首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of cell entrapment on nucleic acid content, cell morphology, cell surface property, and stress of major groups of bacteria (betaproteobacteria and gammaproteobacteria) in biological municipal wastewater treatment were investigated. Three different entrapment media (alginate, carrageenan, and polyvinyl alcohol) were examined. Results indicated that the entrapment and type of entrapment media affected nucleic acid content, cell morphology, cell surface property, and stress of the three representative species (Alcaligenes faecalis, Comamonas testosteroni, and Pseudomonas putida) studied. The highest deoxyribonucleic acid and ribonucleic acid increases were observed with the alginate and polyvinyl alcohol (PVA) entrapment, respectively. A cell morphological change from bacilli to coccoidal was observed in the case of alginate entrapment while the PVA-entrapped cells had a slim morphology when compared to non-entrapped cells and formed putative nanowires. The entrapment increased or decreased the surface roughness of cells depending on the type of entrapment media. Expression of a nitrosative stress gene, which is linked to oxygen deprivation, was observed more in the alginate-entrapped cells. These research findings advance the fundamental understanding of the entrapped cell physiology which can lead to more efficient entrapped cell-based wastewater treatment.  相似文献   

2.
The aim of this study was to investigate the Cr(VI) biosorption potential of immobilized Rhizopus nigricans and to screen a variety of non-toxic desorbing agents, in order to find out possible application in multiple sorption-desorption cycles. The biomass was immobilized by various mechanisms and evaluated for removal of Cr(VI) from aqueous solution, mechanical stability to desorbents, and reuse in successive cycles. The finely powdered biomass, entrapped in five different polymeric matrices viz. calcium alginate, polyvinyl alcohol (PVA), polyacrylamide, polyisoprene, and polysulfone was compared for biosorption efficiency and stability to desorbents. Physical immobilization to polyurethane foam and coir fiber was less efficient than polymer entrapment methods. Of the different combinations (%, w/v) of biomass dose compared for each matrix, 8% (calcium alginate), 6% (polyacrylamide and PVA), 12% (polyisoprene), and 10% (polysulfone) were found to be the optimum. The Cr sorption capacity (mg Cr/g sorbent) of all immobilized biomass was lesser than the native, powdered biomass. The Cr sorption capacity decreased in the order of free biomass (119.2) > polysulfone entrapped (101.5) > polyisoprene immobilized (98.76) > PVA immobilized (96.69) > calcium alginate entrapped (84.29) > polyacrylamide (45.56), at 500 mg/l concentration of Cr(VI). The degree of mechanical stability and chemical resistance of the immobilized systems were in the order of polysulfone > polyisoprene > PVA > polyacrylamide > calcium alginate. The bound Cr(VI) could be eluted successfully using 0.01 N NaOH, NaHCO3, and Na2CO3. The adsorption data for the native and the immobilized biomass was evaluated by the Freundlich isotherm model. The successive sorption-desorption studies employing polysulfone entrapped biomass indicated that the biomass beads could be regenerated and reused in more than 25 cycles and the regeneration efficiency was 75-78%.  相似文献   

3.
The effects of cell entrapment on the growth rate and metabolic activity of major groups of bacteria (betaproteobacteria and gammaproteobacteria) in biological municipal wastewater treatment were investigated. Three different cell entrapment media (alginate, carrageenan and polyvinyl alcohol) and three cell-to-matrix ratios (0.1%, 0.2% and 0.6%, w v−1) were examined. Representative species of betaproteobacteria were Alcaligenes faecalis and Comamonas testosteroni whereas Pseudomonas putida was a gammaproteobacteria species studied. Free (non-entrapped) cells were included in the study for comparative purpose. Results indicated that the entrapment, type of entrapment media, and cell-to-matrix ratio had significant effects on the growth and metabolic activity of major groups of bacteria in wastewater treatment. Polyvinyl alcohol entrapped cells had the highest specific growth and specific substrate utilization rates. Increase of cell-to-matrix ratio (from 0.1% to 0.2% or 0.6%) did not improve the specific growth and specific substrate utilization rates. The relative performances provided by different entrapment media of the three species studied were quite consistent. This study showed that the suitable choices of entrapment media and cell-to-matrix ratio are important but similar for major groups of bacteria in wastewater treatment.  相似文献   

4.
Reject water treatment performance was investigated by whole cell anammox sludge entrapped polyvinyl alcohol/sodium alginate gel in the stirred tank reactor (STR). The whole experiment was conducted through Phase 1 and Phase 2 in which synthetic wastewater and modified reject water were used as feeding medium, respectively. The anammox reactor demonstrated quick start-up after 22 days as well as stable and relatively high nitrogen removal rate of more than 8.0 kg-N m−3 day−1 during the two both phases even under moderately low temperature of 25 ± 0.5°C during the last 2 months of Phase 2. The matured brownish red PVA beads had good characteristics with buoyant density of 1.10 g cm−3, settling velocity of 141 m h−1 and diameter of 4 mm. The bacterial community was identified by 16S rDNA analysis revealing the concurrent existence of KSU-1 and new kind anammox bacterium Kumadai-I after changing influent from synthetic wastewater to reject water. It was speculated that Kumadai-I might play a role as “promotion” factor together with KSU-1 on high nitrogen removal rate. These results demonstrate the potential application of whole cell anammox entrapment by PVA/alginate gel for achieving stable and high-rate nitrogen removal from high ammonium with low C/N ratio contained wastewaters, such as reject water, digester liquor or landfill leachate.  相似文献   

5.
Activated sludge obtained from two municipal wastewater treatment facilities (WWTF) was used as seed sludge for enriched nitrifiers, which were later entrapped in polyvinyl alcohol. Seed sludge from one WWTF was acclimated to high ammonia level (1813 mg NH3-N l?1) through the return of sludge digester supernatant back to primary clarifier while seed sludge from the other WWTF was un-acclimated. To elucidate on how to control partial nitrification by entrapped cells, which could be different from suspended cells, kinetics of entrapped enriched nitrifiers were studied using a respirometric assay. The community of nitrifiers within the entrapment matrix, which was observed by fluorescence in situ hybridization (FISH) technique, was related to the nitritation and nitratation kinetics based on oxygen uptake rate. Maximum oxygen uptake rate, and substrate and oxygen affinities of both ammonia oxidizing bacteria (AOB) for nitritation and nitrite oxidizing bacteria (NOB) for nitratation in entrapped cells were lower than those of corresponding suspended cells. Under dissolved oxygen (DO) limiting conditions, nitratation was more suppressed than nitritation for suspended cells, while for the entrapped cells, the results were the contrary. A free ammonia (FA) inhibition affected only the un-acclimated sludge. Either FA inhibition or DO limitation might not be a sole effective control parameter to achieve partial nitrification by entrapped cells. FISH results revealed that Nitrosomonas europaea was the dominant AOB while Nitrobacter species was the dominant NOB in all cases. Heterotrophs were also present in the entrapment at 22.8 ± 18.6% and 41.5 ± 4.3% of total bacteria for acclimated and un-acclimated originated sludge. The availability of substrate and oxygen governed the distributions of AOB, NOB and heterotrophs within the entrapment and nitritation kinetics of entrapped nitrifiers.  相似文献   

6.
Saccharomyces cerevisiae and Acetobacter aceti cells were immobilized by entrapment in Ca-alginate or by adsorption on to preformed cellulose beads and were treated with 0-20% (v/v) ethanol and 0-10% (v/v) acetic acid. At 20% (v/v) ethanol, lethal for free yeast cells, 62-72% of the immobilized cells survived. In 10% (v/v) acetic acid, free and adsorbed Acetobacter aceti cells ceased to grow but 69% of entrapped cells survived. Cells released from the carrier showed an intermediate survival (20-60%).  相似文献   

7.
Summary Glucose fermentation bySaccharomyces cerevisiae immobilized by entrapment in agar, carrageenan, alginate and polyacrylamide gels, was compared to that of freely suspended cells at concentrations of 10–50% (w.w.) sugar. The rate of ethanol production by the entrapped cells was 20–25% higher than that of the free cells. Concentrations of up to 14,5% w/w ethanol (30% glucose initial concentration) could be obtained. A number of hypotheses for the improved alcoholic fermentation are discussed.  相似文献   

8.
Bioaugmentation is an effective treatment method to reduce recalcitrant pollutants from polluted sites. Dimethylformamide (DMF) is a very common toxic organic solvent among the effluents of textile and pharma industries. DMF was degraded by pre-adapted Paracoccus denitrificans SD1 with indigenous mixed cultures in both bioaugmentation and non-bioaugmentation conditions. In free cell condition, augmentation was not much significant due to competition among the bacterial cells and direct exposure of cells to toxic level of DMF. To enhance the degradation of DMF, cells were entrapped in PVA–alginate matrix individually and collectively for bioaugmentation experiments. Bioaugmentation is successful when immobilized P. denitrificans SD1 is introduced higher inoculum volume with indigenous cultures in continuous packed bed reactor system. This treatment has succeeded in removing 91.3% of 3% (v/v) DMF from the industrial effluent. This investigation advocates that bioaugmentation enhances the DMF removal efficiency by about 20% when compared to individual degradation by P. denitrificans SD1.  相似文献   

9.
Microbial degradation is the key treatment for diethyl phthalate (DEP) of which the efficacy is subdued by substrate toxicity. DEP-degrading Bacillus subtilis strain 3C3 adopted cell size alteration as one of the adaptive mechanisms in response to DEP stress at high concentrations. Nevertheless, to enhance cell tolerance in the protected environment and to facilitate practical treatment operation, cell entrapment was optimized with the entrapment yield at 89 ± 1% in a modified minimal salt medium-containing alginate matrix and the freeze-dried, entrapped cells were then formulated. Among several compounds tested, incorporation of sucrose proved to be beneficial as a cryoprotectant sustaining cell biodegradation efficiency (97%) and viability (≥90%) during freeze drying, storage under a vacuum condition at low temperatures, rehydration and as an additional matrix filler to reinforce the bead structure. The effective DEP treatment of the formulated, entrapped cells was demonstrated in a packed bed continuous system in which 70% DEP removal at hydraulic retention time (HRT) of 30 min was occurred and was enhanced up to 90% when HRT was increased to 60 min. The work demonstrates an effective preparation and a potential application of the formulated entrapped DEP-degrading cells for DEP treatment.  相似文献   

10.
PVA-Ca(NO3)2法包埋固定氧化亚铁硫杆菌研究   总被引:4,自引:0,他引:4  
首次报道了把聚乙烯醇(PVA)、海藻酸钠混合水溶胶和氧化亚铁硫杆菌混合后滴入1%~5%(W/V)的Ca(NO3)2溶液中凝固成型,并把成型后的颗粒置-20℃条件下冷冻1d,从而形成固定化颗粒,把该颗粒在摇瓶中进行分批培养,对Fe2 最大氧化速率可达2.45g/(L.h)。而且整个固定化操作简单,颗粒不粘连、强度高、稳定性好,可以同时消除PVA-H3BO3法中PVA颗粒的粘连膨胀和H3BO3对微生物的毒性,具有很好的应用价值。  相似文献   

11.
亚栖热菌透性化细胞的耦合固定化研究   总被引:1,自引:0,他引:1  
将海藻酸盐凝胶包埋法与交联法和聚电解质静电自组装覆膜法相耦合,对含有海藻糖合酶活性的亚栖热菌的透性化细胞进行了固定化研究。结果表明,利用重氮树脂和聚苯乙烯磺酸钠对海藻酸凝胶微球交替覆膜,可以显著提高凝胶微球在磷酸盐缓冲液中的稳定性,以碳二亚胺对固定化细胞进行交联处理则可以提高固定化细胞中海藻糖合酶的热稳定性。透性化细胞经包埋-交联-覆膜耦合固定化后,酶活回收率为32%,最适酶反应pH值由6.5左右升至7.0左右,最适反应温度未变,仍为60℃。所得固定化细胞间歇反应时,催化麦芽糖转化为海藻糖的转化率可达60%,重复使用4次(每次50℃、反应24h),酶活损失小于20%,转化率可保持在50%以上。  相似文献   

12.
Immobilization appears to be one of the best techniques to separate physically micro-algal cells from their culture medium for the purpose of algal tertiary wastewater treatment. High operation costs and other drawbacks of large-scale physico-chemical methods of harvest led to a comparative study of biotreatment systems. Before treatment began, Scenedesmus bicellularis cells were conditioned (starved) under four different sets of conditions: 1) non-immobilized cells with air bubbling (NCA); 2) cells immobilized in alginate beads (CBW) and 3) cells immobilized on alginate screens (CSW), all conditioned in synthetic culture medium depleted in N and P; 4) cells immobilized on alginate screens but conditioned in air at 100% relative humidity (CSA). Starvation was started under a light:dark photoperiod of 16:8 h. Starved cells were then used to treat wastewater for a 2-h period. The performance of each system was evaluated by determination of residual NH4-N and phosphate ions and by growth (dry weight, total chlorophyll, cell count, protein content). We then tested the capacity of microalgae immobilized on screens to eliminate N and P from a secondary municipal wastewater effluent and examined the influence of temperature and starvation. The quality of treated effluents was improved considerably with the system using CSA or CSW model. For CSA model, the protein content was 22.4 pg cell-1 compared to 12.9, 9.5, 9.1 pg cell-1 for NCA, CBW and CSW models, respectively. The CBW and CSW models were efficient for chlorophyll synthesis. The residual ammonium content in natural wastewater after 2 h of treatment with CSA model was 39% at 6±2 °C and reached 100% removal at 18±2 °C. With the first 2 h, the removal of orthophosphate was inferior (53%) at 6±2 °C, but 88 to 100% at 18±2 °C depending on starvation times. Long starvation times (72 or 96 h) caused damage to cells and uptake of nutrients was lower than with 54 h starvation. This work demonstrates that by using immobilization on screens, removal of nutrients from wastewater was higher than with conventional biological tertiary wastewater treatments (free cells or bead-shaped alginate particles).  相似文献   

13.
A method previously used in this laboratory for entrapment of tumor cells in alginate beads has been extended to provide a slow release delivery system for growth factors with known in vivo angiogenic activity. Protein growth factors were entrapped in alginate beads in amounts sufficient to cause incorporation of 3H-thymidine by COMMA-D cells in vitro, and in vivo neovascularization when injected subcutaneously into Balb/c mice. Entrapment of 125I-labelled growth factors showed that the amount of molecule entrapped in alginate beads may vary with the charge of the molecule. In vitro cell proliferation studies showed that entrapment in alginate beads may provide a slow-release system or a stabilizing environment for the protein. In some cases biological activity of the growth factor in solution was increased by the presence of control alginate beads. When alginate-entrapped growth factors were injected into Balb/c mice, induction of new blood vessels could be monitored qualitatively by macroscopic photography and assessed quantitatively by measuring the pooling of radiolabelled red blood cells at the experimental site. Subcutaneous injection of purified angiogenic factors not entrapped in alginate beads did not cause neovascularization. Diffusion of 125I-labelled growth factors from alginate beads in the animal showed that release in vivo may depend on the charge of the protein molecule. These results indicate that injection of purified molecules entrapped in alginate beads provides an effective localized and slow-release delivery of biologically active molecules. This delivery system may extend the time of effectiveness of biologically active molecules in vivo compared to direct injection without alginate entrapment. The method of entrapment and injection has potential for identifying active factors in tumor-induced angiogenesis and testing new compounds as modulators of neovascularization.  相似文献   

14.
Summary A procedure which does not involve the use of an immiscible organic solvent phase is described for the entrapment of yeast cells in porous beads of polyacrylamide gel. The cells are rapidly dispersed at 4° C in an aqueous solution containing sodium alginate and acrylamide-N,Nmethylene-bis-acrylamide monomer, and the suspension is immediately dropped into a solution of calcium formate to give calcium alginate coated beads. Polyacrylamide gel forms within the bead. The calcium alginate is subsequently leached out of the composite bead with either sodium citrate or potassium phosphate buffer solution. Cells of Saccharomyces uvarum ATCC 26 602 entrapped in such polyacrylamide beads ferment cane molasses in batch mode at higher specific ethanol productivity than a free cell suspension. Their volumetric productivity in continuous fermentation is higher than that of Ca2+-alginate immobilized cells.NCL Communication No. 4383  相似文献   

15.
Bifidobacterium longum KCTC 3128 and HLC 3742 were independently immobilized (entrapped) in calcium alginate beads containing 2, 3, and 4% sodium alginate. When the bifidobacteria entrapped in calcium alginate beads were exposed to simulated gastric juices and a bile salt solution, the death rate of the cells in the beads decreased proportionally with an increase in both the alginate gel concentration and bead size. The initial cell numbers in the beads affected the numbers of survivors after exposure to these solutions; however, the death rates of the viable cells were not affected. Accordingly, a mathematical model was formulated which expressed the influences of several parameters (gel concentration, bead size, and initial cell numbers) on the survival of entrapped bifidobacteria after sequential exposure to simulated gastric juices followed by a bile salt solution. The model proposed in this paper may be useful for estimating the survival of bifidobacteria in beads and establishing optimal entrapment conditions.  相似文献   

16.
Trigonopsis variabilis D ‐amino acid oxidase (TvDAAO) is an enzyme used in the industrial bioconversion of cephalosporin C (CPC) into 7‐aminocephalosporanic acid, a crucial biosynthetic nucleus for a wide spectrum of semi‐synthetic cephem antibiotics. Using homology modeling and site‐directed mutagenesis, we have previously shown that the TvDAAO variant F54Y possesses improved catalytic activity and thermostability. To further explore its industrial application, the conditions for immobilization of the enzyme were examined in the present investigation. The results showed that entrapment in a calcium alginate (Ca‐alginate) matrix using 2% alginate, 500 mM CaCl2, and 15 min stabilization appeared to be optimal for the immobilization of F54Y. The entrapped enzyme allowed complete CPC conversion. The entrapped enzyme also showed good operational stability and retained at least 90% of its original activity after 20 reaction cycles. To conclude, the entrapment of F54Y in Ca‐alginate appeared to be a simple and efficient biocatalysis system with potential application in the antibiotics industry.  相似文献   

17.
Tagetes minuta (marigold) cells were entrapped under sterile conditions in agarose, κ-carrageenan, agar and alginate. The effects of different supports on the growth rate of the entrapped cells during incubation for one week under standard conditions [I] were studied. In the second part (weeks 2 and 3) of the experiment the effects of low temperature (10°C) [II], intermittent N2 gassing [III], and omission of carbohydrates from the medium [IV]—superimposed on that of entrapment—on growth rate and the production of non-polar secondary metabolites were investigated. Compared to free cells, the impact of agarose on growth during the first week was nil, while the inhibition of growth increased in the order κ-carrageenan, agar and alginate, probably as a result of increasing rigidity of the support. In the second period the plant cells clearly had reached the stationary phase of the growth cycle in all cases. Again the pattern of growth on agarose closely followed that of free cells, i.e. a small increase in cases I and III, and a small decrease under the other two conditions. Low temperature [II] had the greatest effect on cell growth and cell release, probably as a result of gel structure at this temperature. Similarly to the effects on growth, the impact on secondary metabolite production was most pronounced in the case of alginate combined with low temperature. Both the omission of carbohydrates, and Nin2 gassing resulted in low concentrations of non-polar compounds in the media. The major trend observed was a shift away from mainly intracellular compounds in the case of free cells to mainly extracellular compounds in the case of entrapped cells at 10°C.  相似文献   

18.
The present work attempts to deal with the stability and reusability aspect of nitrilase from Alcaligenes faecalis for the production of (R)-(-)-mandelic acid. Four entrapment matrixes were screened to search for a suitable support, and alginate was found to have significant process advantages over its other counterparts. Thermodynamic analysis allowed us to account for decreased enantioselectivity (E) as a result of immobilization. The system was also characterized based on the Thiele modulus (phi). Efficient reusability of the biocatalyst up to 35 batches was achieved by immobilization as compared to 9 batches for free cells, and cross-linking extended it further to 40 batches. Finally, synthetic utility of the immobilized biocatalyst was demonstrated on a preparative scale to produce 640 g of (R)-(-)-mandelic acid with 97% enantiomeric excess (ee).  相似文献   

19.
Bifidobacterium longum KCTC 3128 and HLC 3742 were independently immobilized (entrapped) in calcium alginate beads containing 2, 3, and 4% sodium alginate. When the bifidobacteria entrapped in calcium alginate beads were exposed to simulated gastric juices and a bile salt solution, the death rate of the cells in the beads decreased proportionally with an increase in both the alginate gel concentration and bead size. The initial cell numbers in the beads affected the numbers of survivors after exposure to these solutions; however, the death rates of the viable cells were not affected. Accordingly, a mathematical model was formulated which expressed the influences of several parameters (gel concentration, bead size, and initial cell numbers) on the survival of entrapped bifidobacteria after sequential exposure to simulated gastric juices followed by a bile salt solution. The model proposed in this paper may be useful for estimating the survival of bifidobacteria in beads and establishing optimal entrapment conditions.  相似文献   

20.
A method for the immobilization of lipoxygenase (LOX) in an alginate-silicate gel matrix was developed. In this method, a mixture of calcium alginate beads and LOX in borate buffer are dispersed into a hexane solution of tetramethoxy-ortho-silicate (TMOS). Hydrolysis of the TMOS gives products that permeate and co-polymerize with the alginate gel to form a colloid within the beads that entraps the LOX. Optimum reaction conditions for sol-gel entrapment of LOX are at pH 9.0 in 0.2M borate buffer. The composite gel, after isolation and vacuum drying, had excellent protein retention that has good enzyme activity and stability at room temperature. The activity of the entrapped LOX was less than the activity of the free enzyme. However, the activity of the immobilized LOX can be restored by the addition of borate buffer and glycerol, or borate buffer saturated with an organic solvent. In contrast to the free enzyme in solution, which loses its activity in less than one day, sol-gel entrapped LOX retains its activity at ambient temperature for at least 25 days and can be recycled. This report demonstrates that the sol-gel entrapment method for immobilizing LOX can be useful in developing a process for the oxidation of polyunsaturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号