首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reclamation of saline sodic soils requires sodium removal and the phytoremediation is one of the proven low-cost, low-risk technologies for reclaiming such soils. However, the role of Phragmites australis in reclaiming saline sodic soils has not been evaluated extensively. The comparative reclaiming role of P. australis and gypsum was evaluated in a column experiment on a sandy clay saline sodic soil with ECe 74.7 dS m?1, sodium adsorption ratio (SAR) 63.2, Na+ 361 g kg?1, and pH 8.46. The gypsum at 100% soil requirement, planting common reed (P. australis) alone, P. australis + gypsum at 50% soil gypsum requirements, and leaching (control without plant and gypsum) were four treatments applied. After 11 weeks of incubation, the results showed that all treatments including the control significantly reduced pH, EC, exchangeable Na+, and SAR from the initial values, the control being with least results. The gypsum and P. australis + gypsum were highly effective in salinity (ECe) reduction, while sodicity (SAR) and Na+ reductions were significantly higher in P. australis + gypsum treatment. The reclamation efficiency in terms of Na+ (83.4%) and SAR (86.8%) reduction was the highest in P. australis + gypsum. It is concluded that phytoremediation is an effective tool to reclaim saline sodic soil.  相似文献   

2.
Experiments were conducted to evaluate the effectiveness of biofertilizers produced from phosphate and potash rocks mixed with sulfur inoculated with Acidithiobacillus oxidizing bacteria on sugarcane yield and their effects on some chemical attributes of a Brazilian tableland soil. The experiment was arranged in a completely randomized factorial design 2 × 4 × 3 + 1, with four replicates. Two varieties of sugarcane, four rates of three sources of P and K (apatite + biotite, P + K biofertilizers with Acidithiobacillus, and soluble fertilizers—triple superphosphate and potassium chloride) were tested. A control without P and K fertilization was applied. A significant reduction in soil pH was observed with biofertilizers, especially when applied at higher rates, although no harmful effect on sugarcane yield was observed. Available P and K and exchangeable Ca and Mg increased with biofertilizer application compared to mineral fertilizers and P and K rocks. Biofertilizers may be used as an alternative source of P and K for sugarcane grown in soils with low available P and K.  相似文献   

3.
Summary The availability of Ca from different levels of gypsum and calcium carbonate in a non-saline sodic soil has been investigated. Different levels of tagged gypsum (Ca45SO4.2H2O) and calcium carbonate (Ca45CO3) (i.e. 0, 25, 50, 75, and 100 per cent of gypsum requirement) were mixed thoroughly in 3.5 Kg of a non-saline alkali soil (ESP, 48.4; ECe, 2.68 millimhos/cm). Dhaincha (Sesbania aculeata) — a legume and barley (Hordeum vulgare L.) — a cereal were taken as test crops. Increasing levels of gypsum caused a gradual increase in the yield of dry matter, content of Ca and K in the plant tops and Ca:Na and (Ca+Mg):(Na+K) ratios in both the crops. Application of calcium carbonate caused a slight increase in the dry matter yield, content of Ca and Mg and Ca:Na and (Ca+Mg):(Na+K) ratios in barley, however, in case of dhaincha there was no such effect. Gypsum application caused a gradual decrease in the content of Na and P in both the crops. Total uptake of Ca, Mg, K, N and P per pot increased in response to gypsum application. The effect of calcium carbonate application on the total uptake of these elements was much smaller on dhaincha, but in barley there was some increasing trend.Increasing application of tagged gypsum and calcium carbonate caused a gradual increase in the concentration and per cent contribution of source Ca in both the crops, although, the rate of increase was considerably more in dhaincha. The availability of Ca from applied gypsum was considerably more than that from applied calcium carbonate. Efficiency of dhaincha to utilize Ca from applied sources was considerably more (i.e. about five times) than that of barley  相似文献   

4.
The byproducts of flue gas desulfurization (BFGD) are a useful external source of Ca2+ for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II) and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR), pH and electrical conductivity (EC) decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0–40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m−1 and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising.  相似文献   

5.
The effects of three S deposition scenarios — 50% reduction, no change, and 100% increase — on the cycles of N, P, S, K, Ca, and Mg in a mixed deciduous forest at Coweeta, North Carolina, were simulated using the Nutrient Cycling model (NuCM). The purpose of this exercise was to compare NuCM's output to observed soil and streamwater chemical changes and to explore NuCM's response to varying S deposition scenarios. Ecosystem S content and SO4 2– leaching were controlled almost entirely by soil SO4 2– adsorption in the simulations, which was in turn governed by the nature of the Langmuir isotherm set in the model. Both the simulations and the 20-year trends in streamwater SO4 2– concentration suggest that the ecosystem is slowly becoming S saturated. The streamwater data suggest S saturation is occurring at a slower rate than indicated by the simulations, perhaps because of underestimation of organic S retention in the model. Both the simulations and field data indicated substantial declines in exchangeable bases in A and BA soil horizons, primarily due to vegetation uptake. The correspondence of model output with field data in this case was a result of after-the-fact calibration (i.e. setting weathering rates to very low values) rather than prediction, however. Model output suggests that soil exchangeable cation pools change rapidly, undergoing annual cycles and multi-decade fluctuations.Varying S deposition had very little effect upon simulated vegetation growth, nutrient uptake, or N cycling. Varying S deposition strongly affected simulated Ca2+. Mg2+, K+, and P leaching but caused little change in soil exchangeable pools of Ca2+ K+, or P because soil exchangeable pools were large relative to fluxes. Soil exchangeable Mg2+ pools were reduced by high rates of S deposition but remained well above levels sufficient for tree growth. Although the total soil pools of exchangeable Ca2+ and K+ were only slightly affected by S deposition, there was a redistribution of Ca2+ and K+ from upper to lower horizons with increasing S deposition, causing increased base saturation in the deepest (BC) horizon. The 100% increased S deposition scenario caused increasing peaks in simulated Al3+ concentrations in A horizons after 25 years as a result of large seasonal pulses of SO4 2– and lowered base saturation. Simulated soil solution Al3+ concentrations remained well below toxicity thresholds for selected tree species at the site.  相似文献   

6.
Chemical fertilizers have been used in the cultivation of plants due to their high solubility and effect on crops yield. Biofertilizers with phosphate rock (PR) and potash rock (KR) plus sulfur inoculated with Acidithiobacillus may improve plant growth and contribute to addition of available P and K in soil. The effectiveness of biofertilizers from phosphate and potash rocks mixed with sulfur and Acidithiobacillus was studied in a Typic Fragiuldult soil of the Brazilian Northeast Tableland. Cowpea (cv. “IPA 206”) was grown with and without rhizobia inoculation. Treatments were: (a) phosphate rock (1000 kg ha−1); (b) Biofertilizers-BP (250 and 500 kg ha−1); (c) triple superphosphate-TSP (250 kg ha−1); (d) potash rock (1000 kg ha−1); (e) biofertilizer-BK (250; 500 and 750 kg ha−1); (f) potassium chloride-KCl (250 kg K20 ha−1); (g) control without P or K fertilization (P0K0). The soil was maintained under water submersion covered with black plastic (solarization process) for a period of 30 days. Biofertilizers (Bp and BK) and soluble fertilizers increased plant growth and NPK uptake. Biofertilizers reduced soil pH, especially when applied in highest rates. Biofertilizers and TSP+KCl showed the best values of available P and K in soil. Rhizobial inoculation was effective on cowpea, but no nodules were formed by bacteria native from the soil, probably due to the effect of the solarization process. From obtained PK biofertilizers could be used as alternative for cowpea fertilization in Tableland soils.  相似文献   

7.
Mineral nutrient economy in competing species of Sphagnum mosses   总被引:1,自引:0,他引:1  
Bog vegetation, which is dominated by Sphagnum mosses, depends exclusively on aerial deposition of mineral nutrients. We studied how the main mineral nutrients are distributed between intracellular and extracellular exchangeable fractions and along the vertical physiological gradient of shoot age in seven Sphagnum species occupying contrasting bog microhabitats. While the Sphagnum exchangeable cation content decreased generally in the order Ca2+ ≥ K+, Na+, Mg2+ > Al3+ > NH4 +, intracellular element content decreased in the order N > K > Na, Mg, P, Ca, Al. Calcium occurred mainly in the exchangeable form while Mg, Na and particularly K, Al and N occurred inside cells. Hummock species with a higher cation exchange capacity (CEC) accumulated more exchangeable Ca2+, while the hollow species with a lower CEC accumulated more exchangeable Na+, particularly in dead shoot segments. Intracellular N and P, but not metallic elements, were consistently lower in dead shoot segments, indicating the possibility of N and P reutilization from senescing segments. The greatest variation in tissue nutrient content and distribution was between species from contrasting microhabitats. The greatest variation within microhabitats was between the dissimilar species S. angustifolium and S. magellanicum. The latter species had the intracellular N content about 40% lower than other species, including even this species when grown alone. This indicates unequal competition for N, which can lead to outcompeting of S. magellanicum from mixed patches. We assume that efficient cation exchange enables Sphagnum vegetation to retain immediately the cationic nutrients from rainwater. This may represent an important mechanism of temporal extension of mineral nutrient availability to subsequent slow intracellular nutrient uptake.  相似文献   

8.
The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO4, which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha−1) and two leaching levels (750 and 1200 m3 ha−1). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha−1 and water was supplied at 1200 m3·ha−1. Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage.  相似文献   

9.
Wright  David  Rajper  Inayatullah 《Plant and Soil》2000,223(1-2):279-287
Two wheat varieties were grown in artificially created sodic soils in pots at a range of sodicity levels (exchangeable sodium percentage (ESP) 15–52), with and without an anionic polyacrylamide soil conditioner (PAM) to stabilise soil aggregates. Increasing sodicity decreased the % water stable aggregates (% WSA) in soil and survival, grain and straw yield of wheat. Plants grown at high sodicity also had higher Na+, lower K+ and Ca2+ concentrations and lower K+/Na+ ratio in flag leaf sap than plants grown in control (non-sodic) soil. Sodicity had no effect on the concentrations of Cu2+, Fe2+, Mn2+ and Zn2+ in grains and straw, but total uptake of these micronutrients was deceased due to lower dry weight of these tissues per plant. At all sodicity levels treatment of sodic soil with PAM increased the % WSA to values greater than in the non-sodic control soil, and slightly lowered ESP. Over the range ESP 15–44 the effects of PAM on wheat grain yield increased as sodicity increased, so that at ESP 44 grain yield in the treatment with PAM was only 25% lower than in the non-sodic control. However at ESP 52 the effects of PAM were smaller, and grain yield was 86% lower than in the control. At this sodicity level the decreases in grain yield due to sodicity and the increases in reponse to treatment of sodic soil with PAM were similar in the two varieties tested. At high sodicity levels (ESP 44 and 52) treatment of sodic soil with PAM decreased the concentration of Na+ and increased K+ and K+/Na+ ratio in flag leaf sap. However, at the highest sodicity level (ESP 52), flag leaf Na+ concentration remained above the level (100 mol m-3) at which it has been found to be toxic. Concentrations of Cu2+, Fe2+, Mn2+ and Zn2+ in grain and straw were unaffected by PAM. These results suggest that at ESP up to 40–50 adverse physical characteristics are the major cause of low wheat yield in sodic soils, either due to their direct effects in decreasing growth, or their indirect effects in increasing uptake of Na+ and decreasing uptake of K+. Above ESP 50, roots are less able to exclude Na+, even in the presence of improved soil physical conditions, so that at these sodicity levels, both adverse physical and adverse chemical properties contribute to the decreased yield. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
A greenhouse experiment was carried out with the objective of evaluating the effects of the elementary sulphur inoculated with Thiobacillus, compared with gypsum, in the amendment of a alluvial sodic saline soil from the Brazilian semiarid region, irrigated with saline water and grown with the tropical legumes leucena and mimosa. The treatments consisted of levels of sulphur (0; 300 and 600 kg/ha) and gypsum (1,200 and 2,400 kg/ha), irrigation using different waters containing the salts NaHCO3, MgCl2, CaCl2, NaCl and KCl, with different electrical conductivities (ECs: 0.2. 6.1 and 8.2 dS/m at 25 degrees C). Based on the results it appears that saline water increased exchangeable Na+, K+, Ca2+, Mg2+, and soil pH. Sulphur inoculated with Thiobacillus was more efficient than gypsum in the reduction of the exchangeable sodium of the soil and promoting leaching of salts, especially sodium. Sulphur inoculated with Thiobacillus reduced the EC of the soil saturation extract to levels below that adopted in soil classification of sodic or saline sodic. Leucena was more tolerant to salinity and mimosa more resistant to acidity promoted by sulphur inoculated with Thiobacillus.  相似文献   

11.
The microbial community and sulfur oxygenase reductases of metagenomic DNA from bioreactors treating gold-bearing concentrates were studied by 16S rRNA library, real-time polymerase chain reaction (RT-PCR), conventional cultivation, and molecular cloning. Results indicated that major bacterial species were belonging to the genera Acidithiobacillus, Leptospirillum, Sulfobacillus, and Sphingomonas, accounting for 6.3, 66.7, 18.8, and 8.3%, respectively; the sole archaeal species was Ferroplasma sp. (100%). Quantitative RT-PCR revealed that the 16S rRNA gene copy numbers (per gram of concentrates) of bacteria and archaea were 4.59 × 109 and 6.68 × 105, respectively. Bacterial strains representing Acidithiobacillus, Leptospirillum, and Sulfobacillus were isolated from the bioreactors. To study sulfur oxidation in the reactors, pairs of new PCR primers were designed for the detection of sulfur oxygenase reductase (SOR) genes. Three sor-like genes, namely, sor Fx, sor SA, and sor SB were identified from metagenomic DNAs of the bioreactors. The sor Fx is an inactivated SOR gene and is identical to the pseudo-SOR gene of Ferroplasma acidarmanus. The sor SA and sor SB showed no significant identity to any genes in GenBank databases. The sor SB was cloned and expressed in Escherichia coli, and SOR activity was determined. Quantitative RT-PCR determination of the gene densities of sor SA and sor SB were 1,000 times higher than archaeal 16S rRNA gene copy numbers, indicating that these genes were mostly impossible from archaea. Furthermore, with primers specific to the sor SB gene, this gene was PCR-amplified from the newly isolated Acidithiobacillus sp. strain SM-1. So far as we know, this is the first time to determine SOR activity originating from bacteria and to document SOR gene in bioleaching reactors and Acidithiobacillus species.  相似文献   

12.
Sulfur isotope fractionation during reduction of thiosulfate was investigated with growing batch cultures of Desulfovibrio desulfuricans CSN (DSM 9104) at 30 °C. The sulfide produced was depleted in 34S by 10‰ as compared to total thiosulfate sulfur. The depletion was equal to that during sulfate reduction under similar conditions. The two sulfur atoms of the thiosulfate molecule were affected differently by fractionation. Sulfide produced from sulfonate sulfur was depleted by 15.4‰, sulfide produced from sulfane sulfur by 5.0‰. Received: 29 October 1997 / Accepted: 18 December 1997  相似文献   

13.
Johnson  D. W.  Cheng  W.  Ball  J. T. 《Plant and Soil》2000,224(1):99-113
The effects of six years treatment with elevated [CO2] (350, 525, and 700 μl l-1) and nitrogen (N) (0, 10, and 20 g N m-2 yr-1) on soils, soil solution, and CO2 efflux in an open-top chamber study with ponderosa pine (Pinus ponderosa Laws.) are described. The clearest [CO2] effect was in year 6, when a pattern of lower soil N concentration and higher C/N ratio with elevated [CO2] emerged. Statistically significant effects of elevated [CO2] on soil total C, extractable P, exchangeable Mg2+, exchangeable Ca2+, base saturation, and soil solution HCO3 - and NO3 - were also found in various treatment combinations and at various times; however, these effects were inconsistent among treatments and years, and in many cases (P, Mg2+, Ca2+, base saturation) reflected pre-treatment differences. The use of homogenized buried soil bags did not improve the power to detect changes in soil C and N or help resolve the inconsistencies in soil C patterns. Nitrogen fertilization had the expected negative effects on exchangeable Ca2+, K+, and Mg2+ in year 6, presumably because of increased NO3 - leaching, but had no consistent effect on soil C, N, or extractable P. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
  • Soil degradation resulting from various types of salinity is a major environmental problem, especially in arid and semiarid regions. Exploring the water‐related physiological traits of halophytes is useful for understanding the mechanisms of salt tolerance. This knowledge could be used to rehabilitate degraded arid lands.
  • To investigate whether different types of salinity influence the water sources and water‐use efficiency of desert plants (Karelinia caspia, Tamarix hohenackeri, Nitraria sibirica, Phragmites australis, Alhagi sparsifolia, Suaeda microphylla, Kalidium foliatum) in natural environments, we measured leaf gas exchange, leaf carbon and xylem oxygen isotope composition and soil oxygen isotope composition at neutral saline‐sodic site (NSS) and alkaline saline‐sodic site (ASS) in northwest China.
  • The studied plants had different xylem water oxygen isotope compositions (δ18O) and foliar carbon isotope compositions (δ13C), indicating that desert plants coexist through differentiation in water use patterns. Compared to that at the NSS site, the stem water in K. caspia, A. sparsifolia and S. microphylla was depleted in 18O at the ASS site, which indicates that plants can switch to obtain water from deeper soil layers when suffering environmental stress from both salinity and alkalinisation. Alhagi sparsifolia had higher δ13C at the ASS site than at the NSS site, while K. caspia and S. microphylla had lower δ13C, which may have resulted from interspecific differences in plant alkali and salt tolerance ability.
  • Our results suggest that under severe salinity and alkalinity, plants may exploit deeper soil water to avoid ion toxicity resulting from high concentrations of soluble salts in the superficial soil layer. In managed lands, it is vital to select and cultivate different salt‐tolerant or alkali‐tolerant plant species in light of local conditions.
  相似文献   

15.
Background and AimsGypsum drylands are widespread worldwide. In these arid ecosystems, the ability of different species to access different water sources during drought is a key determining factor of the composition of plant communities. Gypsum crystallization water could be a relevant source of water for shallow-rooted plants, but the segregation in the use of this source of water among plants remains unexplored. We analysed the principal water sources used by 20 species living in a gypsum hilltop, the effect of rooting depth and gypsum affinity, and the interaction of the plants with the soil beneath them.MethodsWe characterized the water stable isotope composition, δ 2H and δ 18O, of plant xylem water and related it to the free and gypsum crystallization water extracted from different depths throughout the soil profile and the groundwater, in both spring and summer. Bayesian isotope mixing models were used to estimate the contribution of water sources to plant xylem sap.Key ResultsIn spring, all species used free water from the top soil as the main source. In summer, there was segregation in water sources used by different species depending on their rooting depth, but not on their gypsum affinity. Gypsum crystallization water was the main source for most shallow-rooted species, whereas free water from 50 to 100 cm depth was the main source for deep-rooted species. We detected plant–soil interactions in spring, and indirect evidence of possible hydraulic lift by deep-rooted species in summer.ConclusionsPlants coexisting in gypsum communities segregate their hydrological niches according to their rooting depth. Crystallization water of gypsum represents an unaccounted for, vital source for most of the shallow-rooted species growing on gypsum drylands. Thus, crystallization water helps shallow-rooted species to endure arid conditions, which eventually accounts for the maintenance of high biodiversity in these specialized ecosystems.  相似文献   

16.
We measured concentrations of soil nutrients (0–15 and 30–35 cm depths) before and after the dry season in control and dry-season irrigated plots of mature tropical moist forest on Barro Colorado Island (BCI) in central Panama to determine how soil moisture affects availability of plant nutrients. Dry-season irrigation (January through April in 1986, 1987, and 1988) enhanced gravimetric soil water contents to wet-season levels (ca. 400 g kg–1 but did not cause leaching beyond 0.8 m depth in the soil. Irrigation increased concentrations of exchangeable base cations (Ca2+, Mg2+, K+, Na+), but it had little effect on concentrations of inorganic N (NH4 +C, NO3 and S (SO4 2–). These BCI soils had particularly low concentrations of extractable P especially at the end of the dry season in April, and concentrations increased in response to irrigation and the onset of the rainy season. We also measured the response of soil processes (nitrification and S mineralization) to irrigation and found that they responded positively to increased soil moisture in laboratory incubations, but irrigation had little effect on rates in the field. Other processes (plant uptake, soil organic matter dynamics) must compensate in the field and keep soil nutrient concentrations at relatively low levels.  相似文献   

17.
该研究以春油菜幼苗为材料,采用土壤盆栽试验,设7个不同施硫(0、35、70、105、140、175、210mg·kg^-1)处理,通过测定春油菜幼苗的株高、植株鲜重、叶绿素含量、MDA含量、SOD、POD、CAT活性、土壤全氮含量、pH、蔗糖酶、过氧化氢酶和脲酶活性指标,分析不同施硫量对春油菜幼苗生理生化指标和土壤相关酶活性的影响。结果表明:在春油菜苗期施用硫肥对幼苗的农艺性状、生理生化指标和土壤酶活性均产生了一定影响。施硫量在35~105mg·kg^-1范围时,对植株鲜重有明显的促进作用;施硫量在70~105mg·kg^-1范围时,类胡萝卜素含量达到最高;施硫量在70~105mg·kg^-1范围时,叶片中POD和CAT的活性明显升高,而MDA含量明显下降;经相关分析,MDA含量与POD活性呈极显著负相关(r=-0.92,P<0.01),与CAT活性呈显著负相关(r=-0.72,P<0.05),说明叶片MDA含量受POD和CAT活性变化的影响;施硫量高于105mg·kg^-1时,土壤脲酶和蔗糖酶活性受到抑制;施硫量高于140mg·kg^-1时,土壤过氧化氢酶活性受到抑制;随着施硫量的增加,土壤pH值和叶片SOD活性逐渐下降;经相关性分析,土壤脲酶活性和全氮含量间呈极显著正相关(r=1,P<0.01),表明土壤全氮含量受土壤脲酶活性变化的影响。由此可知,在低硫(35~105mg·kg^-1)条件下对春油菜幼苗生理生化指标及土壤酶活性具有一定的促进作用,而在高硫(>105mg·kg^-1)条件下则产生抑制。  相似文献   

18.
A thermoacidophilic elemental sulfur and chalcopyrite oxidizing enrichment culture VS2 was obtained from hot spring run-off sediments of an underground mine. It contained only archaeal species, namely a Sulfolobus metallicus-related organism (96% similarity in partial 16S rRNA gene) and Thermoplasma acidophilum (98% similarity in partial 16S rRNA gene). The VS2 culture grew in a temperature range of 35–76°C. Sulfur oxidation by VS2 was optimal at 70°C, with the highest oxidation rate being 99 mg S0 l−1 day−1. At 50°C, the highest sulfur oxidation rate was 89 mg l−1 day−1 (in the presence of 5 g Cl l−1). Sulfur oxidation was not significantly affected by 0.02–0.1 g l−1 yeast extract or saline water (total salinity of 0.6 M) that simulated mine water at field application sites with availability of only saline water. Chloride ions at a concentration above 10 g l−1 inhibited sulfur oxidation. Both granular and powdered forms of sulfur were bioavailable, but the oxidation rate of granular sulfur was less than 50% of the powdered form. Chalcopyrite concentrate oxidation (1% w/v) by the VS2 resulted in a 90% Cu yield in 30 days.  相似文献   

19.
B. Kos  D. Leštan 《Plant and Soil》2004,263(1):43-51
The feasibility of combined phytoextraction and in situ washing of soil contaminated with Pb (1750 mg kg–1), Zn (1300 mg kg–1), and Cd (7.2 mg kg–1), induced by the addition of biodegradable chelator, [S,S] stereoisomere of ethylenediamine discuccinate ([S,S]-EDDS), was tested in soil columns with hemp (Cannabis sativa) as the phytoextracting plant. The addition of [S,S]-EDDS (10 mmol kg–1 dry soil) yielded concentrations of 1026±442, 330.3±114.7 and 3.84±1.55 mg kg–1 of Pb, Zn and Cd in the dry above-ground plant biomass, respectively. These concentrations were 1926, 7.5, and 11 times higher, respectively, compared to treatments with no chelator addition. Horizontal permeable barriers, composed of a 3 cm high layer of nutrient enriched sawdust and vermiculite mixture, and a 3 cm layer of soil, vermiculite and apatite mixture, were positioned 20, 30 and 40 cm deep in the soil. In chelator treatments, barriers placed 30 cm deep reduced leaching of Pb, Zn and Cd by 435, 4 and 53 times, respectively, compared to columns with no barrier, where 3.0, 4.3 and 3.3% of total initial Pb, Zn and Cd, respectively, was leached during 6-weeks water irrigation after chelator addition. Lower positioned barriers were almost equally effective in preventing leaching of Pb than barriers positioned closer to the soil surface, less effective for Cd, and did not prevent leaching of Zn. 2.53% of total initial Pb and 2.83% of Cd was washed from the contaminated soil and accumulated into the barrier. Combined method was less effective than simulated ex situ soil washing, where 14.2, 5.5 and 24.5% of Pb, Zn and Cd, respectively, were removed after 1-h extraction, but comparable effective to 48-h extraction. Abbreviations: BCF – bioconcentration factor; EDTA – ethylene diaminetetraacetate; HM – heavy metal; PP – phytoextraction potential; [S,S]-EDDS – [S,S]-ethylenediamine disuccinate.  相似文献   

20.
Changes in vegetation, litter, and soil nutrient content were measured in selected plots on Walker Branch watershed, Tennessee, from 1972–73 to 1982. The watershed has been allowed to revert to forest since 1942, before which it consisted of small subsistence farms and woodland pastures. Changes in Ca status were of particular interest because initial nutrient cycling characterizations indicated that net Ca accumulation in vegetation could have caused large decreases in soil exchangeable Ca2+ within 20 years.Decreases in forest floor and subsoil (45–60 cm) N, exchangeable Ca2+, and Mg2+ content were noted in several plots from 1972 to 1982. Surface soils (0–15 cm) showed either no change or, in some cases (e.g., N and exchangeable K+ in certain plots), increases over the 11-year period. Reductions in forest floor and subsoil exchangeable Ca2+ and exchangeable Mg2+ on cherty, upper slope oak-hickory and chestnut oak forests were most striking. The changes in Ca2+ are thought to be due primarily to high rates of Ca2+ incorporation into woody tissues of oak and hickory species. Reductions in forest floor and subsoil exchangeable Mg2+ could not be accounted for by woody increment; leaching may have played a major role in causing these decreases. Changes in P and exchangeable K+ were variable, with both increases and decreases.There were significant increases in exchangeable Al3+ in both subsoils and surface soils of certain plots, but these were not accompanied by decreases in exchangeable base cations or consistent decreases in pH. Dissolution of interlayer Al from 2:1 clays may be the cause of the exchangeable Al3+ increases.These results suggest a general decline in fertility, especially with regard to Ca and Mg in those forests with low soil Ca and Mg supplies. Monitoring of further changes (if any) in these ecosystems will continue as the currently aggrading forests approach steady state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号