首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of actin cytoskeleton functional state in glioma C6 cell morphology and calcium signaling was investigated through modification of myosin II activity by blocking Rho-associated kinase with the specific inhibitor Y-27632. Treatment of glioma C6 cells with ROCK inhibitor resulted in actin cytoskeleton reorganization and also in the changed shape and distribution of mitochondria. Changes in the distribution of ER, the main calcium store in glioma C6 cells, were not visible. The inhibition of myosin II activity influences the first phase of calcium signaling evoked by agonist, and both phases of thapsigargin-evoked calcium response. We suggest that the observed increase in Ca2+ release from intracellular stores induced by IP3 formation as well as inhibition of SERCA ATPase is at least in part related to severely affected mitochondria. Enhancement of capacitative calcium entry evoked by thapsigargin is probably associated with the reorganization of the acto-myosin II system. ATP-induced calcium response presents no changes in the second phase. We observed that ATP stimulation of Y-27632 pretreated cells leads to immediate morphological rearrangement of glioma C6 cells. It is a consequence of actin cytoskeleton reorganization: formation of stress fibers and relocation of phosphorylated myosin II to actin filaments. It seems that the agonist-evoked strong calcium signal may be sufficient for myosin II activation and the stress fiber organization. This is the first work showing the dependence between the functional state of the acto-myosin II system and calcium signaling stressing the reversible character of this relationship.  相似文献   

2.
Capacitative calcium entry, usually evoked by receptor-ligand binding, may be also studied in the model system of calcium release after SERCA pump inhibition. We have previously found that disorganization of actin cytoskeleton has no effect on calcium influx into glioma C6 cells after thapsigargin administration [Biochem. Biophys. Res. Commun. 296 (2002) 484]. In the present work we show that the effect of other SERCA pump inhibitors depends on the endoplasmic reticulum distribution in a cell. Changing this distribution leads to changes in calcium release from ER stores. Intensity of calcium influx in the capacitative phase of cell answer does not depend on actin cytoskeleton state; however, administration of cytochalasin D significantly slows down signal build-up. While cyclopiazonic acid acts very similarly to thapsigargin, cytoskeleton disorganization leads to rise of calcium signal after administration of 2,5-di-(t-butyl)-1,4-benzohydroquinone. This effect may be caused by specific binding of this inhibitor to SERCA3 isoform of pump protein only.  相似文献   

3.
It has been proposed that cytoskeleton plays a key positive role in the activation of capacitative calcium entry (CCE), which supported the secretion-like hypothesis for the mechanisms underlying this process. However, its role on CCE in native smooth muscle is unknown. Here we demonstrate that CCE in isolated gallbladder myocytes was enhanced by cytochalasin D or latrunculin A treatments (agents that cause actin disassembly) whereas it was reduced by jasplakinolide treatment (which causes actin polymerization), suggesting that actin cytoskeleton acts as a barrier in CCE. In addition, we show for the first time that depletion of intracellular Ca2+ stores by thapsigargin and cholecystokinin in BAPTA-loaded cells induced a decrease in F-actin content that was consistent with a link between CCE and actin reorganization. In conclusion, these data suggest an active participation of actin reorganization in the implementation of CCE and support a conformational coupling model for this process in naive smooth muscle cells.  相似文献   

4.
We have studied the role of the actin cytoskeleton in bombesin-induced inositol 1,4,5-trisphosphate (IP(3))-production and Ca(2+)release in the pancreatic acinar tumour cell line AR4-2J. Intracellular and extracellular free Ca(2+)concentrations were measured in cell suspensions, using Fura-2. Disruption of the actin cytoskeleton by pretreatment of the cells with latrunculin B (10 microM), cytochalasin D (10 microM) or toxin B from Clostridium difficile (20 ng/ml) for 5-29 h led to inhibition of both, bombesin-stimulated IP(3)-production and Ca(2+)release. The toxins had no effect on binding of bombesin to its receptor, on Ca(2+)uptake into intracellular stores and on resting Ca(2+)levels. Ca(2+)mobilization from intracellular stores, induced by thapsigargin (100 nM) or IP(3)(1 microM) was not impaired by latrunculin B. In latrunculin B-pretreated cells inhibition of both, bombesin-stimulated IP(3)- production and Ca(2+)release was partly suspended in the presence of aluminum fluoride, an activator of G-proteins. Aluminum fluoride had no effect on basal IP(3)and Ca(2+)levels of control and toxin-pretreated cells. We conclude that disruption of the actin cytoskeleton impairs coupling of the bombesin receptor to its G-protein, resulting in inhibition of phospholipase C-activity with subsequent decreases in IP(3)-production and Ca(2+)release.  相似文献   

5.
Cytoskeleton damage is a frequent feature in neuronal cell death and one of the early events in oxidant-induced cell injury. This work addresses whether actin cytoskeleton reorganization is an early event of SIN-1-induced extracellular nitrosative/oxidative stress in cultured cerebellar granule neurons (CGN). The actin polymerization state, i.e. the relative levels of G-/F-actin, was quantitatively assessed by the ratio of the fluorescence intensities of microscopy images obtained from CGN double-labelled with Alexa594-DNase-I (for actin monomers) and Bodipy-FL-phallacidin (for actin filaments). Exposure of CGN to a flux of peroxynitrite as low as 0.5-1μM/min during 30min (achieved with 0.1mM SIN-1) was found to promote alterations of the actin cytoskeleton dynamics as it increases the G-actin/F-actin ratio. Because L-type voltage-operated Ca(2+) channels (L-VOCC) are primary targets in CGN exposed to SIN-1, the possible role of Ca(2+) dynamics on the perturbation of the actin cytoskeleton was also assessed from the cytosolic Ca(2+) concentration response to the L-VOCC's agonist FPL-64176 and to the L-VOCC's blocker nifedipine. The results showed that SIN-1 induced changes in the actin polymerization state correlated with its ability to decrease Ca(2+) influx through L-VOCC. Combined analysis of cytosolic Ca(2+) concentration and G-actin/F-actin ratio alterations by SIN-1, cytochalasin D, latrunculin B and jasplakinolide support that disruption of the actin cytoskeleton is linked to cytosolic calcium concentration changes.  相似文献   

6.

Background

Bone marrow-derived endothelial progenitor cells (EPCs), especially late EPCs, play a critical role in endothelial maintenance and repair, and postnatal vasculogenesis. Although the actin cytoskeleton has been considered as a modulator that controls the function and modulation of stem cells, its role in the function of EPCs, and in particular late EPCs, remains poorly understood.

Methodology/Principal Finding

Bone marrow-derived late EPCs were treated with jasplakinolide, a compound that stabilizes actin filaments. Cell apoptosis, proliferation, adhesion, migration, tube formation, nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation were subsequently assayed in vitro. Moreover, EPCs were locally infused into freshly balloon-injured carotid arteries, and the reendothelialization capacity was evaluated after 14 days. Jasplakinolide affected the actin distribution of late EPCs in a concentration and time dependent manner, and a moderate concentration of (100 nmol/l) jasplakinolide directly stabilized the actin filament of late EPCs. Actin stabilization by jasplakinolide enhanced the late EPC apoptosis induced by VEGF deprivation, and significantly impaired late EPC proliferation, adhesion, migration and tube formation. Furthermore, jasplakinolide attenuated the reendothelialization capacity of transplanted EPCs in the injured arterial segment in vivo. However, eNOS phosphorylation and NO production were increased in late EPCs treated with jasplakinolide. NO donor sodium nitroprusside (SNP) rescued the functional activities of jasplakinolide-stressed late EPCs while the endothelial NO synthase inhibitor L-NAME led to a further dysfunction induced by jasplakinolide in late EPCs.

Conclusions/Significance

A moderate concentration of jasplakinolide results in an accumulation of actin filaments, enhancing the apoptosis induced by cytokine deprivation, and impairing the proliferation and function of late EPCs both in vitro and in vivo. NO donor reverses these impairments, suggesting the role of NO-related mechanisms in jasplakinolide-induced EPC downregulation. Actin cytoskeleton may thus play a pivotal role in regulating late EPC function.  相似文献   

7.
Agonist-generated inside-out signals enable the platelet integrin alpha(IIb)beta(3) to bind soluble ligands such as fibrinogen. We found that inhibiting actin polymerization in unstimulated platelets with cytochalasin D or latrunculin A mimics the effects of platelet agonists by inducing fibrinogen binding to alpha(IIb)beta(3). By contrast, stabilizing actin filaments with jasplakinolide prevented cytochalasin D-, latrunculin A-, and ADP-induced fibrinogen binding. Cytochalasin D- and latrunculin A-induced fibrinogen was inhibited by ADP scavengers, suggesting that subthreshold concentrations of ADP provided the stimulus for the actin filament turnover required to see cytochalasin D and latrunculin A effects. Gelsolin, which severs actin filaments, is activated by calcium, whereas the actin disassembly factor cofilin is inhibited by serine phosphorylation. Consistent with a role for these factors in regulating alpha(IIb)beta(3) function, cytochalasin D- and latrunculin A-induced fibrinogen binding was inhibited by the intracellular calcium chelators 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid acetoxymethyl ester and EGTA acetoxymethyl ester and the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A. Our results suggest that the actin cytoskeleton in unstimulated platelets constrains alpha(IIb)beta(3) in a low affinity state. We propose that agonist-stimulated increases in platelet cytosolic calcium initiate actin filament turnover. Increased actin filament turnover then relieves cytoskeletal constraints on alpha(IIb)beta(3), allowing it to assume the high affinity conformation required for soluble ligand binding.  相似文献   

8.
Ou GS  Chen ZL  Yuan M 《Protoplasma》2002,219(3-4):168-175
Summary. Jasplakinolide is potentially a useful pharmacological tool for the study of actin organization and dynamics in living cells, since it induces actin polymerization in vitro and, unlike phalloidin, is membrane permeative. In the present work, the effect of jasplakinolide on the actin cytoskeleton of living suspension-cultured Nicotiana tabacum ‘Bright Yellow 2’ cells was investigated. Actin filaments in the living cells were disrupted by jasplakinolide. The effect of jasplakionlide on the actin cytoskeleton was concentration and time dependent. When cells were treated with a moderate concentration (150 nM) of jasplakinolide, cortical actin filaments were disrupted preferentially, whereas actin aggregated at the perinuclear region. With concentrations higher than 400 nM and exposure times longer than 30 min, actin filaments in the cell disappeared completely. The effect of jasplakinolide on the actin cytoskeleton was reversible even at high concentration. Actin bundles appeared first in the perinuclear region within 5 min, and the cortical actin array was reestablished in 15 min, suggesting that actin filaments might be organized at this region. Received July 31, 2001 Accepted December 14, 2001  相似文献   

9.
采用荧光分光光度计法检测维甲酸(RA)、1,25(OH)2VD3及佛波酯(PMA)诱导CCL229细胞分化后[Ca2+]i变化,并观察内质网(ER)特异的Ca2+-ATPase抑制剂Thapsigargin(TG)、IP3受体抑制剂Heparin对RA诱导[Ca2+]i变化的影响,从而探讨RA诱导[Ca2+]i变化与ER的关系。结果显示:RA和1,25(OH)2VD3在数秒内引起[Ca2+]i显著升高。在EGTA和Verapamil预处理细胞条件下,TG不能抑制RA引起Ca2+从细胞内钙池中外流,RA作用后TG仍能升高[Ca2+]i。另外,Heparin也不能完全抑制RA升高[Ca2+]i。提示RA诱导大肠癌细胞升高[Ca2+]i可能通过ER上IP3敏感性和非敏感性钙池,亦可能细胞内存在除ER外对RA敏感的钙池。  相似文献   

10.
The effects of actin cytoskeleton disruption by cytochalasin D and latrunculin A on Ca2+ signals evoked by ADP, UTP or thapsigargin were investigated in glioma C6 cells. Despite the profound alterations of the actin cytoskeleton architecture and cell morphology, ADP and UTP still produced cytosolic calcium elevation in this cell line. However, calcium mobilization from internal stores and Ca2+ influx through store-operated Ca2+ channels induced by ADP and UTP were strongly reduced. Cytochalasin D and latrunculin A also diminished extracellular Ca2+ influx in unstimulated glioma C6 cells previously incubated in Ca2+ free buffer. In contrast, the disruption of the actin cytoskeleton had no effect on thapsigargin-induced Ca2+ influx in this cell line. Both agonist- and thapsigargin-generated Ca2+ entry was significantly decreased by the blocker of store-operated Ca2+ channels, 2-aminoethoxydiphenylborate. The data reveal that two agonists and thapsigargin activate store-operated Ca2+ channels but the mechanism of activation seems to be different. While the agonists evoke a store-mediated Ca2+ entry that is dependent on the actin cytoskeleton, thapsigargin apparently activates an additional mechanism, which is independent of the disruption of the cytoskeleton.  相似文献   

11.
We tested the hypothesis that the equilibrium between F- and G-actin in endothelial cells modulates the integrity of the actin cytoskeleton and is important for the maintenance of endothelial barrier functions in vivo and in vitro. We used the actin-depolymerizing agent cytochalasin D and jasplakinolide, an actin filament (F-actin) stabilizing and promoting substance, to modulate the actin cytoskeleton. Low doses of jasplakinolide (0.1 microM), which we have previously shown to reduce the permeability-increasing effect of cytochalasin D, had no influence on resting permeability of single-perfused mesenteric microvessels in vivo as well as on monolayer integrity. The F-actin content of cultured endothelial cells remained unchanged. In contrast, higher doses (10 microM) of jasplakinolide increased permeability (hydraulic conductivity) to the same extent as cytochalasin D and induced formation of intercellular gaps in cultured myocardial endothelial (MyEnd) cell monolayers. This was accompanied by a 34% increase of F-actin and pronounced disorganization of the actin cytoskeleton in MyEnd cells. Furthermore, we tested whether an increase of cAMP by forskolin and rolipram would prevent the cytochalasin D-induced barrier breakdown. Conditions that increase intracellular cAMP failed to block the cytochalasin D-induced permeability increase in vivo and the reduction of vascular endothelial cadherin-mediated adhesion in vitro. Taken together, these data support the hypothesis that the state of polymerization of the actin cytoskeleton is critical for maintenance of endothelial barrier functions and that both depolymerization by cytochalasin D and hyperpolymerization of actin by jasplakinolide resulted in an increase of microvessel permeability in vivo. However, cAMP, which is known to support endothelial barrier functions, seems to work by mechanisms other than stabilizing F-actin.  相似文献   

12.
13.
In the present study we have explored the role of calmodulin (CaM) and inositol 1,4,5-trisphosphate receptor (IP(3)R) in the communication process activated after the release of calcium from the endoplasmic reticulum (ER) and the activation of calcium influx via endogenous TRP1 channels from Chinese hamster ovary cells. Experiments using combined rapid confocal calcium and electrophysiology measurements uncovered a consistent delay of around 900 ms between the first detectable calcium released from the ER and the activation of the calcium current. This delay was evident with two different methods used to release calcium from the ER: either the blockade of the microsomal calcium ATPase with thapsigargin or activation of bradykinin receptors linked to the IP(3) cascade. Direct application of IP(3) or a peptide from the NH(2)-terminal region of the IP(3)R activated store operated calcium, reducing the delay period. Introduction of CaM into the cell via the patch pipette increased the delay period from 900 +/- 100 ms to 10 +/- 2.1 s (n = 18). Furthermore, the use of selective CaM antagonists W7 and trifluoperazine maleate resulted in a substantial reduction of the delay period to 200 +/- 100 ms with 5 microm trifluoperazine maleate (n = 16) and 150 +/- 50 ms with 500 nm W7 (n = 22). CaM reduced also the current density activated by thapsigargin or brandykinin to about 60% from control. The CaM antagonists did not affect significantly the current density. The results presented here are consistent with an antagonistic effect of IP(3)R and CaM for the activation of store operated calcium after depletion of the ER. The functional competition between the activating effect of IP(3)R and the inhibiting effect of CaM may modulate the delay period between the release of calcium from the ER and the activation of calcium influx observed in different cells, as well as the amount of current activated after depletion of the ER.  相似文献   

14.
Three cell-permeant compounds, cytochalasin D, latrunculin A and jasplakinolide, which perturb intracellular actin dynamics by distinct mechanisms, were used to probe the role of filamentous actin and actin assembly in clathrin-mediated endocytosis in mammalian cells. These compounds had variable effects on receptor-mediated endocytosis of transferrin that depended on both the cell line and the experimental protocol employed. Endocytosis in A431 cells assayed in suspension was inhibited by latrunculin A and jasplakinolide, but resistant to cytochalasin D, whereas neither compound inhibited endocytosis in adherent A431 cells. In contrast, endocytosis in adherent CHO cells was more sensitive to disruption of the actin cytoskeleton than endocytosis in CHO cells grown or assayed in suspension. Endocytosis in other cell types, including nonadherent K562 human erythroleukemic cells or adherent Cos-7 cells was unaffected by disruption of the actin cytoskeleton. While it remains possible that actin filaments can play an accessory role in receptor-mediated endocytosis, these discordant results indicate that actin assembly does not play an obligatory role in endocytic coated vesicle formation in cultured mammalian cells.  相似文献   

15.
Using patch clamp and ion-selective fluorescence dye techniques, we investigated the influence of actin cytoskeleton rearrangements on the activity of calcium entry channels in plasma membrane of human carcinoma A431 cells. It is shown that disruption of actin microfilaments by cytohalasin D has no significant effect on calcium release from the stores and its entry from the extracellular space. It also does not interfere with the activation of inositol 1,4,5-trisphosphate (IP3)-dependent high-selective low-conductance calcium channels Imin. The treatment of cells with calyculin A induces the formation of actin filament layer beneath plasma membrane and also inhibits Imin activation and calcium entry through the plasma membrane, though calcium efflux from the stores was nearly unchanged. Thus, it is concluded that calcium signalling in A431 cells can be modulated by actin cytoskeleton rearrangements, and may be well described in terms of "conformational coupling" model.  相似文献   

16.
The dysfunction and death of neuronal cells is thought to underlie the cognitive manifestations of human immunodeficiency virus (HIV)-associated neurological disorders. Although HIV-infected patients are living longer owing to the effectiveness of anti-retroviral therapies, the number of patients developing neurological disorders is on the rise. Thus, there is an escalating need for effective therapies to preserve cognitive function in HIV-infected patients. Using HIV-protein-induced neurotoxicity as a model system, we tested the effectiveness of a non-immunosuppressive immunophilin ligand to attenuate gp120 and Tat-induced modification of neuronal function. The immunophilin ligand GPI1046 attenuated endoplasmic reticulum (ER) calcium release induced by gp120 and Tat and protected neurons from the lethal effect of these neurotoxic HIV proteins. Both inositol 1,4,5 trisphosphate (IP(3)) and ryanodine-sensitive ER calcium release was attenuated by pre-incubation with GPI1046. Using the sarco/endoplasmic reticulum calcium pump inhibitor thapsigargin to release ER calcium, we determined that GPI1046 reduced the total ER calcium load. These findings suggest that non-immunosuppressive immunophilin ligands may be useful neuroprotective drugs in HIV dementia.  相似文献   

17.
The effect of jasplakinolide. an actin-polymerizing and filament-stabilizing drug, on the growth, encystation, and actin cytoskeleton of Entamoeba histolytica and Entamoeba invadens was examined. Jasplakinolide inhibited the growth of E. histolytica strain HM-1:IMSS and E. invadens strain IP-1 in a concentration-dependent manner, the latter being more resistant to the drug. The inhibitory effect of jasplakinolide on the growth of E. histolytica trophozoites was reversed by removal of the drug after exposure to 1 microM for 1 day. Encystation of E. invadens as induced in vitro was also inhibited by jasplakinolide. Trophozoites exposed to jasplakinolide in encystation medium for 1 day did not encyst after removal of the drug, whereas those exposed to the drug in growth medium for 7 days did encyst without the drug. The process of cyst maturation was unaffected by jasplakinolide. Large round structures were formed in trophozoites of both amoebae grown with jasplakinolide; these were identified as F-actin aggregates by staining with fluorescent phalloidin. Accumulation in trophozoites of both amoebae of actin aggregates was observed after culture in jasplakinolide. Also, E. invadens cysts formed from trophozoites treated with jasplakinolide contained the actin aggregate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis revealed that the jasplakinolide treatment led to an increase in the proportion of F-actin associated with formation of the aggregate. The results suggest that aggregates are formed from the cortical flow of F-actin filaments, and that these filaments would normally be depolymerized but are artificially stabilized by jasplakinolide binding.  相似文献   

18.
The microsomal Ca-ATPase inhibitor thapsigargin induces in rat salivary acinar cells [Ca2+]i oscillations which, though similar to those activated by agonists, are independent of inositol phosphates or inositol 1,4,5-trisphosphate (IP3)-sensitive intracellular Ca2+ stores (Foskett, J. K., Roifman, C., and Wong, D. (1991) J. Biol. Chem. 266, 2778-2782). To examine whether the oscillation mechanism resides in another, thapsigargin- and IP3-insensitive intracellular store, we examined the effects of caffeine and ryanodine, known modulators of Ca2+ release from sarcoplasmic reticulum in excitable cells. Oscillations were induced by caffeine (1-20 mM) in nonoscillating thapsigargin-treated acinar cells, which required the continued presence of caffeine, whereas caffeine was without effect or reduced oscillation amplitude in oscillating cells. Ryanodine (10-50 microM) inhibited oscillations in most of the cells. These results suggest that Ca2+ oscillations in parotid acinar cells are driven by periodic Ca2+ release from an IP3-insensitive Ca2+ store with properties similar to sarcoplasmic reticulum of excitable cells.  相似文献   

19.
We have previously shown that the Gq protein coupled receptor (GqPCR) agonist, carbachol (CCh), transactivates and recruits epidermal growth factor receptor (EGFr)-dependent signaling mechanisms in intestinal epithelial cells. Increasing evidence suggests that GqPCR agonists can also recruit focal adhesion-dependent signaling pathways in some cell types. Therefore, the aim of the present study was to investigate if CCh stimulates activation of the focal adhesion-associated protein, focal adhesion kinase (FAK), in intestinal epithelia and, if so, to examine the signaling mechanisms involved. Experiments were carried out on monolayers of T84 cells grown on permeable supports. CCh rapidly induced tyrosine phosphorylation of FAK in T84 cells. This effect was accompanied by phosphorylation of another focal adhesion-associated protein, paxillin, and association of FAK with paxillin. CCh-stimulated FAK phosphorylation was inhibited by a chelator of intracellular Ca2+, BAPTA/AM (20 microM), and was mimicked by thapsigargin (2 microM), which mobilizes intracellular Ca2+ in a receptor-independent fashion. CCh also induced association of FAK with the EGFr and FAK phosphorylation was attenuated by an EGFr inhibitor, tyrphostin AG1478, and an inhibitor of Src family kinases, PP2. The actin cytoskeleton disruptor, cytochalasin D (20 microM), abolished FAK phosphorylation in response to CCh but did not alter CCh-induced EGFr or ERK MAPK activation. In summary, these data demonstrate that agonists of GqPCRs have the ability to induce FAK activation in intestinal epithelial cells. GqPCR-induced FAK activation is mediated by via a pathway involving transactivation of the EGFr and alterations in the actin cytoskeleton.  相似文献   

20.
The properties of inositol 1,4,5-trisphosphate (IP3)-dependent intracellular calcium oscillations in pancreatic acinar cells depend crucially on the agonist used to stimulate them. Acetylcholine or carbachol (CCh) cause high-frequency (10-12-s period) calcium oscillations that are superimposed on a raised baseline, while cholecystokinin (CCK) causes long-period (>100-s period) baseline spiking. We show that physiological concentrations of CCK induce rapid phosphorylation of the IP3 receptor, which is not true of physiological concentrations of CCh. Based on this and other experimental data, we construct a mathematical model of agonist-specific intracellular calcium oscillations in pancreatic acinar cells. Model simulations agree with previous experimental work on the rates of activation and inactivation of the IP3 receptor by calcium (DuFour, J.-F., I.M. Arias, and T.J. Turner. 1997. J. Biol. Chem. 272:2675-2681), and reproduce both short-period, raised baseline oscillations, and long-period baseline spiking. The steady state open probability curve of the model IP3 receptor is an increasing function of calcium concentration, as found for type-III IP3 receptors by Hagar et al. (Hagar, R.E., A.D. Burgstahler, M.H. Nathanson, and B.E. Ehrlich. 1998. Nature. 396:81-84). We use the model to predict the effect of the removal of external calcium, and this prediction is confirmed experimentally. We also predict that, for type-III IP3 receptors, the steady state open probability curve will shift to lower calcium concentrations as the background IP3 concentration increases. We conclude that the differences between CCh- and CCK-induced calcium oscillations in pancreatic acinar cells can be explained by two principal mechanisms: (a) CCK causes more phosphorylation of the IP3 receptor than does CCh, and the phosphorylated receptor cannot pass calcium current; and (b) the rate of calcium ATPase pumping and the rate of calcium influx from the outside the cell are greater in the presence of CCh than in the presence of CCK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号