首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sharks as a group have a long history as highly successful predatory fishes. Although, the number of recent studies on their diet, feeding behavior, feeding mechanism, and mechanics have increased, many areas still require additional investigation. Dietary studies of sharks are generally more abundant than those on feeding activity patterns, and most of the studies are confined to relatively few species, many being carcharhiniform sharks. These studies reveal that sharks are generally asynchronous opportunistic feeders on the most abundant prey item, which are primarily other fishes. Studies of natural feeding behavior are few and many observations of feeding behavior are based on anecdotal reports. To capture their prey sharks either ram, suction, bite, filter, or use a combination of these behaviors. Foraging may be solitary or aggregate, and while cooperative foraging has been hypothesized it has not been conclusively demonstrated. Studies on the anatomy of the feeding mechanism are abundant and thorough, and far exceed the number of functional studies. Many of these studies have investigated the functional role of morphological features such as the protrusible upper jaw, but only recently have we begun to interpret the mechanics of the feeding apparatus and how it affects feeding behavior. Teeth are represented in the fossil record and are readily available in extant sharks. Therefore much is known about their morphology but again functional studies are primarily theoretical and await experimental analysis. Recent mechanistic approaches to the study of prey capture have revealed that kinematic and motor patterns are conserved in many species and that the ability to modulate feeding behavior varies greatly among taxa. In addition, the relationship of jaw suspension to feeding behavior is not as clear as was once believed, and contrary to previous interpretations upper jaw protrusibility appears to be related to the morphology of the upper jaw-chondrocranial articulation rather than the type of jaw suspension. Finally, we propose a set of specific hypotheses including: (1) The functional specialization for suction feeding hypothesis that morphological and functional specialization for suction feeding has repeatedly arisen in numerous elasmobranch lineages, (2) The aquatic suction feeding functional convergence hypothesis that similar hydrodynamic constraints in bony fishes and sharks result in convergent morphological and functional specializations for suction feeding in both groups, (3) The feeding modulation hypothesis that suction capture events in sharks are more stereotyped and therefore less modulated compared to ram and bite capture events, and (4) The independence of jaw suspension and feeding behavior hypothesis whereby the traditional categorization of jaw suspension types in sharks is not a good predictor of jaw mobility and prey capture behavior. Together with a set of questions these hypotheses help to guide future research on the feeding biology of sharks.  相似文献   

2.
Avian jaw function is the most interesting part of the feeding apparatus, and essential in the life of birds. The usual seven jaw muscles in birds are highly adapted for diverse food-getting devices through muscular modifications as well as changes in kinesis of the skeletal components of the skull. In the first part I have described from an introspection of my earlier works, the functional morphology of the seven jaw muscles in different birds in four functional groups such as, adductors of the lower jaw, depressor of the lower jaw, protractors of the upper jaw and retractors-cum-adductors of the upper and lower jaws. Emphasis has been laid on the differential force production by these muscles, depending on the nature of their connective tissue attachments on the skeletal parts and changes in the kinesis of the skeletal parts. The contraction of the muscles and movements of the skeletal parts are rhythmically synchronized in such a way that their concerted action performs adaptively in different feeding adaptations. The differential force production by the one-joint and two-joint muscles in terms of ‘torque’ analysis is important in jaw kinesis. The second part of the text is a historical review of some notable works centred around the avian jaw muscles, jaw kinesis, tongue muscles, synchronization with the movements of the tongue apparatus and adaptational as well as evolutionary significance of the feeding apparatus in different feeding strategies.  相似文献   

3.
Although a strong correlation between jaw mechanics and prey selection has been demonstrated in bony fishes (Osteichthyes), how jaw mechanics influence feeding performance in cartilaginous fishes (Chondrichthyes) remains unknown. Hence, tooth shape has been regarded as a primary predictor of feeding behavior in sharks. Here we apply Finite Element Analysis (FEA) to examine form and function in the jaws of two threatened shark species, the great white (Carcharodon carcharias) and the sandtiger (Carcharias taurus). These species possess characteristic tooth shapes believed to reflect dietary preferences. We show that the jaws of sandtigers and great whites are adapted for rapid closure and generation of maximum bite force, respectively, and that these functional differences are consistent with diet and dentition. Our results suggest that in both taxa, insertion of jaw adductor muscles on a central tendon functions to straighten and sustain muscle fibers to nearly orthogonal insertion angles as the mouth opens. We argue that this jaw muscle arrangement allows high bite forces to be maintained across a wider range of gape angles than observed in mammalian models. Finally, our data suggest that the jaws of sub-adult great whites are mechanically vulnerable when handling large prey. In addition to ontogenetic changes in dentition, further mineralization of the jaws may be required to effectively feed on marine mammals. Our study is the first comparative FEA of the jaws for any fish species. Results highlight the potential of FEA for testing previously intractable questions regarding feeding mechanisms in sharks and other vertebrates.  相似文献   

4.
The jaw apparatuses of two species of Late Cretaceous Phylloceratina (Ammonoidea), Hypophylloceras subramosum and Phyllopachyceras ezoensis, are described on the basis of well‐preserved in situ material from Hokkaido, Japan. Gross morphological and X‐ray CT observations reveal that the upper and lower jaws of the two species are essentially similar in their overall structure. Their upper jaws consist of a shorter outer lamella and a pair of larger, wing‐like inner lamellae that become narrower and join together in the anterior portion, as in those of other ammonoids. The upper jaws of the two phylloceratid species are, however, distinguishable from those of other known ammonoids by the presence of a thick, arrowhead‐shaped calcified rostral tip. The lower jaws of the two species consist of a short, reduced inner lamella and a large, gently convex outer lamella covered with a thin calcareous layer, the features of which are common with the rhynchaptychus‐type lower jaws of the Cretaceous Lytoceratina. In the presence of a sharply pointed, thick calcareous tip on upper and lower jaws, the jaw apparatuses of the Phylloceratina resemble those of modern and fossil nautilids, suggesting that they were developed to serve a scavenging predatory feeding habit in deeper marine environments. This and other studies demonstrate that at least some Mesozoic rhyncholites and conchorhynchs are attributable to the Phylloceratina and Lytoceratina.  相似文献   

5.
Tooth morphology is often used to inform the feeding ecology of an organism as these structures are important to procure and process dietary resources. In sharks, differences in morphology may facilitate the capture and handling of prey with different physical properties. However, few studies have investigated differences in tooth morphology over ontogeny, throughout the jaws of a single species, or among species at multiple tooth positions. Bull (Carcharhinus leucas), blacktip (Carcharhinus limbatus), and bonnethead sharks (Sphyrna tiburo) are coastal predators that exhibit ontogenetic dietary shifts, but differ in their feeding ecologies. This study measured tooth morphology at six positions along the upper and lower jaws of each species using elliptic Fourier analysis to make comparisons within and among species over their ontogeny. Significant ontogenetic differences were detected at four of the six tooth positions in bull sharks, but only the posterior position on the lower jaw appeared to exhibit a functionally relevant shift in morphology. No ontogenetic changes in morphology were detected in blacktip or bonnethead sharks. Intraspecific comparisons found that most tooth positions significantly differed from one another across all species, but heterodonty was greatest in bull sharks. Additionally, interspecific comparisons found differences among all species at each tooth position except between bull and blacktip sharks at two positions. These morphological patterns within and among species may have implications for prey handling efficiency, as well as in providing insight for paleoichthyology studies and reevaluating heterodonty in sharks.  相似文献   

6.
The skull of squamates has many functions, with food acquisition and ingestion being paramount. Snakes vary interspecifically in the frequency, size, and types of prey that are consumed. Natural selection should favor phenotypes that minimize the costs of energy acquisition; therefore, trophic morphology should reflect a snake's primary prey type to enhance some aspect of feeding performance. I measured 19 cranial variables for six natricine species that vary in the frequency with which they consume frogs and fish. Both conventional and phylogenetically corrected analyses indicated that fish‐eating snakes have relatively longer upper and lower jaw elements than frog‐eating snakes, which tended to have broader skull components. I also compared the ratio of the in‐lever to the out‐lever lengths of the jaw‐closing mechanism [jaw mechanical advantage (MA)] among species. Fish‐eating snakes had significantly lower MAs in the jaws than did the frog‐eating snakes. This result suggests that piscivores have faster closing jaws and that the jaws of frog‐eating snakes have higher closing forces. Cranial morphology and the functional demands of prey capture and ingestion appear to be associated with primary prey type in natricine snakes. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

7.
Cyprinodontiforms are a diverse and speciose order that includes topminnows, pupfishes, swordtails, mosquitofishes, guppies, and mollies. Sister group to the Beloniformes and Atheriniformes, Cyprinodontiformes contains approximately twice the number of species of these other two orders combined. Recent studies suggest that this group is well suited to capturing prey by “picking” small items from the water surface, water column, and the substrate. Because picking places unusual performance demands on the feeding apparatus, this mode of prey capture may rely upon novel morphological modifications not found in more widespread ram‐ or suction‐based feeding mechanisms. To assess this evolutionary hypothesis, we describe the trophic anatomy of 16 cyprinodontiform species, selected to broadly represent the order as well as capture intrageneric variation. The group appears to have undergone gradual morphological changes to become increasingly specialized for picking and scraping behaviors. We also identify a suite of functional characters related to the acquisition of a novel and previously undescribed mechanism of premaxillary protrusion and retraction, including: modification of the “premaxillomandibular” ligament (which connects each side of the premaxilla to the ipsilateral mandible, or lower jaw), a novel architecture of the ligaments and bony elements that unite the premaxillae, maxillae and palatine bones, and novel insertions of the adductor muscles onto the jaws. These morphological changes to both the upper and lower jaws suggest an evolutionary trend within this group toward increased reliance on picking individual prey from the water column/substrate or for scraping encrusting material from the substrate. We propose that the suite of morphological characters described here enable a functional innovation, “picking,” which leads to novel trophic habits. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
The Labridae (including wrasses, the Odacidae and the Scaridae) is a species‐rich group of perciform fishes whose members are prominent inhabitants of warm‐temperate and tropical reefs worldwide. We analyse functionally relevant morphometrics for the feeding apparatus of 130 labrid species found on the Great Barrier Reef and use these data to explore the morphological and mechanical basis of trophic diversity found in this assemblage. Morphological measurements were made that characterize the functional and mechanical properties of the oral jaws that are used in prey capture and handling, the hyoid apparatus that is used in expanding the buccal cavity during suction feeding, and the pharyngeal jaw apparatus that is used in breaking through the defences of shelled prey, winnowing edible matter from sand and other debris, and pulverizing the algae, detritus and rock mixture eaten by scarids (parrotfishes). A Principal Components Analysis on the correlation matrix of a reduced set of ten variables revealed complete separation of scarids from wrasses on the basis of the former having a small mouth with limited jaw protrusion, high mechanical advantage in jaw closing, and a small sternohyoideus muscle and high kinematic transmission in the hyoid four‐bar linkage. Some scarids also exhibit a novel four‐bar linkage conformation in the oral jaw apparatus. Within wrasses a striking lack of strong associations was found among the mechanical elements of the feeding apparatus. These weak associations resulted in a highly diverse system in which functional properties occur in many different combinations and reflect variation in feeding ecology. Among putatively monophyletic groups of labrids, the cheilines showed the highest functional diversity and scarids were moderately diverse, in spite of their reputation for being trophically monomorphic and specialized. We hypothesize that the functional and ecological diversity of labrids is due in part to a history of decoupled evolution of major components of the feeding system (i.e. oral jaws, hyoid and pharyngeal jaw apparatus) as well as among the muscular and skeletal elements of each component. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 1–25.  相似文献   

9.
Most previous studies of snake feeding mechanisms have focused on the functional morphology of the highly specialized ophidian jaw apparatus. Although some of these studies have included observations of post-cranial movements during feeding, the functional roles of these movements have remained poorly understood. In this study, we used x-ray videography to examine post-cranial prey transport mechanisms in a colubrid snake, Pituophis melanoleucus lodingi. We found that prey transport in this species progresses through four distinct phases, three of which are characterized by either undulatory or concertina-like movements of the anterior portion of the trunk. In the first phase of transport (the oral phase), unilateral movements of the jaws are used to pull the head forward around the prey. In the second phase (the orocervical phase), unilateral jaw movements continue, but are augmented by concertina-like movements of the anterior portion of the trunk. In the third phase (the cervical phase), prey transport occurs exclusively through concertina-like movements of the neck. Finally, in the fourth phase (the thoracic phase), prey is transported to the stomach via undulatory movements of the trunk. Our observations of feeding behavior in a phylogenetically diverse sample of fourteen other snake species demonstrate that similar post-cranial transport mechanisms are used by a wide variety of alethinophidian snakes that feed on large, bulky prey.  相似文献   

10.
The kinematics of jaws and tongue, and jaw muscle activity patterns were investigated in the omnivorous lizard Tiliqua rugosa, and the herbivorous Corucia zebrata (Scincidae) during feeding. Small metal markers were inserted into different parts of the skull, the jaws, and the tongue. Video and cineradiographic images were digitized and displacements of the head, jaws, and tongue were quantified. Additionally, muscle activity patterns were recorded, digitized and several variables were determined quantitatively. The effect of food type on the jaw and hyolingual movement patterns and the jaw muscle activity patterns was investigated for both species. The kinematic data indicate that distinct aspects of gape and tongue cycles are modulated in response to the food characteristics. Similarly, in both species, muscle activity patterns are altered in response to the type of food eaten. A comparison of kinematic and electromyographic patterns during intraoral transport cycles for both species shows that these can be related to food characteristics such as toughness and mobility. Differences between both species in the response to changes in food characteristics are minor. Clearly both species are able to fine tune the activation of the jaw muscles, resulting in the appropriate movement patterns for the type of food eaten. Accepted: 30 January 1999  相似文献   

11.
The association between diversification and evolutionary innovations has been well documented and tested in studies of taxonomic richness but the impact that such innovations have on the diversity of form and function is less well understood. Using phylogenetically rigorous techniques, we investigated the association between morphological diversity and two design breakthroughs within the jaws of parrotfish. Similar intramandibular joints and other modifications of the pharyngeal jaws have evolved repeatedly in teleost fish and are frequently hypothesized to promote diversity. We quantified morphological diversity within six functionally important oral jaw traits using the Brownian motion rate of evolution to correct for phylogenetic and time‐related biases and compared these rates across clades that did and did not possess the intramandibular joint and the parrotfish pharyngeal jaw. No change in morphological diversity was associated with the pharyngeal jaw modification alone but rates of oral jaw diversification were up to 8× faster in parrotfish species that possessed both innovations. Interestingly, this morphological diversity may not have led to differential resource uses as available data suggest that members of this clade show remarkable homogeneity of diet.  相似文献   

12.
Several species of butterflyfishes (Chaetodontidae) possess extremely elongate jaws, and feed mostly by probing the benthos and biting off pieces of attached invertebrates. In contrast, Forcipiger longirostris, the longest-jawed chaetodontid, exhibits a novel pattern of prey use, feeding almost exclusively on small caridean shrimp, a mobile and highly elusive prey type that lives within the structure of coral reefs. We explored the functional basis of this novel pattern of prey use by comparing prey capture kinematics in this and four other butterflyfish species, including two other species that possess elongate jaws. High speed video recordings of feeding events on live adult brine shrimp were analyzed from individuals of five species: Forcipiger longirostris, F. flavissimus, Chelmon rostratus, Heniochus acuminatus, and Chaetodon xanthurus. We focused on a comparison among species of the relative contribution of "suction", measured as the amount of movement of the prey toward the predator's mouth, and "ram", measured as the distance moved by the predator toward the prey during the strike. All five species utilized a combination of suction and ram while feeding on brine shrimp. The contribution of suction did not differ significantly among species. However, F. longirostris exhibited a ram contribution to the strike that was more than twice that seen in any of the other species, permitting this species to initiate strikes from the greatest initial predator-prey distance. F. longirostris is known to possess a major structural novelty in the feeding mechanism that permits anterior movement of the entire jaw apparatus. The ability of this species to feed successfully on elusive prey appears to be related to exceptional jaw protrusion, resulting in greater use of ram during prey capture. This ability to protrude long, slender jaws toward the prey may allow it to move the jaws without detection within close enough proximity of the prey to then permit the effective use of suction. The use of extensive ram in this manner by small-mouthed fishes may be more widespread than previously thought.  相似文献   

13.
The dental anatomy of elasmobranch fishes (sharks, rays and relatives) creates a functional system that is more dynamic than that of mammalian dentition. Continuous dental replacement (where new teeth are moved rostrally to replace older ones) and indirect fibrous attachment of the dentition to the jaw allow teeth to reorient relative to the jaw over both long- and short-term scales, respectively. In this study, we examine the processing behavior and dental anatomy of the lesser electric ray Narcine brasiliensis (Olfers, 1831) to illustrate that the freedom of movement of elasmobranch dentition allows a functional flexibility that can be important for complex prey processing behaviors. From static manipulations of dissected jaws and observations of feeding events in live animals, we show that the teeth rotate during jaw protrusion, resulting in a secondary grasping mechanism that likely serves to hold prey while the buccal cavity is flushed free of sediment. The function of teeth is not always readily apparent from morphology; in addition to short-term reorientation, the long-term dental reorientation during replacement allows a given tooth to serve multiple functions during tooth ontogeny. Unlike teeth inside the mouth, the cusps of external teeth (on the portion of the tooth pad that extends past the occlusal plane) lay flat, such that the labial faces act as a functional battering surface, protecting the jaws during prey excavation.  相似文献   

14.
The great barracuda, Sphyraena barracuda, is a voracious marine predator that captures fish with a swift ram feeding strike. While aspects of its ram feeding kinematics have been examined, an unexamined aspect of their feeding strategy is the bite mechanism used to process prey. Barracuda can attack fish larger than the gape of their jaws, and in order to swallow large prey, can sever their prey into pieces with powerful jaws replete with sharp cutting teeth. Our study examines the functional morphology and biomechanics of 'ram-biting' behavior in great barracuda where the posterior portions of the oral jaws are used to slice through prey. Using fresh fish and preserved museum specimens, we examined the jaw mechanism of an ontogenetic series of barracuda ranging from 20 g to 8.2 kg. Jaw functional morphology was described from dissections of fresh specimens and bite mechanics were determined from jaw morphometrics using the software MandibLever (v3.2). High-speed video of barracuda biting (1500 framess(-1)) revealed that prey are impacted at the corner of the mouth during capture in an orthogonal position where rapid repeated bites and short lateral headshakes result in cutting the prey in two. Predicted dynamic force output of the lower jaw nearly doubles from the tip to the corner of the mouth reaching as high as 58 N in large individuals. A robust palatine bone embedded with large dagger-like teeth opposes the mandible at the rear of the jaws providing for a scissor-like bite capable of shearing through the flesh and bone of its prey.  相似文献   

15.
Tetraodontiform fishes are characterized by jaws specialized for powerful biting and a diet dominated by hard-shelled prey. Strong biting by the oral jaws is an unusual feature among teleosts. We present a functional morphological analysis of the feeding mechanism of a representative tetraodontiform, Balistes vetula. As is typical for the order, long, sharp, strong teeth are mounted on the short, robust jaw bones of B. vetula. The neurocranium and suspensorium are enlarged and strengthened to serve as sites of attachment for the greatly hypertrophied adductor mandibulae muscles. Electromyographic recordings made from 11 cranial muscles during feeding revealed four distinct behaviors in the feeding repertoire of B. vetula. Suction is used effectively to capture soft prey and is associated with a motor pattern similar to that reported for many other teleosts. However, when feeding on hard prey, B. vetula directly bit the prey, exhibiting a motor pattern very different from that of suction feeding. During buccal manipulation, repeated cycles of jaw opening and closing (biting) were coupled with rapid movement of the prey in and out of the mouth. Muscle activity during buccal manipulation was similar to that seen during bite-captures. A blowing behavior was periodically employed during prey handling, as prey were forcefully “spit out” from the mouth, either to reposition them or to separate unwanted material from flesh. The motor pattern used during blowing was distinct from similar behaviors described for other fishes, indicating that this behaviors may be unique to tetraodontiforms. Thus B. vetula combines primitive behaviors and motor patterns (suction feeding and buccal manipulation) with specialized morphology (strong teeth, robust jaws, and hypertrophied adductor muscles) and a novel behavior (blowing) to exploit armored prey such as sea urchins molluscs, and crabs. © 1993 Wiley-Liss, Inc.  相似文献   

16.
East African cichlid fishes have evolved a stunning array of oral jaw morphologies. To better understand the adaptive evolution of this trait, we performed a morphological analysis of the jaws of two closely related species from Lake Malawi that have very different modes of feeding. Labeotropheus fuelleborni forages along the substrate with a "biting" mode of feeding, while Metriaclima zebra feeds in the water column with a "sucking" mode. We analyzed each of the four skeletal elements that make up the oral jaws: the dentary, articular, premaxilla, and maxilla. In addition, we performed the same analysis on the neurocranium, an element closely associated with the oral jaws. We used the thin-plate spline method to quantify morphological differences, which allowed us to relate our results to the functional biology of the species. We find many aspects of shape change that relate directly to the functional design of the cichlid head. The same series of measurements was made on hybrids between Labeotropheus and Metriaclima. For every character, hybrid progeny are statistically different from both parental species. These results suggest an additive mode of action of the alleles responsible for these phenotypes.  相似文献   

17.
Biomechanical models of feeding mechanisms elucidate how animals capture food in the wild, which, in turn, expands our understanding of their fundamental trophic niche. However, little attention has been given to modeling the protrusible upper jaw apparatus that characterizes many teleost species. We expanded existing biomechanical models to include upper jaw forces using a generalist butterflyfish, Chaetodon trichrous (Chaetodontidae) that produces substantial upper jaw protrusion when feeding on midwater and benthic prey. Laboratory feeding trials for C. trichrous were recorded using high-speed digital imaging; from these sequences we quantified feeding performance parameters to use as inputs for the biomechanical model. According to the model outputs, the upper jaw makes a substantial contribution to the overall forces produced during mouth closing in C. trichrous. Thus, biomechanical models that only consider lower jaw closing forces will underestimate total bite force for this and likely other teleost species. We also quantified and subsequently modeled feeding events for C. trichrous consuming prey from the water column versus picking attached prey from the substrate to investigate whether there is a functional trade-off between prey capture modes. We found that individuals of C. trichrous alter their feeding behavior when consuming different prey types by changing the timing and magnitude of upper and lower jaw movements and that this behavioral modification will affect the forces produced by the jaws during prey capture by dynamically altering the lever mechanics of the jaws. In fact, the slower, lower magnitude movements produced during picking-based prey capture should produce a more forceful bite, which will facilitate feeding on benthic attached prey items, such as corals. Similarities between butterflyfishes and other teleost lineages that also employ picking-based prey capture suggest that a suite of key behavioral and morphological innovations enhances feeding success for benthic attached prey items.  相似文献   

18.
Ecomorphological relationships among Caribbean tetraodontiform fishes   总被引:2,自引:0,他引:2  
The anatomy of the oral jaw apparatus, lever-arm mechanics and the diet of six species of Caribbean fishes in the order Tetraodontiformes were investigated to explore the relationships between trophic morphology and feeding habit in these fishes. Tetraodontiforms use their oral jaw apparatus to capture and reduce a broad range of prey types such as plankton, polychaete worms, holothuroids, sea urchins, crabs, molluscs, gorgonians and algae. The different feeding habits of tetraodontiforms are reflected by differences in the morphological and biomechanical features of their oral jaw apparatus that appear to enhance their abilities to feed on hard prey organisms. Species that bite and crush hard, benthic prey organisms had more massive bones and muscles, longer jaw-opening in-levers, and higher jaw-closing lever ratios than the planktivorous, suction-feeding species. Masses of the jaw and suspensorium bones and lower jaw adductor muscles as well as the jaw-opening in-levers and jaw-closing lever ratios of crushers were greater than those of biters. In contrast, the mass of the adductor muscle of the upper jaw did not vary among species with different diets, indicating that this muscle may not be central to the factors that determine patterns of prey use in these fishes. The diversity of feeding behaviours and the wide range of feeding habits among fishes in the order Tetraodontiformes illustrate the versatility of the oral jaw apparatus as a single functional feeding system in fishes.  相似文献   

19.
All of the diverse jaw structures in higher teleosts appear to be modifications of a single basal type and are treated as such. Only some of the principal variants are discussed. Though the two jaws act as a coordinated unit during feeding, their movements are different. The upper and lower jaws are discussed separately. In the upper jaw the principal concern is with the various types of premaxillary protrusion and with the secondary development in some groups of a rocking premaxilla. For the lower jaw most of the account is devoted to the repeated differentiation of movements in its anterior and posterior sections. The paper concludes with comments on the jaw apparatus as a functional unit and its evolution in higher teleosts.  相似文献   

20.
The extent to which elements of functional systems can change independently (modularity) likely influences the diversification of lineages. Major innovations in organismal design, like the pharyngeal jaw in cichlid fishes, may be key to a group's success when they relax constraints on diversification by increasing phenotypic modularity. In cichlid fishes, pharyngeal jaw modifications that enhanced the ability to breakdown prey may have freed their oral jaws from serving their ancestral dual role as a site of both prey capture and prey processing. This functional decoupling that allowed the oral jaws to become devoted solely to prey capture has been hypothesized to have permitted the two sets of cichlid jaws to evolve independently. We tested the hypothesis that oral and pharyngeal jaw mechanics are evolutionarily decoupled both within and among Neotropical Heroine cichlids. In the trophically polymorphic species Herichthys minckleyi, molariforms that exhibit enlarged molarlike pharyngeal jaw teeth were found to have approximately 400% greater lower jaw mass compared to H. minckleyi with the alternative papilliform pharyngeal morphology. However, oral jaw gape, lower jaw velocity ratios, anterior jaw linkage mechanics, and jaw protrusion did not differ between the morphotypes. In 40 other Heroine species, there was a weak correlation between oral jaw mechanics and pharyngeal jaw mass when phylogenetic history was ignored. Yet, after expansion of the cytochrome b phylogeny for Heroines, change in oral jaw mechanics was found to be independent of evolutionary change in pharyngeal jaw mass based on independent contrasts. Evolutionary decoupling of oral and pharyngeal jaw mechanics has likely played a critical role in the unparalleled trophic diversification of cichlid fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号