masuda  M Nakamura 《PloS one》2012,7(9):e44169
Many online marketplaces enjoy great success. Buyers and sellers in successful markets carry out cooperative transactions even if they do not know each other in advance and a moral hazard exists. An indispensable component that enables cooperation in such social dilemma situations is the reputation system. Under the reputation system, a buyer can avoid transacting with a seller with a bad reputation. A transaction in online marketplaces is better modeled by the trust game than other social dilemma games, including the donation game and the prisoner's dilemma. In addition, most individuals participate mostly as buyers or sellers; each individual does not play the two roles with equal probability. Although the reputation mechanism is known to be able to remove the moral hazard in games with asymmetric roles, competition between different strategies and population dynamics of such a game are not sufficiently understood. On the other hand, existing models of reputation-based cooperation, also known as indirect reciprocity, are based on the symmetric donation game. We analyze the trust game with two fixed roles, where trustees (i.e., sellers) but not investors (i.e., buyers) possess reputation scores. We study the equilibria and the replicator dynamics of the game. We show that the reputation mechanism enables cooperation between unacquainted buyers and sellers under fairly generous conditions, even when such a cooperative equilibrium coexists with an asocial equilibrium in which buyers do not buy and sellers cheat. In addition, we show that not many buyers may care about the seller's reputation under cooperative equilibrium. Buyers' trusting behavior and sellers' reputation-driven cooperative behavior coevolve to alleviate the social dilemma.  相似文献   

14.
Humans cooperate in large groups of unrelated individuals, and many authors have argued that such cooperation is sustained by contingent reward and punishment. However, such sanctioning systems can also stabilize a wide range of behaviours, including mutually deleterious behaviours. Moreover, it is very likely that large-scale cooperation is derived in the human lineage. Thus, understanding the evolution of mutually beneficial cooperative behaviour requires knowledge of when strategies that support such behaviour can increase when rare. Here, we derive a simple formula that gives the relatedness necessary for contingent cooperation in n-person iterated games to increase when rare. This rule applies to a wide range of pay-off functions and assumes that the strategies supporting cooperation are based on the presence of a threshold fraction of cooperators. This rule suggests that modest levels of relatedness are sufficient for invasion by strategies that make cooperation contingent on previous cooperation by a small fraction of group members. In contrast, only high levels of relatedness allow the invasion by strategies that require near universal cooperation. In order to derive this formula, we introduce a novel methodology for studying evolution in group structured populations including local and global group-size regulation and fluctuations in group size.  相似文献   

15.
For many years in evolutionary science, the consensus view has been that while reciprocal altruism can evolve in dyadic interactions, it is unlikely to evolve in sizable groups. This view had been based on studies which have assumed cooperation to be discrete rather than continuous (i.e., individuals can either fully cooperate or else fully defect, but they cannot continuously vary their level of cooperation). In real world cooperation, however, cooperation is often continuous. In this paper, we re-examine the evolution of reciprocity in sizable groups by presenting a model of the n-person prisoner's dilemma that assumes continuous rather than discrete cooperation. This model shows that continuous reciprocity has a dramatically wider basin of attraction than discrete reciprocity, and that this basin's size increases with efficiency of cooperation (marginal per capita return). Further, we find that assortative interaction interacts synergistically with continuous reciprocity to a much greater extent than it does with discrete reciprocity. These results suggest that previous models may have underestimated reciprocity's adaptiveness in groups. However, we also find that the invasion of continuous reciprocators into a population of unconditional defectors becomes realistic only within a narrow parameter space in which the efficiency of cooperation is close to its maximum bound. Therefore our model suggests that continuous reciprocity can evolve in large groups more easily than discrete reciprocity only under unusual circumstances.  相似文献   

16.
Most of the work in evolutionary game theory starts with a model of a social situation that gives rise to a particular payoff matrix and analyses how behaviour evolves through natural selection. Here, we invert this approach and ask, given a model of how individuals behave, how the payoff matrix will evolve through natural selection. In particular, we ask whether a prisoner's dilemma game is stable against invasions by mutant genotypes that alter the payoffs. To answer this question, we develop a two-tiered framework with goal-oriented dynamics at the behavioural time scale and a diploid population genetic model at the evolutionary time scale. Our results are two-fold: first, we show that the prisoner's dilemma is subject to invasions by mutants that provide incentives for cooperation to their partners, and that the resulting game is a coordination game similar to the hawk-dove game. Second, we find that for a large class of mutants and symmetric games, a stable genetic polymorphism will exist in the locus determining the payoff matrix, resulting in a complex pattern of behavioural diversity in the population. Our results highlight the importance of considering the evolution of payoff matrices to understand the evolution of animal social systems.  相似文献   

17.
The general belief that cooperation and altruism in social groups result primarily from kin selection has recently been challenged, not least because results from cooperatively breeding insects and vertebrates have shown that groups may be composed mainly of non-relatives. This allows testing predictions of reciprocity theory without the confounding effect of relatedness. Here, we review complementary and alternative evolutionary mechanisms to kin selection theory and provide empirical examples of cooperative behaviour among unrelated individuals in a wide range of taxa. In particular, we focus on the different forms of reciprocity and on their underlying decision rules, asking about evolutionary stability, the conditions selecting for reciprocity and the factors constraining reciprocal cooperation. We find that neither the cognitive requirements of reciprocal cooperation nor the often sequential nature of interactions are insuperable stumbling blocks for the evolution of reciprocity. We argue that simple decision rules such as ‘help anyone if helped by someone’ should get more attention in future research, because empirical studies show that animals apply such rules, and theoretical models find that they can create stable levels of cooperation under a wide range of conditions. Owing to its simplicity, behaviour based on such a heuristic may in fact be ubiquitous. Finally, we argue that the evolution of exchange and trading of service and commodities among social partners needs greater scientific focus.  相似文献   

18.
The current study examined the economics of cooperation in controlled-payoffgames by using captive blue jays, Cyanocitta cristata. Thisinvestigation used a special feeding apparatus to test for thestability of cooperative choice in a series of iterated games.The jays experienced experimentally determined game theoreticalpayoff matrices, which determined the distribution of food tothemselves and their opponent, depending on their decision tocooperate or defect. The experiment tested four game matrices,called the cooperate only, defect only, prisoner's dilemma,and opponent control treatments. This study found little cooperationin the defect only and prisoner's dilemma treatments. Cooperationoccurred significantly more often in the opponent control treatment.These findings suggest that the jays attend to short-term consequences;they do not cooperate in the absence of an immediate benefit(defect only), even if a long-term benefit may exist (prisoner'sdilemma). The opponent control treatment suggests that cooperationcan occur when an individual's benefits depend completely onthe actions of others; therefore, generosity is cheap. Thisstudy, therefore, agrees with recent studies in proposing alternativemodels of cooperation.  相似文献   

19.
Indirect reciprocity occurs when the cooperative behavior between two individuals is contingent on their previous behavior toward others. Previous theoretical analysis indicates that indirect reciprocity can evolve if individuals use an image-scoring strategy. In this paper, we show that, when errors are added, indirect reciprocity cannot be based on an image-scoring strategy. However, if individuals use a standing strategy, then cooperation through indirect reciprocity is evolutionarily stable. These two strategies differ with respect to the information to which they attend. While image-scoring strategies only need attend to the actions of others, standing strategies also require information about intent. We speculate that this difference may shed light on the evolvability of indirect reciprocity. Additionally, we show that systems of indirect reciprocity are highly sensitive to the availability of information. Finally, we present a model which shows that if indirect reciprocity were to evolve, selection should also favor trusting behavior in relations between strangers.  相似文献   

20.
Recently, behaviors that seem to function as punishment or apology have been reported among non-human primates as well as humans. Such behaviors appear to play an important role in maintaining cooperation between individuals. Therefore, the evolution of these behaviors should be examined from the viewpoint of the evolution of cooperation. The iterated prisoner's dilemma (IPD) game is generally considered to be a standard model for the evolution of cooperation. In the present study, strategies accompanied by punishment-like attacks or apology-like behavior were introduced into the common IPD simulation. Punishment and apology were represented by the P signal and the AS signal given immediately after defection. A strategy with the P and AS signals, named the pPAS strategy, was proved to be an evolutionarily stable strategy under certain conditions. Numerical simulations were carried out according to different assigned values of the costs of punishment and apology. The simulations showed that pPAS could dominate the population (1) when the cost of giving P is relatively small, (2) when the cost of receiving P is relatively large, or (3) when the cost of giving AS is relatively large. The relative cost of giving AS had the clearest effect on the success of pPAS. pPAS can dominate the population even when a dominance asymmetry of the costs between two players was introduced. The present results suggest the possible evolution of social behaviors like punishment or apology as a means of maintaining cooperation. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号