首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanofibrillated cellulose (NFC) is a natural fibrillar material with exceptionally high mechanical properties. It has, however, been exceedingly difficult to achieve nanocomposites with drastically improved mechanical properties by dispersing NFC as random networks to polymer matrices, even using compatibilization. We show nanocomposites consisting of aligned assemblies of multilayered graphene and NFC with excellent tensile mechanical properties without any surface treatments. The optimum composition was found at 1.25 wt % graphene multilayers, giving a Young's modulus of 16.9 GPa, ultimate strength of 351 MPa, strain of 12%, and work-of-fracture of 22.3 MJ m(-3). This combines high strength with relatively high toughness and is obtained by direct exfoliation of graphite within aqueous hydrogels of NFC where an optimum sonication power is described. The results suggest the existence of an attractive interaction between multilayered graphene flakes and cellulose. Aligned assemblies are obtained by removal of water by filtration. The concept can be beneficial for applications because it results in high mechanical properties by a simple and environmentally green process.  相似文献   

2.
The ability to predict trabecular failure using microstructure-based computational models would greatly facilitate study of trabecular structure–function relations, multiaxial strength, and tissue remodeling. We hypothesized that high-resolution finite element models of trabecular bone that include cortical-like strength asymmetry at the tissue level, could predict apparent level failure of trabecular bone for multiple loading modes. A bilinear constitutive model with asymmetric tissue yield strains in tension and compression was applied to simulate failure in high-resolution finite element models of seven bovine tibial specimens. Tissue modulus was reduced by 95% when tissue principal strains exceeded the tissue yield strains. Linear models were first calibrated for effective tissue modulus against specimen-specific experimental measures of apparent modulus, producing effective tissue moduli of (mean±S.D.) 18.7±3.4 GPa. Next, a parameter study was performed on a single specimen to estimate the tissue level tensile and compressive yield strains. These values, 0.60% strain in tension and 1.01% strain in compression, were then used in non-linear analyses of all seven specimens to predict failure for apparent tensile, compressive, and shear loading. When compared to apparent yield properties previously measured for the same type of bone, the model predictions of both the stresses and strains at failure were not statistically different for any loading case (p>0.15). Use of symmetric tissue strengths could not match the experimental data. These findings establish that, once effective tissue modulus is calibrated and uniform but asymmetric tissue failure strains are used, the resulting models can capture the apparent strength behavior to an outstanding level of accuracy. As such, these computational models have reached a level of fidelity that qualifies them as surrogates for destructive mechanical testing of real specimens.  相似文献   

3.
The mechanical properties of cancellous bone and the biological response of the tissue to mechanical loading are related to deformation and strain in the trabeculae during function. Due to the small size of trabeculae, their motion is difficult to measure. To avoid the need to measure trabecular motions during loading the finite element method has been used to estimate trabecular level mechanical deformation. This analytical approach has been empirically successful in that the analytical models are solvable and their results correlate with the macroscopically measured stiffness and strength of bones. The present work is a direct comparison of finite element predictions to measurements of the deformation and strain at near trabecular level. Using the method of digital volume correlation, we measured the deformation and calculated the strain at a resolution approaching the trabecular level for cancellous bone specimens loaded in uniaxial compression. Smoothed results from linearly elastic finite element models of the same mechanical tests were correlated to the empirical three-dimensional (3D) deformation in the direction of loading with a coefficient of determination as high as 97% and a slope of the prediction near one. However, real deformations in the directions perpendicular to the loading direction were not as well predicted by the analytical models. Our results show, that the finite element modeling of the internal deformation and strain in cancellous bone can be accurate in one direction but that this does not ensure accuracy for all deformations and strains.  相似文献   

4.
Living bone is considered as adaptive material to the mechanical functions, which continually undergoes change in its histological arrangement with respect to external prolonged loading. Such remodeling phenomena within bone depend on the degree of stimuli caused by the mechanical loading being experienced, and therefore, are specific to the sites. In the attempts of understanding strain adaptive phenomena within bones, different theoretical models have been proposed. Also, the existing literatures mostly follow the measurement of surface strains using strain gauges to experimentally quantify the strains experienced in the functional environment. In this work, we propose a novel idea of understanding site-specific functional adaptation to the prolonged load in bone on the basis of inherited residual strains and structural organization. We quantified the residual strains and amount of apatite crystals distribution, i.e., the degree of orientation, using X-ray diffraction procedures. The sites of naturally existing hole in bone, called foramen, are considered from bovine femur and metacarpal samples. Significant values of residual strains are found to exist in the specimens. Trends of residual strains noted in the specimens are mostly consistent with the degree of orientation of the crystallites. These features explain the response behavior of bone to the mechanical loading history near the foramen sites. Preferential orientation of crystals mapped around a femoral foramen specimen showed furnished tailored arrangement of the crystals around the hole. Effect of external loading at the femoral foramen site is also explained by the tensile loading experiment.  相似文献   

5.
The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter, m(FFT)=-1.70 degrees /% strain for non-degenerated and -0.95 degrees /% strain for degenerated tissue). Toe-region modulus was significantly correlated with age (r=0.6). Paired t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration.  相似文献   

6.
Mechanical stimulation is considered to be one of the major epigenetic factors regulating the metabolism, proliferation, survival and differentiation of cells in the skeletal tissues. It is generally accepted that the cytoskeleton can undergo remodeling in response to mechanical stimuli such as tensile strain or fluid flow. Mechanically induced cell deformation is one of the possible mechanotransduction pathways by which chondrocytes sense and respond to changes in their mechanical environment. Mechanical strain has a variety of effects on the structure and function of their cells in the skeletal tissues, such as chondrocytes, osteoblasts and fibroblasts. However, little is known about the effect of the quality and quantity of mechanical strain and the timing of mechanical loading on the differentiation of these cells. The present study was designed to investigate the effect of the deformation of chondrogenic cells, and cyclic compression using a newly developed culture device, by analyzing mechanobiological response to the differentiating chondrocytes. Cyclic compression between 0 and 22% strains, at 23 microHz was loaded on chondrogenic cell line ATDC5 by seeding in a mass mode on PDMS membrane, assuming direct transfer of cyclic deformation from the membrane to the cells at the same frequency. The compressive strain, induced within the membrane, was characterized based on the analysis of the finite element modeling (FEM). The results showed that the tensile strain inhibits the chondrogenic differentiation of ATDC5 cells, whereas the compressive strain enhances the chondrogenic differentiation, suggesting that the differentiation of the chondrogenic cells could be controlled by the amount and the mode of strain. In conclusion, we have developed a unique strain loading culture system to analyze the effect of various types of mechanical stimulation on various cellular activities.  相似文献   

7.
1. It has long been known that wood in trees is under internally generated tensile or compressive forces, known as 'prestrains'. These prestrains are thought to limit compressive loading at points of high strain within the tree to counteract the mechanical anisotropy of wood. Prestrains can be relieved by making cuts in wood, allowing it to recover to an unstrained state.
2. Recently, electrical resistance strain gauges have been used to measure surface strains on the trunk, roots and branches of trees. We have found that, by making a shallow cut above and below gauges, the prestrain can be measured as an apparent residual negative strain. This negative strain, after prestrain relief, is indicative of a tensile prestrain having been present in the wood before cutting.
3. It is a simple procedure to determine prestrain magnitude at the site of gauge attachment. By knowing the prestrain state of wood at the measurement site of strain determination, a more reliable estimate of surface stress and safety factors in tree design can be made.  相似文献   

8.
To analyse mechanotransduction resulting from tensile loading under defined conditions, various devices for in vitro cell stimulation have been developed. This work aimed to determine the strain distribution on the membrane of a commercially available device and its consistency with rising cycle numbers, as well as the amount of strain transferred to adherent cells.The strains and their behaviour within the stimulation device were determined using digital image correlation (DIC). The strain transferred to cells was measured on eGFP-transfected bone marrow-derived cells imaged with a fluorescence microscope. The analysis was performed by determining the coordinates of prominent positions on the cells, calculating vectors between the coordinates and their length changes with increasing applied tensile strain.The stimulation device was found to apply homogeneous (mean of standard deviations approx. 2% of mean strain) and reproducible strains in the central well area. However, on average, only half of the applied strain was transferred to the bone marrow-derived cells. Furthermore, the strain measured within the device increased significantly with an increasing number of cycles while the membrane's Young's modulus decreased, indicating permanent changes in the material during extended use. Thus, strain magnitudes do not match the system readout and results require careful interpretation, especially at high cycle numbers.  相似文献   

9.
A computer controlled dynamic bioreactor for continuous ultra-slow uniaxial distraction of a scaffold-free three-dimensional (3D) mesenchymal stem cell pellet culture was designed to investigate the influence of stepless tensile strain on behavior of distinct primary cells like osteoblasts, chondroblasts, or stem cells without the influence of an artificial culture matrix. The main advantages of this device include the following capabilities: (1) Application of uniaxial ultra-slow stepless distraction within a range of 0.5-250 μm/h and real-time control of the distraction distance with high accuracy (mean error -3.4%); (2) tension strain can be applied on a 3D cell culture within a standard CO(2) -incubator without use of an artificial culture matrix; (3) possibility of histological investigation without loss of distraction; (4) feasibility of molecular analysis on RNA and protein level. This is the first report on a distraction device capable of applying continuous tensile strain to a scaffold-free 3D cell culture within physiological ranges of motion comparable to distraction ostegenesis in vivo. We expect the newly designed microdistraction device to increase our understanding on the regulatory mechanisms of mechanical strains on the metabolism of stem cells.  相似文献   

10.
The tapered implant-abutment interface is becoming more popular due to the mechanical reliability of retention it provides. Consequently, understanding the mechanical properties of the tapered interface with or without a screw at the bottom has been the subject of a considerable amount of studies involving experiments and finite element (FE) analysis. This paper focuses on the tapered implant-abutment interface with a screw integrated at the bottom of the abutment. The tightening and loosening torques are the main factors in determining the reliability and the stability of the attachment. Analytical formulas are developed to predict tightening and loosening torque values by combining the equations related to the tapered interface with screw mechanics equations. This enables the identification of the effects of the parameters such as friction, geometric properties of the screw, the taper angle, and the elastic properties of the materials on the mechanics of the system. In particular, a relation between the tightening torque and the screw pretension is identified. It was shown that the loosening torque is smaller than the tightening torque for typical values of the parameters. Most of the tightening load is carried by the tapered section of the abutment, and in certain combinations of the parameters the pretension in the screw may become zero. The calculations performed to determine the loosening torque as a percentage of tightening torque resulted in the range 85-137%, depending on the values of taper angle and the friction coefficient.  相似文献   

11.
BACKGROUND AND AIM: Titanium alloys are increasingly being used as an implant material in orthopaedics and for spinal instrumentation. In this study a metallographic analysis and mechanical testing were performed to evaluate the resistance of rods of Ti-A16-V4 in particular to tensile forces. METHOD: The surface texture of unprepared Ti-A16-V4 and a rod of the same material for spinal instrumentation were evaluated in a metallographic analysis using light microscopy and electron microscopy. Tensile strength measurements were performed on 2 rods, and the strength of the connection between rod and pedicle screws was tested in 9 cases. An electron microscopic analysis of surface changes of the connections between rod and pedicle screws after loading was performed. RESULTS: The titanium alloy Ti-A16-V4 has a mill-annealed appearance, which has a high resistance to tearing under stress. Titanium rods show high tensile strength before failure under loading. The connection between rod and pedicle screws also as high resistance to tensile loads (> 27 kN) with only little deformation of the connecting surface and no tearing. CONCLUSION: The titanium alloy Ti-A16-V4 is an appropriate material for dorsal spinal instrumentation rods because of its low weight, high biocompability and high tensile strength.  相似文献   

12.
Bratzel G  Buehler MJ 《Biopolymers》2012,97(6):408-417
Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications.  相似文献   

13.
14.
15.
The material properties of the mitral valve chordae tendineae are important for the understanding of leaflet coaptation configuration and chordal pathology. There is limited information about the mechanical properties of the chordae during physiologic loading. Dual camera stereo photogrammetry was used to measure strains of the chordae in vitro under physiologic loading conditions. Two high-speed, high-resolution cameras captured the movement of graphite markers attached to the central section of the chordae. A uniaxial test simulating the same loading conditions was conducted on the same chordae using the same markers. The maximum strain experienced during the cardiac cycle was 4.29% +/- 3.43%. The loading rate was higher at 75.3% +/- 48.6% strain per second than the unloading rate at -54.8% +/- -56.6% strain per second. The anterior lateral strut chordae had a higher maximum strain (5.7% +/- 3.8%) and loading rate (80.5% +/- 51.9% strain per second) than the posterior medial strut chordae (5.5% +/- 2.3% strain and 68.1% +/- 48.3% strain per second). The posterior medial strut chordae had a higher unloading rate (-68.5% +/- -59.1% strain per second) than the anterior lateral strut chordae (-44.9% +/- -57.2% strain per second). Although the anterior lateral and posterior medial strut chordae have a significantly different diameter and length, they experience a similar strain, strain rate, and tension. In conclusion, a non-destructive technique was developed to measure in vitro chordal strain in the mitral valve. This technique allows the investigation of the behavior of biological tissues under physiologic loading conditions.  相似文献   

16.
To describe the time-dependent nonlinear tensile behavior observed in experimental studies of cortical bone, a damage model was developed using two internal state variables (ISV's). One ISV is a damage parameter that represents the loss of stiffness. A rule for the evolution of this ISV was defined based on previously observed creep behavior. The second ISV represents the inelastic strain due to viscosity and internal friction. The model was tested by simulating experiments in tensile and bending loading. Using average values from previous creep studies for parameters in the damage evolution rule, the model tended to underestimate the maximum nonlinear strains and to overestimate the nonlinear strain accumulated after load reversal in the tensile test simulations. Varying the parameters for the individual tests produced excellent fits to the experimental data. Similarly, the model simulations of the bending tests could produce excellent fits to the experimental data. The results demonstrate that the 2-ISV model combining damage (stiffness loss) with slip and viscous behavior could capture the nonlinear tensile behavior of cortical bone in axial and bending loading.  相似文献   

17.
Liu J  Zou L  Zheng Y  Zhao Z  Li Y  Yang P  Luo S 《Cell biology international》2007,31(10):1220-1224
This study was to examine the early responses of nuclear factor kappa B (NF-kappaB) to mechanical strains in MG-63. MG-63 cells were subjected to cyclic uniaxial compressive or tensile strain, produced by a four-point bending system, at 1000 microstrain or 4000 microstrain for 5 min, 15 min, 30 min and 1h, respectively. Control cells received the same treatment with no mechanical stress loading. Expression of NF-kappaB (p60) was measured by Western blotting. NF-kappaB responded rapidly to mechanical stimuli in MG-63 cells. NF-kappaB was activated by cyclic uniaxial stretch at 1000 microstrain while it was restrained under a compressive strain environment at 1000 microstrain (P<0.001). The effects reversed for tension and compression at 4000 microstrain (P<0.001). Furthermore, strains at 1000 microstrain affected NF-kappaB expression much easier than those at 4000 microstrain. This indicates that there may be different responding mechanisms or mechanotransduction pathways for different mechanical stimuli.  相似文献   

18.
The use of human mesenchymal stem cells (hMSCs) in tissue engineering is attractive due to their ability to extensively self-replicate and differentiate into a multitude of cell lineages. It has been experimentally established that hMSCs are influenced by chemical and mechanical signals. However, the combined chemical and mechanical in vitro culture conditions that lead to functional tissue require greater understanding. In this study, finite element models were created to evaluate the local loading conditions on bone marrow-derived hMSCs seeded in three-dimensional collagen matrices exposed to cyclic tensile strain. Mechanical property and geometry data used in the models were obtained experimentally from a previous study in our laboratory and from mechanical testing. Eight finite element models were created to simulate three-dimensional hMSC-seeded collagen matrices exposed to different levels of cyclic tensile strain (10% and 12%), culture media (complete growth and osteogenic differentiating), and durations of culture (7 and 14 days). Through finite element analysis, it was determined that globally applied uniaxial tensile strains of 10% and 12% resulted in local strains up to 18.3% and 21.8%, respectively. Model results were also compared to experimental studies in an attempt to explain observed differences between hMSC response to 10% and 12% cyclic tensile strain.  相似文献   

19.
The effect of design features of an internal spinal fixator on the loading of its individual components is paramount to the understanding of the interaction between the fixator and the instrumented spine. Using a corpectomy injury model, a strain gauge instrumented spinal fixation device was employed to investigate the role of clamp tightening torque and the inclusion of transverse bars on the distribution of bending and torsional moments acting on the fixator under torsional loading. The increase in clamp torque from 5 to 10 Nm caused a marked decrease (40%) in torsional moments acting on the vertical rods, an increase of 24% in torsional moments acting on the screws and an increase of 44% in bending moments acting on the rods along the sagittal plane of the fixator. The inclusion of transverse elements significantly increased (132%) the bending moment acting on the rods and decreased (92%) the bending moments acting on the screws along the sagittal plane. The change in both design parameters significantly reduced the response hysteresis and decreased the asymmetry of loading. A theoretical model, developed to elucidate the load path mechanisms underlying this response, successfully predicted the external response of the fixator. This model suggested both design parameters would affect the internal force and moment distribution across the fixator and the relative role of each load response mechanism in effecting this response. The changes in load patterns across the fixator will influence both its ability to augment the process of spinal fusion and the long-term performance of its components.  相似文献   

20.
The rat forelimb compression model has been used widely to study bone response to mechanical loading. We used strain gages to assess load sharing between the ulna and radius in the forelimb of adult Fisher rats. We used histology and peripheral quantitative computed tomography (pQCT) to quantify ulnar bone formation 12 days after in vivo fatigue loading. Lastly, we developed a finite element model of the ulna to predict the pattern of surface strains during compression. Our findings indicate that at the mid-shaft the ulna carries 65% of the applied compressive force on the forelimb. We observed large variations in fatigue-induced bone formation over the circumference and length of the ulna. Bone formation was greatest 1-2 mm distal to the mid-shaft. At the mid-shaft, we observed woven bone formation that was greatest medially. Finite element analysis indicated a strain pattern consistent with a compression-bending loading mode, with the greatest strains occurring in compression on the medial surface and lesser tensile strains occurring laterally. A peak strain of -5190 microepsilon (for 13.3N forelimb compression) occurred 1-2 mm distal to the mid-shaft. The pattern of bone formation in the longitudinal direction was highly correlated to the predicted peak compressive axial strains at seven cross-sections (r2 = 0.89, p = 0.014). The in-plane pattern of bone formation was poorly correlated to the predicted magnitude of axial strain at 51 periosteal locations (r2 = 0.21, p < 0.001), because the least bone formation was observed where tensile strains were highest. These findings indicate that the magnitude of bone formation after fatigue loading is greatest in regions of high compressive strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号