首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
External perturbations applied to the walking surface or visual field can challenge an individual's ability to maintain stability during walking. Accurately quantifying and predicting changes in stability during walking will further our understanding of how individuals respond to challenges encountered during daily life and guide the development of assessments and rehabilitation interventions for individuals at increased risk of falling. This study is the first to determine how orbital and local dynamic stability metrics, including maximum Floquet multipliers and local divergence exponents, change in response to continuous mediolateral visual and surface perturbations of different amplitudes. Eleven healthy individuals walked in a fully immersive virtual environment. Participants completed two 3-min walking trials each under the following nine conditions: no perturbations, surface perturbations at each of 3 amplitudes, and visual perturbations at each of 5 amplitudes. All perturbations were applied as continuous pseudo-random oscillations. During both surface and visual perturbations, individuals were significantly more orbitally and locally unstable compared to un-perturbed walking. As walking surface perturbation amplitudes increased, individuals were more orbitally (but not locally) unstable. As visual perturbation amplitudes increased, individuals were more locally (but not orbitally) unstable between lower and higher amplitudes. Overall, these dynamic stability metrics were much less sensitive to changes in perturbation amplitudes than to differences between un-perturbed and perturbed walking, or to differences between mechanical and visual perturbations. This suggests that the type of perturbation(s) applied has a far greater impact than the magnitude of those perturbations in determining the response that will be elicited.  相似文献   

2.
Currently there is no commonly accepted way to define, much less quantify, locomotor stability. In engineering, "orbital stability" is defined using Floquet multipliers that quantify how purely periodic systems respond to perturbations discretely from one cycle to the next. For aperiodic systems, "local stability" is defined by local divergence exponents that quantify how the system responds to very small perturbations continuously in real time. Triaxial trunk accelerations and lower extremity sagittal plane joint angles were recorded from ten young healthy subjects as they walked for 10 min over level ground and on a motorized treadmill at the same speed. Maximum Floquet multipliers (Max FM) were computed at each percent of the gait cycle (from 0% to 100%) for each time series to quantify the orbital stability of these movements. Analyses of variance comparing Max FM values between walking conditions and correlations between Max FM values and previously published local divergence exponent results were computed. All subjects exhibited orbitally stable walking kinematics (i.e., magnitudes of Max FM < 1.0), even though these same kinematics were previously found to be locally unstable. Variations in orbital stability across the gait cycle were generally small and exhibited no systematic patterns. Walking on the treadmill led to small, but statistically significant improvements in the orbital stability of mediolateral (p = 0.040) and vertical (p = 0.038) trunk accelerations and ankle joint kinematics (p = 0.002). However, these improvements were not exhibited by all subjects (p < or = 0.012 for subject x condition interaction effects). Correlations between Max FM values and previously published local divergence exponents were inconsistent and 11 of the 12 comparisons made were not statistically significant (r2 < or = 19.8%; p > or = 0.049). Thus, the variability inherent in human walking, which manifests itself as local instability, does not substantially adversely affect the orbital stability of walking. The results of this study will allow future efforts to gain a better understanding of where the boundaries lie between locally unstable movements that remain orbitally stable and those that lead to global instability (i.e., falling).  相似文献   

3.
Lower limb amputation substantially disrupts motor and proprioceptive function. People with lower limb amputation experience considerable impairments in walking ability, including increased fall risk. Understanding the biomechanical aspects of the gait of these patients is crucial in improving their gait function and their quality of life. In the present study, 9 persons with unilateral transtibial amputation and 13 able-bodied controls walked on a large treadmill in a Computer Assisted Rehabilitation Environment (CAREN). While walking, subjects were either not perturbed, or were perturbed either by continuous mediolateral platform movements or by continuous mediolateral movements of the visual scene. Means and standard deviations of both step lengths and step widths increased significantly during both perturbation conditions (all p<0.001) for both groups. Measures of variability, local and orbital dynamic stability of trunk movements likewise exhibited large and highly significant increases during both perturbation conditions (all p<0.001) for both groups. Patients with amputation exhibited greater step width variability (p=0.01) and greater trunk movement variability (p=0.04) during platform perturbations, but did not exhibit greater local or orbital instability than healthy controls for either perturbation conditions. Our findings suggest that, in the absence of other co-morbidities, patients with unilateral transtibial amputation appear to retain sufficient sensory and motor function to maintain overall upper body stability during walking, even when substantially challenged. Additionally, these patients did not appear to rely more heavily on visual feedback to maintain trunk stability during these walking tasks.  相似文献   

4.
Dynamic stability of passive dynamic walking on an irregular surface   总被引:1,自引:0,他引:1  
Falls that occur during walking are a significant health problem. One of the greatest impediments to solve this problem is that there is no single obviously "correct" way to quantify walking stability. While many people use variability as a proxy for stability, measures of variability do not quantify how the locomotor system responds to perturbations. The purpose of this study was to determine how changes in walking surface variability affect changes in both locomotor variability and stability. We modified an irreducibly simple model of walking to apply random perturbations that simulated walking over an irregular surface. Because the model's global basin of attraction remained fixed, increasing the amplitude of the applied perturbations directly increased the risk of falling in the model. We generated ten simulations of 300 consecutive strides of walking at each of six perturbation amplitudes ranging from zero (i.e., a smooth continuous surface) up to the maximum level the model could tolerate without falling over. Orbital stability defines how a system responds to small (i.e., "local") perturbations from one cycle to the next and was quantified by calculating the maximum Floquet multipliers for the model. Local stability defines how a system responds to similar perturbations in real time and was quantified by calculating short-term and long-term local exponential rates of divergence for the model. As perturbation amplitudes increased, no changes were seen in orbital stability (r(2)=2.43%; p=0.280) or long-term local instability (r(2)=1.0%; p=0.441). These measures essentially reflected the fact that the model never actually "fell" during any of our simulations. Conversely, the variability of the walker's kinematics increased exponentially (r(2)>or=99.6%; p<0.001) and short-term local instability increased linearly (r(2)=88.1%; p<0.001). These measures thus predicted the increased risk of falling exhibited by the model. For all simulated conditions, the walker remained orbitally stable, while exhibiting substantial local instability. This was because very small initial perturbations diverged away from the limit cycle, while larger initial perturbations converged toward the limit cycle. These results provide insight into how these different proposed measures of walking stability are related to each other and to risk of falling.  相似文献   

5.
Falls pose a tremendous risk to those over 65 and most falls occur during locomotion. Older adults commonly walk slower, which many believe helps improve walking stability. While increased gait variability predicts future fall risk, increased variability is also caused by walking slower. Thus, we need to better understand how differences in age and walking speed independently affect dynamic stability during walking. We investigated if older adults improved their dynamic stability by walking slower, and how leg strength and flexibility (passive range of motion (ROM)) affected this relationship. Eighteen active healthy older and 17 healthy younger adults walked on a treadmill for 5min each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's inherent local dynamic stability. The older subjects walked with the same preferred walking speeds as the younger subjects (p=0.860). However, these older adults still exhibited greater local divergence exponents (p<0.0001) and higher maximum FM (p<0.007) than the younger adults at all walking speeds. These older adults remained more locally unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). Both younger and older adults exhibited decreased instability by walking slower, in spite of increased variability. These increases in dynamic instability might be more sensitive indicators of future fall risk than changes in gait variability.  相似文献   

6.
Interestingly, young and highly active people with lower limb amputation appear to maintain a similar trunk and upper body stability during walking as able-bodied individuals. Understanding the mechanisms underlying how this stability is achieved after lower-leg amputation is important to improve training regimens for improving walking function in these patients. This study quantified how superior (i.e., head, trunk, and pelvis) and inferior (i.e., thigh, shank, and feet) segments of the body respond to continuous visual or mechanical perturbations during walking. Nine persons with transtibial amputation (TTA) and 12 able-bodied controls (AB) walked on a 2 m×3 m treadmill in a Computer Assisted Rehabilitation Environment (CAREN). Subjects were perturbed by continuous pseudo-random mediolateral movements of either the treadmill platform or the visual scene. TTA maintained a similar local and orbital stability in their superior body segments as AB throughout both perturbation types. However, for their inferior body segments, TTA subjects exhibited greater dynamic instability during perturbed walking. In TTA subjects, these increases in instability were even more pronounced in their prosthetic limb compared to their intact leg. These findings demonstrate that persons with unilateral lower leg amputation maintain upper body stability in spite of increased dynamic instability in their impaired lower leg. Thus, transtibial amputation does significantly impair sensorimotor function, leading to substantially altered dynamic movements of their lower limb segments. However, otherwise relatively healthy patients with unilateral transtibial amputation appear to retain sufficient remaining sensorimotor function in their proximal and contralateral limbs to adequately compensate for their impairment.  相似文献   

7.
To facilitate stable walking, humans must generate appropriate motor patterns and effective corrective responses to perturbations. Yet most EMG analyses do not address the continuous nature of muscle activation dynamics over multiple strides. We compared muscle activation dynamics in young and older adults by defining a multivariate state space for muscle activity. Eighteen healthy older and 17 younger adults walked on a treadmill for 2 trials of 5 min each at each of 5 controlled speeds (80–120% of preferred). EMG linear envelopes of v. lateralis, b. femoris, gastrocnemius, and t. anterior of the left leg were obtained. Interstride variability, local dynamic stability (divergence exponents), and orbital stability (maximum Floquet multipliers; FM) were calculated. Both age groups exhibited similar preferred walking speeds (p=0.86). Amplitudes and variability of individual EMG linear envelopes increased with speed (p<0.01) in all muscles but gastrocnemius. Older adults also exhibited greater variability in b. femoris and t. anterior (p<0.004). When comparing continuous multivariate EMG dynamics, older adults demonstrated greater local and orbital instability of their EMG patterns (p<0.01). We also compared how muscle activation dynamics were manifested in kinematics. Local divergence exponents were strongly correlated between kinematics and EMG, independent of age and walking speed, while variability and max FM were not. These changes in EMG dynamics may be related to increased neuromotor noise associated with aging and may indicate subtle deterioration of gait function that could lead to future functional declines.  相似文献   

8.
Knee instability is a major problem in patients with anterior cruciate ligament injury or knee osteoarthritis. A valid and clinically meaningful measure for functional knee instability is lacking. The concept of the gait sensitivity norm, the normalized perturbation response of a walking system to external perturbations, could be a sensible way to quantify knee instability. The aim of this study is to explore the feasibility of this concept for measurement of knee responses, using controlled external perturbations during walking in healthy subjects.Nine young healthy participants walked on a treadmill, while three dimensional kinematics were measured. Sudden lateral translations of the treadmill were applied at five different intensities during stance. Right knee kinematic responses and spatio-temporal parameters were tracked for the perturbed stride and following four cycles, to calculate perturbation response and gait sensitivity norm values (i.e. response/perturbation) in various ways.The perturbation response values in terms of knee flexion and abduction increased with perturbation intensity and decreased with an increased number of steps after perturbation. For flexion and ab/adduction during midswing, the gait sensitivity norm values were shown to be constant over perturbation intensities, demonstrating the potential of the gait sensitivity norm as a robust measure of knee responses to perturbations.These results show the feasibility of using the gait sensitivity norm concept for certain gait indicators based on kinematics of the knee, as a measure of responses during perturbed gait. The current findings in healthy subjects could serve as reference-data to quantify pathological knee instability.  相似文献   

9.
Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimum detectable change values of temporal-spatial, kinematic variability, and dynamic stability measures during three types of perturbed gait. Twenty young healthy adults completed two identical testing sessions two weeks apart, comprised of an unperturbed and three perturbed (cognitive, physical, and visual) walking conditions in a virtual reality environment. Within each session, perturbation responses were compared to unperturbed walking using paired t-tests. Between-session reliability and minimum detectable change values were also calculated for each measure and condition. All temporal-spatial, kinematic variability and dynamic stability measures demonstrated fair to excellent between-session reliability. Minimal detectable change values, normalized to mean values ranged from 1–50%. Step width mean and variability measures demonstrated the greatest response to perturbations with excellent between-session reliability and low minimum detectable change values. Orbital stability measures demonstrated specificity to perturbation direction and sensitivity with excellent between-session reliability and low minimum detectable change values. We observed substantially greater between-session reliability and lower minimum detectable change values for local stability measures than previously described which may be the result of averaging across trials within a session and using velocity versus acceleration data for reconstruction of state spaces. Across all perturbation types, temporal-spatial, orbital and local measures were the most reliable measures with the lowest minimum detectable change values, supporting their use for tracking changes over multiple testing sessions. The between-session reliability and minimum detectable change values reported here provide an objective means for interpreting changes in temporal-spatial, kinematic variability, and dynamic stability measures during perturbed walking which may assist in identifying instability.  相似文献   

10.
Walking on uneven surfaces or while undergoing perturbations has been associated with increased gait variability in both modeling and human studies. Previous gait research involving continuous perturbations has focused on sinusoidal oscillations, which can result in individuals predicting the perturbation and/or entraining to it. Therefore, we examined the effects of continuous, pseudo-random support surface and visual field oscillations on 12 healthy, young participants. Participants walked in a virtual reality environment under no perturbation (NOP), anterior–posterior (AP) walking surface and visual oscillation and mediolateral (ML) walking surface and visual oscillation conditions. Participants exhibited shorter (p≤0.005), wider (p<0.001) and faster (p<0.001) steps relative to NOP during ML perturbations and shorter (p≤0.005) and wider (p<0.001) steps during AP perturbations. Step length variability and step width variability both increased relative to NOP during all perturbation conditions (p<0.001) but exhibited greater increases for the ML perturbations (p<0.001). Participants exhibited greater trunk position variability and trunk velocity variability in the ML direction than in the AP direction during ML perturbations relative to NOP (p<0.001). Significantly greater variability in the ML direction indicates that to maintain stability, participants needed to exert greater control in the ML direction. This observation is consistent with prior modeling predictions. The large and consistent responses observed during ML visual and walking surface perturbations suggest potential for application during gait training and patient assessment.  相似文献   

11.
Understanding how humans maintain stability when walking, particularly when exposed to perturbations, is key to preventing falls. Here, we quantified how imposing continuous, pseudorandom anterior-posterior (AP) and mediolateral (ML) oscillations affected the control of dynamic walking stability. Twelve subjects completed five 3-minute walking trials in the Computer Assisted Rehabilitation ENvironment (CAREN) system under each of 5 conditions: no perturbation (NOP), AP platform (APP) or visual (APV) or ML platform (MLP) or visual (MLV) oscillations. We computed AP and ML margins of stability (MOS) for each trial. Mean MOS(ml) were consistently slightly larger during all perturbation conditions than during NOP (p≤0.038). Mean MOS(ap) for the APP, MLP and MLV oscillations were significantly smaller than during NOP (p<0.0005). Variability of both MOS(ap) and MOS(ml) was significantly greater during the MLP and MLV oscillations than during NOP (p<0.0005). We also directly quantified how the MOS on any given step affected the MOS on the following step using first-return plots. There were significant changes in step-to-step MOS(ml) dynamics between experimental conditions (p<0.0005). These changes suggested that subjects may have been trying to control foot placement, and consequently stability, during the perturbation conditions. Quantifying step-to-step changes in margins of dynamic stability may be more useful than mean MOS in assessing how individuals control walking stability.  相似文献   

12.
Falls during walking are a major contributor to accidental deaths and injuries that can result in debilitating hospitalization costs, lost productivity, and diminished quality of life. To reduce these losses, we must develop a more profound understanding of the characteristic responses to perturbations similar to those encountered in daily life. This study addresses this issue by building on our earlier studies that examined mechanical and visual perturbations in the same environment by applying the same continuous pseudo-random perturbations at multiple (3 mechanical, 5 visual) amplitudes. Walking variability during mechanical perturbations increased significantly with amplitude for all subjects and differences as measured by variabilities of step width, COM position, and COM velocity. These parameters were the only ones sensitive to the presence of visual perturbations, but none of them changed significantly with perturbation amplitude. Additionally, visual perturbation effects were far less consistent across participants, with several who were essentially unaffected by visual perturbations at any level. The homogeneity of the mechanical perturbation effects demonstrates that human responses to mechanical perturbations are similar because they are driven by kinetics that require similar corrections that must be made in order to maintain balance. Conversely, responses to visual perturbations are driven by the perceived need to make corrections and this perception is not accurate enough to produce amplitude-related corrections, even for a single participant, nor is this perception consistent across individuals. This latter finding is likely to be relevant to future visual perturbation studies and the diagnosis and rehabilitation of gait and balance disorders.  相似文献   

13.
PurposeTo compare the responses in knee joint muscle activation patterns to different perturbations during gait in healthy subjects.ScopeNine healthy participants were subjected to perturbed walking on a split-belt treadmill. Four perturbation types were applied, each at five intensities. The activations of seven muscles surrounding the knee were measured using surface EMG. The responses in muscle activation were expressed by calculating mean, peak, co-contraction (CCI) and perturbation responses (PR) values. PR captures the responses relative to unperturbed gait. Statistical parametric mapping analysis was used to compare the muscle activation patterns between conditions.ResultsPerturbations evoked only small responses in muscle activation, though higher perturbation intensities yielded a higher mean activation in five muscles, as well as higher PR. Different types of perturbation led to different responses in the rectus femoris, medial gastrocnemius and lateral gastrocnemius. The participants had lower CCI just before perturbation compared to the same phase of unperturbed gait.ConclusionsHealthy participants respond to different perturbations during gait with small adaptations in their knee joint muscle activation patterns. This study provides insights in how the muscles are activated to stabilize the knee when challenged. Furthermore it could guide future studies in determining aberrant muscle activation in patients with knee disorders.  相似文献   

14.
Peripheral sensory feedback is believed to contribute significantly to maintaining walking stability. Patients with diabetic peripheral neuropathy have a greatly increased risk of falling. Previously, we demonstrated that slower walking speeds in neuropathic patients lead to improved local dynamic stability. However, all subjects exhibited significant local instability during walking, even though no subject fell or stumbled during testing. The present study was conducted to determine if and how significant changes in peripheral sensation and walking speed affect orbital stability during walking. Trunk and lower extremity kinematics were examined from two prior experiments that compared patients with significant neuropathy to healthy controls and walking at multiple different speeds in young healthy subjects. Maximum Floquet multipliers were computed for each time series to quantify the orbital stability of these movements. All subjects exhibited orbitally stable walking kinematics, even though these same kinematics were previously shown to be locally unstable. Differences in orbital stability between neuropathic and control subjects were small and, with the exception of knee joint movements (p=0.001), not statistically significant (0.380p0.946). Differences in knee orbital stability were not mediated by differences in walking speed. This was supported by our finding that although orbital stability improved slightly with slower walking speeds, the correlations between walking speed and orbital stability were generally weak (r(2)16.7%). Thus, neuropathic patients do not gain improved orbital stability as a result of slowing down and do not experience any loss of orbital stability because of their sensory deficits.  相似文献   

15.
Measures calculated from unperturbed walking patterns, such as variability measures and maximum Floquet multipliers, are often used to study the stability of walking. However, it is unknown if, and to what extent, these measures correlate to the probability of falling.We studied whether in a simple model of human walking, i.e., a passive dynamic walker, the probability of falling could be predicted from maximum Floquet multipliers, kinematic state variability, and step time variability. We used an extended version of the basic passive dynamic walker with arced feet and a hip spring. The probability of falling was manipulated by varying the foot radius and hip spring stiffness, or varying these factors while co-varying the slope to keep step length constant.The simulation data indicated that Floquet multipliers and kinematic state variability correlated inconsistently with probability of falling. Step time variability correlated well with probability of falling, but a more consistent correlation with the probability of falling was found by calculating the variability of the log transform of the step time. Our findings speak against the use of maximum Floquet multipliers and suggest instead that variability of critical variables may be a good predictor of the probability to fall.  相似文献   

16.
Load carriage perturbs the neuromuscular system, which can be impaired due to ageing. The ability to counteract perturbations is an indicator of neuromuscular function but if the response is insufficient the risk of falls will increase. However, it is unknown how load carriage affects older adults. Fourteen older adults (65 ± 6 years) attended a single visit during which they performed 4 min of walking in 3 conditions, unloaded, stable backpack load and unstable backpack load. During each walking trial, 3-dimensional kinematics of the lower limb and trunk movements and electromyographic activity of 6 lower limb muscles were recorded. The local dynamic stability (local divergence exponents), joint angle variability and spatio-temporal variability were determined along with muscle activation magnitudes. Medio-lateral dynamic stability was lower (p = 0.018) and step width (p = 0.019) and step width variability (p = 0.015) were greater in unstable load walking and step width variability was greater in stable load walking (p = 0.009) compared to unloaded walking. However, there was no effect on joint angle variability. Unstable load carriage increased activity of the Rectus Femoris (p = 0.001) and Soleus (p = 0.043) and stable load carriage increased Rectus Femoris activity (p = 0.006). These results suggest that loaded walking alters the gait of older adults and that unstable load carriage reduces dynamic stability compared to unloaded walking. This can potentially increase the risk of falls, but also offers the potential to use unstable loads as part of fall prevention programmes.  相似文献   

17.
A ubiquitous characteristic of elderly and patients with gait disabilities is that they walk slower than healthy controls. Many clinicians assume these patients walk slower to improve their stability, just as healthy people slow down when walking across ice. However, walking slower also leads to greater variability, which is often assumed to imply deteriorated stability. If this were true, then slowing down would be completely antithetical to the goal of maintaining stability. This study sought to resolve this paradox by directly quantifying the sensitivity of the locomotor system to local perturbations that are manifested as natural kinematic variability. Eleven young healthy subjects walked on a motorized treadmill at five different speeds. Three-dimensional movements of a single marker placed over the first thoracic vertebra were recorded during continuous walking. Mean stride-to-stride standard deviations and maximum finite-time Lyapunov exponents were computed for each time series to quantify the variability and local dynamic stability, respectively, of these movements. Quadratic regression analyses of the dependent measures vs. walking speed revealed highly significant U shaped trends for all three mean standard deviations, but highly significant linear trends, with significant or nearly significant quadratic terms, for five of the six finite-time Lyapunov exponents. Subjects exhibited consistently better local dynamic stability at slower speeds for these five measures. These results support the clinically based intuition that people who are at increased risk of falling walk slower to improve their stability, even at the cost of increased variability.  相似文献   

18.
Patients with diabetic peripheral neuropathy are significantly more likely to fall while walking than subjects with intact sensation. While it has been suggested that these patients walk slower to improve locomotor stability, slower speeds are also associated with increased locomotor variability, and increased variability has traditionally been equated with loss of stability. If the latter were true, this would suggest that slowing down, as a locomotor control strategy, should be completely antithetical to the goal of maintaining stability. The present study resolves these seemingly paradoxical findings by using methods from nonlinear time series analysis to directly quantify the sensitivity of the locomotor system to local perturbations that are manifested as natural kinematic variability. Fourteen patients with severe peripheral neuropathy and 12 gender-, age-, height-, and weight-matched non-diabetic controls participated. Sagittal plane angles of the right hip, knee, and ankle joints and tri-axial accelerations of the trunk were measured during 10 min of continuous overground walking at self-selected speeds. Maximum finite-time Lyapunov exponents were computed for each time series to quantify the local dynamic stability of these movements. Neuropathic patients exhibited slower walking speeds and better local dynamic stability of upper body movements in the horizontal plane than did control subjects. The differences in local dynamic stability were significantly predicted by differences in walking speed, but not by differences in sensory status. These results support the hypothesis that reductions in walking speed are a compensatory strategy used by neuropathic patients to maintain dynamic stability of the upper body during level walking.  相似文献   

19.
Several efforts have been made to study gait stability using measures derived from nonlinear time-series analysis. The maximum finite time Lyapunov exponent (λmax) quantifies how a system responds to an infinitesimally small perturbation. Recent studies suggested that slow walking leads to lower λmax values, and thus is more stable than fast walking, but these studies suffer from methodological limitations. We studied the effects of walking speed on the amount of kinematic variability and stability in human walking. Trunk motions of 15 healthy volunteers were recorded in 3D during 2 min of treadmill walking at different speeds. From those time series, maximum Lyapunov exponents, indicating short-term and long-term divergence (λS-stride and λL-stride), and mean standard deviation (MeanSD) were calculated. λS-stride showed a linear decrease with increasing speed for forward–backward (AP) movements and quadratic effects (inverted U-shaped) for medio-lateral (ML) and up–down (VT) movements. λL-stride showed a quadratic effect (inverted U-shaped) of walking speed for AP movements, a linear decrease for ML movements, and a linear increase for VT movements. Moreover, positive correlations between λS and MeanSD were found for all directions, while λL-stride and MeanSD were correlated negatively in the AP direction. The different effects of walking speed on λS-stride and λL-stride for the different planes suggest that slow walking is not necessarily more stable than fast walking. The absence of a consistent pattern of correlations between λL-stride and MeanSD over the three directions suggests that variability and stability reflect, at least to a degree, different properties of the dynamics of walking.  相似文献   

20.
When walking at a given speed, humans often appear to prefer gait patterns that minimize metabolic rate, thereby maximizing metabolic economy. However, recent experiments have demonstrated that humans do not maximize economy when walking downhill. The purpose of this study was to investigate whether this non-metabolically optimal behavior is the result of a trade-off between metabolic economy and gait stability. We hypothesized that humans have the ability to modulate their gait strategy to increase either metabolic economy or stability, but that increase in one measure will be accompanied by decrease in the other. Subjects walked downhill using gait strategies ranging from risky to conservative, which were either prescribed by verbal instructions or induced by the threat of perturbations. We quantified spatiotemporal gait characteristics, metabolic rate and several indicators of stability previously associated with fall risk: stride period variability; step width variability; Lyapunov exponents; Floquet multipliers; and stride period fractal index. When subjects walked using conservative gait strategies, stride periods and lengths decreased, metabolic rate increased, and anteroposterior maximum Lyapunov exponents increased, which has previously been interpreted as an indicator of decreased stability. These results do not provide clear support for the proposed trade-off between economy and stability, particularly when stability is approximated using complex metrics. However, several gait pattern changes previously linked to increased fall risk were observed when our healthy subjects walked with a conservative strategy, suggesting that these changes may be a response to, rather than a cause of, increased fall risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号