首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Circadian changes of protein tyrosine phosphorylation in the hypothalamic suprachiasmatic nucleus have been studied using rats maintained under 12-h light/ 12-h dark cycles as well as constant dark conditions. We found that tyrosine phosphorylation of BIT (brain immunoglobulin-like molecule with tyrosine-based activation motifs), a transmembrane glycoprotein of 90-95 kDa, was higher in the light period than in the dark period and was increased after light exposure in the dark period. Similar changes in tyrosine phosphorylation were observed under constant dark conditions, but its amplitude was weaker than that in 12-h light/12-h dark cycles. As the tyrosine-phosphorylated form of BIT is able to bind to the Src homology 2 domain of a protein tyrosine phosphatase, SHP-2, we examined association of these proteins in suprachiasmatic nucleus extracts and found that SHP-2 was coprecipitated with BIT in parallel with its tyrosine phosphorylation. These results suggest that tyrosine phosphorylation of BIT might be involved in light-induced entrainment of the circadian clock.  相似文献   

3.
Maintenance of the state of differentiation in serially cultured bovine epithelial lens cells has been investigated. The radioactive labelled soluble proteins were studied by gel filtration and gel electrophoresis. 1. In the lens epithelium on its capsule, preferential synthesis of alpha B2 vs alpha A2 crystallin subunits and synthesis of beta-crystallins (mainly beta Bp) were observed. 2. Epithelial lens cells cultured on plastic Petri dishes for up to 35 divisions still synthesized alpha B2 and beta Bp, but no longer alpha A2. Conversely, the same cells injected into nude mice synthesized alpha B and alpha A, but no beta-crystallin could be detected. 3. The ratio of non-crystallin proteins to crystallin polypeptides increased drastically with the number of cell divisions. Among these proteins, both Mr 45 000 and Mr 57 000 proteins are probably constituents of the water-soluble cytoskeletal proteins, respectively actin and vimentin. A Mr 17 000 polypeptide was observed and its relationship with a metabolic product of alpha-crystallin is proposed. 4. The polymerization process of crystallin polypeptides in these cells was studied and compared with crystallin aggregates found in the lens. Newly synthesized alpha crystallins were readily involved in high molecular aggregates. This process does not seem to require alpha A, since only alpha B was detected. Interestingly, non-crystallin-soluble proteins form the bulk of proteins found in high molecular weight (HMW) polymers. The time course of crystallin aggregate formation, in long-term culture cells, seems to be different for alpha- vs beta-polypeptides. These results allowed us to conclude that bovine epithelial lens cells in vitro, although they do not undergo terminal differentiation into fibers, are not dedifferentiated, since they still express specific features of the epithelium in situ.  相似文献   

4.
We have studied the insulin-stimulated phosphorylation of proteins in NIH 3T3 cells expressing high numbers of human insulin receptors (HIR 3.5 cells) using the technique of giant two-dimensional gel electrophoresis. In serum-deprived cells, insulin stimulated the phosphorylation of more than 25 proteins; all but two of these were also phosphorylated in response to 15% (v/v) fetal bovine serum, which also stimulated the phosphorylation of additional proteins thought to be direct substrates for protein kinase C. In cells pretreated insulin specifically stimulated the phosphorylation insulin specifically stimulated the phosphorylation of at least 26 predominantly cytosolic proteins, only one of which was observed in insulin-treated cells not exposed to phenylarsine oxide. Serum was without effect in cells pretreated with phenylarsine oxide. In phenylarsine oxide-pretreated cells, phosphoamino acid analysis of 10 of the most highly labeled insulin-stimulated phosphoproteins showed that all 10 were labeled predominantly or exclusively on tyrosine residues. The phosphorylation of several of these could be stimulated in vitro by the addition of insulin to a detergent extract of cells in the presence of Mn2+ and ATP. In general, the insulin-stimulated phosphorylations observed in the presence of phenylarsine oxide were more rapid than those observed in its absence. Finally, a variety of other growth factors and mitogens did not stimulate any of the insulin-stimulated phosphorylations in the presence of phenylarsine oxide. Thus, the use of this inhibitor apparently unmasked a number of novel insulin-specific protein phosphorylations that were ordinarily undetectable. We suggest that at least some of these proteins may be direct substrates for the insulin receptor protein tyrosine kinase and may play significant roles in insulin action.  相似文献   

5.
Crystallins are heterogeneous proteins classified into alpha, beta, and gamma families. Although crystallins were first identified as the major structural components of the ocular lens with a principal function to maintain lens transparency, further studies have demonstrated the expression of these proteins in a wide variety of tissues and cell types. Alpha crystallins (alpha A and alpha B) share significant homology with small heat shock proteins and have chaperone-like properties, including the ability to bind and prevent the precipitation of denatured proteins and to increase cellular resistance to stress-induced apoptosis. Stress-induced upregulation of crystallin expression is a commonly observed phenomenon and viewed as a cellular response mechanism against environmental and metabolic insults. However, several studies reported downregulation of crystallin gene expression in various models of glaucomatous nerodegeneration suggesting that that the decreased levels of crystallins may affect the survival properties of retinal ganglion cells (RGCs) and thus, be associated with their degeneration. This hypothesis was corroborated by increased survival of axotomized RGCs in retinas overexpressing alpha A or alpha B crystallins. In addition to RGC protective functions of alpha crystallins, beta and gamma crystallins were implicated in RGC axonal regeneration. These findings demonstrate the importance of crystallin genes in RGC survival and regeneration and further in-depth studies are necessary to better understand the mechanisms underlying the functions of these proteins in healthy RGCs as well as during glaucomatous neurodegeneration, which in turn could help in designing new therapeutic strategies to preserve or regenerate these cells.  相似文献   

6.
Bahk SC  Lee SH  Jang JU  Choi CU  Lee BS  Chae SC  Song HJ  Park ZY  Yang YS  Chung HT 《Proteomics》2006,6(11):3436-3444
Endotoxin-induced uveitis (EIU) is an animal model of acute ocular inflammation. To characterize the mechanism of EIU, we analyzed the infiltration of proteins in the vitreous bodies of rats with EIU and normal rats using 2-DE and micro LC/LC-MS/MS. Twenty spots were identified in vitreous bodies of rats. Eighteen of these spots were members of the crystallin family. The truncated form of beta A4- and beta B2-crystallin were predominant in normal vitreous bodies, but there were intact form of crystallins in lipopolysaccharide-injected rats with EIU. These results suggest that crystallin family proteins are the major group of proteins involved in uveitic vitreous and that C-terminal truncation of beta-crystallins may play a role in EIU-related disease progression.  相似文献   

7.
In humans, the crystallin proteins of the ocular lens become yellow-coloured and fluorescent with ageing. With the development of senile nuclear cataract, the crystallins become brown and additional fluorophores are formed. The mechanism underlying crystallin colouration is not known but may involve interaction with kynurenine-derived UV filter compounds. We have recently identified a sulphur-linked glutathionyl-3-hydroxykynurenine glucoside adduct in the lens and speculated that kynurenine may also form adducts with GSH and possibly with nucleophilic amino acids of the crystallins (e.g. Cys). Here we show that kynurenine modifies calf lens crystallins non-oxidatively to yield coloured (365 nm absorbing), fluorescent (Ex 380 nm/Em 450-490 nm) protein adducts. Carboxymethylation and succinylation of crystallins inhibited kynurenine-mediated modification by approx. 90%, suggesting that Cys, Lys and possibly His residues may be involved. This was confirmed by showing that kynurenine formed adducts with GSH as well as with poly-His and poly-Lys. NMR studies revealed that the novel poly-Lys-kynurenine covalent linkage was via the epsilon-amino group of the Lys side chain and the betaC of the kynurenine side chain. Analysis of tryptic peptides of kynurenine-modified crystallins revealed that all of the coloured peptides contained either His, Cys or an internal Lys residue. We propose a novel mechanism of kynurenine-mediated crystallin modification which does not require UV light or oxidative conditions as catalysts. Rather, we suggest that the side chain of kynurenine-derived lens UV filters becomes deaminated to yield an alpha,beta-unsaturated carbonyl which is highly susceptible to attack by nucleophilic amino acid residues of the crystallins. The inability of the lens fibre cells to metabolise their constituent proteins results in the accumulation of coloured/fluorescent crystallins with age.  相似文献   

8.
In previous work on truncated alpha crystallins (Laganowsky et al., Protein Sci 2010; 19:1031–1043), we determined crystal structures of the alpha crystallin core, a seven beta‐stranded immunoglobulin‐like domain, with its conserved C‐terminal extension. These extensions swap into neighboring cores forming oligomeric assemblies. The extension is palindromic in sequence, binding in either of two directions. Here, we report the crystal structure of a truncated alphaA crystallin (AAC) from zebrafish (Danio rerio) revealing C‐terminal extensions in a non three‐dimensional (3D) domain swapped, “closed” state. The extension is quasi‐palindromic, bound within its own zebrafish core domain, lying in the opposite direction to that of bovine AAC, which is bound within an adjacent core domain (Laganowsky et al., Protein Sci 2010; 19:1031–1043). Our findings establish that the C‐terminal extension of alpha crystallin proteins can be either 3D domain swapped or non‐3D domain swapped. This duality provides another molecular mechanism for alpha crystallin proteins to maintain the polydispersity that is crucial for eye lens transparency.  相似文献   

9.
Taxon specific lens crystallins in vertebrates are either similar or identical with various metabolic enzymes. These bifunctional crystallins serve as structural protein in lens along with their catalytic role. In the present study, we have partially purified and characterized lens crystallin from Indian spiny-tailed lizard (Uromastyx hardwickii). We have found lactate dehydrogenase (LDH) activity in lens indicating presence of an enzyme crystallin with dual functions. Taxon specific lens crystallins are product of gene sharing or gene duplication phenomenon where a pre-existing enzyme is recruited as lens crystallin in addition to structural role. In lens, same gene adopts refractive role in lens without modification or loss of pre-existing function during gene sharing phenomenon. Apart from conventional role of structural protein, LDH activity containing crystallin in U. hardwickii lens is likely to have adaptive characteristics to offer protection against toxic effects of oxidative stress and ultraviolet light, hence justifying its recruitment. Taxon specific crystallins may serve as good models to understand structure–function relationship of these proteins.  相似文献   

10.
Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.  相似文献   

11.
Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (<1% of total protein phosphorylation), only a few tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca(2+) homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states.  相似文献   

12.
αB crystallin is a chaperone protein with anti-apoptotic and anti-inflammatory functions and has been identified as a biomarker in age-related macular degeneration. The purpose of this study was to determine whether αB crystallin is secreted from retinal pigment epithelial (RPE) cells, the mechanism of this secretory pathway and to determine whether extracellular αB crystallin can be taken up by adjacent retinal cells and provide protection from oxidant stress. We used human RPE cells to establish that αB crystallin is secreted by a non-classical pathway that involves exosomes. Evidence for the release of exosomes by RPE and localization of αB crystallin within the exosomes was achieved by immunoblot, immunofluorescence, and electron microscopic analyses. Inhibition of lipid rafts or exosomes significantly reduced αB crystallin secretion, while inhibitors of classic secretory pathways had no effect. In highly polarized RPE monolayers, αB crystallin was selectively secreted towards the apical, photoreceptor-facing side. In support, confocal microscopy established that αB crystallin was localized predominantly in the apical compartment of RPE monolayers, where it co-localized in part with exosomal marker CD63. Severe oxidative stress resulted in barrier breakdown and release of αB crystallin to the basolateral side. In normal mouse retinal sections, αB crystallin was identified in the interphotoreceptor matrix. An increased uptake of exogenous αB crystallin and protection from apoptosis by inhibition of caspase 3 and PARP activation were observed in stressed RPE cultures. αB Crystallin was taken up by photoreceptors in mouse retinal explants exposed to oxidative stress. These results demonstrate an important role for αB crystallin in maintaining and facilitating a neuroprotective outer retinal environment and may also explain the accumulation of αB crystallin in extracellular sub-RPE deposits in the stressed microenvironment in age-related macular degeneration. Thus evidence from our studies supports a neuroprotective role for αB crystallin in ocular diseases.  相似文献   

13.
Protein kinase D1 (PKD1) is a mediator of oxidative stress signaling where it regulates cellular detoxification and survival. Critical for the regulation of PKD1 activity in response to oxidative stress are Src- and Abl-mediated tyrosine phosphorylations that eventually lead to protein kinase Cdelta (PKCdelta)-mediated activation of PKD1. Here we identify Tyr95 in PKD1 as a previously undescribed phosphorylation site that is regulated by oxidative stress. Our data suggest that PKD1 phosphorylation at Tyr95 generates a binding motif for PKCdelta, and that oxidative stress-mediated PKCdelta/PKD interaction results in PKD1 activation loop phosphorylation and activation. We further analyzed all PKD isoforms for this mechanism and show that PKD enzymes PKD1 and PKD2 are targets for PKCdelta in response to oxidative stress, and that PKD3 is not a target because it lacks the relevant tyrosine residue that generates a PKCdelta interaction motif.  相似文献   

14.
Regulation of hemidesmosome disassembly by growth factor receptors   总被引:2,自引:0,他引:2  
Hemidesmosomes (HDs) promote the stable adhesion of basal epithelial cells to the underlying basement membrane (BM). Critical for the mechanical stability of the HD is the interaction between integrin alpha6beta4 and plectin, which is destabilized when HD disassembly is required, for instance, to allow keratinocyte migration during wound healing. Growth factors such as epidermal growth factor (EGF) can trigger HD disassembly and induce phosphorylation of the beta4 intracellular domain. Whereas tyrosine phosphorylation appears to mediate cooperation with growth factor signaling pathways and invasion in carcinoma cells, serine phosphorylation seems the predominant mechanism for regulating HD destabilization. Here, we discuss recent advances that shed light on the residues involved, the identity of the kinases that phosphorylate them, and the interactions that become disrupted by these phosphorylations.  相似文献   

15.
1. The four crystallins of the gray squirrel lens have been characterized using gel filtration chromatography, polyacrylamide gel electrophoresis, and immunoblotting. Alpha, beta-heavy, beta-light, and gamma crystallins of squirrel lenses have been identified immunologically, and they cross-react strongly with rabbit polyclonal antibodies. The gamma-24 crystallin of the squirrel lens also reacts strongly with monoclonal anti-human lens gamma-24, as shown by its inhibition of the ELISA reaction by 85%. 2. The water-insoluble urea soluble proteins represent non-covalently associated species of soluble crystallins and the lens cytoskeletal proteins. The membrane intrinsic protein in the urea insoluble pellet has a mol. wt of 27,000 but other lower and higher mol. wt components are also present, which were removed by washing with 0.1 NaOH. The N-terminal 30 amino acid of squirrel lens gamma crystallin was found to be identical to that of the bovine (and human) lens. 3. Measurements of the distribution and state of SH and SS compounds in the squirrel lens have shown greater similarities to those of primates than those of rodents. The findings show that on the basis of both protein and sulfur chemistry the squirrel lens is a representative model for studies of oxidative lens changes in diurnal animals, including man.  相似文献   

16.
Cloning and sequencing of a carp beta s-crystallin cDNA   总被引:1,自引:0,他引:1  
The mRNAs were extracted from common carp (Cyprinus carpio) lenses, purified, reverse transcribed, dC tailed and cloned into Escherichia coli with pBR322 as vector. The cloning efficiency was around 1 X 10(7) colonies per micrograms of mRNA. A clone (pC20) was found by hybrid-arrested to contain the cDNA related to carp crystallins. However, comparison of the derived amino-acid sequence with bovine gamma-II and beta s-crystallins indicates that this carp crystallin sequence resembles closely the bovine beta s-crystallin and should be better classified as such except that this fish sequence does not contain the N-terminal 'arm' of four amino-acid residues present in bovine beta s-crystallin.  相似文献   

17.
We have shown previously that phosphoinositide 3-kinase in the retina is activated in vivo through light-induced tyrosine phosphorylation of the insulin receptor (IR). The light effect is localized to photoreceptor neurons and is independent of insulin secretion (Rajala, R. V., McClellan, M. E., Ash, J. D., and Anderson, R. E. (2002) J. Biol. Chem. 277, 43319-43326). These results suggest that there exists a cross-talk between phototransduction and other signal transduction pathways. In this study, we examined the stage of phototransduction that is coupled to the activation of the IR. We studied IR phosphorylation in mice lacking the rod-specific alpha-subunit of transducin to determine if phototransduction events are required for IR activation. To confirm that light-induced tyrosine phosphorylation of the IR is signaled through bleachable rhodopsin, we examined IR activation in retinas from RPE65(-/-) mice that are deficient in opsin chromophore. We observed that IR phosphorylation requires the photobleaching of rhodopsin but not transducin signaling. To determine whether the light-dependent activation of IR is mediated through the rod or cone transduction pathway, we studied the IR activation in mice lacking opsin, a mouse model of pure cone function. No light-dependent activation of the IR was found in the retinas of these mice. We provide evidence for the existence of a light-mediated IR pathway in the retina that is different from the known insulin-mediated pathway in nonneuronal tissues. These results suggest that IR phosphorylation in rod photoreceptors is signaled through the G-protein-coupled receptor rhodopsin. This is the first study demonstrating that rhodopsin can initiate signaling pathway(s) in addition to its classical phototransduction.  相似文献   

18.
1. The ability of cell-free preparations from bovine lens to degrade fragments of alpha-crystallin has been studied. Crystallin fragments, produced by either chemical cleavage with cyanogen bromide or prolonged treatment with H2O2 and Cu2+ to produce hydroxyl radicals, were labelled with 125I and incubated with preparations obtained from lenses from animals of different age. 2. Results showed that the ability of the preparations obtained from the lens cores (the innermost part of the lens composed of enucleated non-dividing cells incapable of protein synthesis) to degrade crystallin fragments decreased with animal age. No such age-related correlation was obtained with preparations obtained from the cortex (the outer region of the lens surrounding the core). 3. The effect of incubation of the various lenticular preparations with H2O2 and Cu2+ on subsequent ability to catabolise crystallin fragments was also examined. Preparations from the oldest lenses were found to be the least resistant to free-radical attack. 4. The relative susceptibility of the crystallins and non-lenticular proteins to H2O2/Cu(2+)-mediated free-radical attack was examined. Not only were the various crystallins (alpha, beta and gamma) far more resistant to cleavage under these conditions, they also protected the non-lenticular proteins from free-radical-mediated attack. The comparative resistance of the crystallins to attack and their ability to protect other proteins appeared to be dependent on their structural integrity as prior denaturation with acid and/or cleavage with cyanogen bromide eliminated these properties. 5. It is suggested that crystallins (which show sequence homology to some heat-shock proteins) possess homeostatic functions which could protect other proteins (e.g. proteases) from certain forms of free-radical-mediated damage; crystallins may therefore be important in ageing in general where aberrant polypeptides accumulate.  相似文献   

19.
The retinal pigment epithelium (RPE) is essential for retinoid recycling and phagocytosis of photoreceptors. Understanding of proteome changes that mediate oxidative stress-induced degeneration of RPE cells may provide further insight into the molecular mechanisms of retinal diseases. In the current study, comparative proteomics has been applied to investigate global changes of RPE proteins under oxidative stress. Proteomic techniques, including 2D SDS-PAGE, differential gel electrophoresis (DIGE), and tandem time-of-flight (TOF-TOF) mass spectrometry, were used to identify early protein markers of oxidative stress in the RPE. Two biological models of RPE cells revealed several differentially expressed proteins that are involved in key cellular processes such as energy metabolism, protein folding, redox homeostasis, cell differentiation, and retinoid metabolism. Our results provide a new perspective on early signaling molecules of redox imbalance in the RPE and putative therapeutic target proteins of RPE diseases caused by oxidative stress.  相似文献   

20.
Liu XD  Shen YG 《FEBS letters》2004,569(1-3):337-340
Light could induce phosphorylation of light harvesting chlorophyll a/b binding proteins (LHCII) in Dunaliella salina and spinach thylakoid membranes. We found that neither phosphorylation was affected by glycerol, whereas treatment with NaCl significantly enhanced light-induced LHCII phosphorylation in D. salina thylakoid membranes and inhibited that in spinach. Furthermore, even in the absence of light, NaCl and several other salts induced LHCII phosphorylation in D. salina thylakoid membranes, but not in spinach thylakoid membranes. In addition, hypertonic shock induced LHCII phosphorylation in intact D. salina under dark conditions and cells adapted to different NaCl concentrations exhibited similar LHCII phosphorylation levels. Taken together, these results show for the first time that while LHCII phosphorylation of D. salina thylakoid membranes resembles that of spinach thylakoid membranes in terms of light-mediated control, the two differ with respect to NaCl sensitivity under light and dark conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号