首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The pathogenesis of the fibrotic disease Dupuytren's contracture remains unclear. The disease process includes two structurally distinct fibrotic elements, the nodule and the cord. It has been proposed that as the disease progresses, nodules develop into cords. To corroborate that hypothesis, the authors took advantage of cultured fibroblast differences found between gap junction intercellular communication and fibroblast-populated collagen lattice contraction. Paired fibroblast cell lines of nodules and cords derived from four patients with Dupuytren's disease were maintained in culture for at least eight passages. The presence of gap junction intercellular communication in nodule- and cord-derived fibroblasts was documented and reported as a coupling index. The contraction of free-floating nodule- or cord-derived collagen lattices was also documented and reported. Early passage (passage 4) cord-derived fibroblasts showed a significant increase in coupling index compared with passage 4 nodule-derived fibroblasts (4.0 +/- 0.4 versus 2.5 +/- 0.3, respectively), where p < or = 0.01. However, late passage (passage 8) nodule- and cord-derived fibroblasts were equivalent in their coupling index (4.1 +/- 0.4 versus 4.4 +/- 0.4, respectively). Early passage nodule-derived fibroblast-populated collagen lattices contracted by 64 percent, whereas late passage nodule-derived lattices showed less contraction, at only 40 percent. Early and late passage cord-derived lattices contracted 46 and 37 percent, respectively. All nodule- and cord-derived cell lines were statistically equivalent at lattice contraction by passage 8. These in vitro studies support the hypothesis that fibroblasts derived from Dupuytren's contracture nodules change their phenotype after undergoing repeated cell passage, acquiring a cord-like fibroblast phenotype. Dupuytren's nodules represent the early, active form of fibrosis in which cells are more proliferative, better at fibroblast-populated collagen lattice contraction, and display less gap junction intercellular communication. The speculation is that alterations in gap junction intercellular communication may be involved in the progression of Dupuytren's nodules to cords as the disease progresses.  相似文献   

2.
Degradation of collagen by fibroblast phagocytosis is an important pathway for physiological remodelling of soft connective tissues. Perturbations of this pathway may provide a mechanism for the development of fibrotic lesions. As collagen phagocytosis may be regulated by either a change of the proportions or the activity of phagocytic cells, we quantified phagocytosis with an in vitro model system. Collagen-coated fluorescent latex beads were incubated with human gingival fibroblasts and the fluorescence associated with internalized beads was measured by flow cytometry. Cells from normal tissues that had been incubated with beads for 3 hours contained a mean of 64% phagocytic cells; however, a small subpopulation (10% of phagocytic cells) contained more than threefold higher numbers of beads per cell than the mean. In contrast, cells from fibrotic lesions exhibited a large reduction of the proportions of phagocytic cells (mean = 13.8%) and there were no cells with high numbers of beads. On the basis of 3H-Tdr labeling, cells from fibrotic lesions that had internalized beads failed to proliferate, in contrast to phagocytic cells from normal tissues, which underwent repeated cell divisions. This result was not due to variations of cell cycle phase as there was no preferential internalization of beads during different phases of the cell cycle. The low phagocytic rate of cells from fibrotic lesions was also not due to asymmetric partitioning of phagosomes at mitosis as videocinemicrography of bead-labeled phagosomes in single, pre-mitotic cells demonstrated that > 90% of phagocytic cells equally partitioned beads to daughter cells. To investigate if inhibition of phagocytosis could be replicated in vitro, cells were incubated with the fibrosis-inducing drugs nifedipine or dilantin. These cultures exhibited marked (15–75%), dose-dependent reductions in the proportions of phagocytic cells, but there was no reduction in bead number per cell. Fibrotic lesions appear to contain fibroblasts with marked deficiencies in phagocytosis and the reduced phagocytic activity of these cells may contribute to unbalanced degradation and fibrosis. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Acetylcholine (ACh) has been reported to play various physiological roles, including wound healing in the cornea. Here, we study the role of ACh in the transition of corneal fibroblasts into myofibroblasts, and in consequence its role in the onset of fibrosis, in an in vitro human corneal fibrosis model. Primary human keratocytes were obtained from healthy corneas. Vitamin C (VitC) and transforming growth factor‐β1 (TGF‐β1) were used to induce fibrosis in corneal fibroblasts. qRT‐PCR and ELISA analyses showed that gene expression and production of collagen I, collagen III, collagen V, lumican, fibronectin (FN) and alpha‐smooth muscle actin (α‐SMA) were reduced by ACh in quiescent keratocytes. ACh treatment furthermore decreased gene expression and production of collagen I, collagen III, collagen V, lumican, FN and α‐SMA during the transition of corneal fibroblasts into myofibroblasts, after induction of fibrotic process. ACh inhibited corneal fibroblasts from developing contractile activity during the process of fibrosis, as assessed with collagen gel contraction assay. Moreover, the effect of ACh was dependent on activation of muscarinic ACh receptors. These results show that ACh has an anti‐fibrotic effect in an in vitro human corneal fibrosis model, as it negatively affects the transition of corneal fibroblasts into myofibroblasts. Therefore, ACh might play a role in the onset of fibrosis in the corneal stroma.  相似文献   

4.
Systemic Sclerosis (SSc) is a rare fibrotic autoimmune disorder for which no curative treatments currently exist. Metabolic remodelling has recently been implicated in other autoimmune diseases; however, its potential role in SSc has received little attention. Here, we aimed to determine whether changes to glycolysis and glutaminolysis are important features of skin fibrosis. TGF‐β1, the quintessential pro‐fibrotic stimulus, was used to activate fibrotic pathways in NHDFs in vitro. Dermal fibroblasts derived from lesions of SSc patients were also used for in vitro experiments. Parameters of glycolytic function were assessed using by measuring extracellular acidification in response to glycolytic activators/inhibitors, whilst markers of fibrosis were measured by Western blotting following the use of the glycolysis inhibitors 2‐dg and 3PO and the glutaminolysis inhibitor G968. Succinate was also measured after TGF‐β1 stimulation. Itaconate was added to SSc fibroblasts and collagen examined. TGF‐β1 up‐regulates glycolysis in dermal fibroblasts, and inhibition of glycolysis attenuates its pro‐fibrotic effects. Furthermore, inhibition of glutamine metabolism also reverses TGF‐β1‐induced fibrosis, whilst glutaminase expression is up‐regulated in dermal fibroblasts derived from SSc patient skin lesions, suggesting that enhanced glutamine metabolism is another aspect of the pro‐fibrotic metabolic phenotype in skin fibrosis. TGF‐β1 was also able to enhance succinate production, with increased succinate shown to be associated with increased collagen expression. Incubation of SSc cells with itaconate, an important metabolite, reduced collagen expression. TGF‐β1 activation of glycolysis is a key feature of the fibrotic phenotype induced by TGF‐B1 in skin cells, whilst increased glutaminolysis is also evident in SSc fibroblasts.  相似文献   

5.
The signal transduction mechanisms generating pathological fibrosis are almost wholly unknown. Endothelin-1 (ET-1), which is up-regulated during tissue repair and fibrosis, induces lung fibroblasts to produce and contract extracellular matrix. Lung fibroblasts isolated from scleroderma patients with chronic pulmonary fibrosis produce elevated levels of ET-1, which contribute to the persistent fibrotic phenotype of these cells. Transforming growth factor beta (TGF-beta) induces fibroblasts to produce and contract matrix. In this report, we show that TGF-beta induces ET-1 in normal and fibrotic lung fibroblasts in a Smad-independent ALK5/c-Jun N-terminal kinase (JNK)/Ap-1-dependent fashion. ET-1 induces JNK through TAK1. Fibrotic lung fibroblasts display constitutive JNK activation, which was reduced by the dual ETA/ETB receptor inhibitor, bosentan, providing evidence of an autocrine endothelin loop. Thus, ET-1 and TGF-beta are likely to cooperate in the pathogenesis of pulmonary fibrosis. As elevated JNK activation in fibrotic lung fibroblasts contributes to the persistence of the myofibroblast phenotype in pulmonary fibrosis by promoting an autocrine ET-1 loop, targeting the ETA and ETB receptors or constitutive JNK activation by fibrotic lung fibroblasts is likely to be of benefit in combating chronic pulmonary fibrosis.  相似文献   

6.
The telomerase activity and the senescence profile of cultured breast fibroblasts from normal human interstitial and malignant stromal tissue were studied in comparison with their proliferation and differentiation pattern. Fibroblasts were grown either in the presence or absence of a conditioned medium (CM) obtained from cultures of the oestrogen receptor-positive breast cancer MCF-7 cell line. At different passages (from the 2nd up to the 48th), fibroblasts were examined for the telomerase activity by the Telomerase Repeats Amplification Protocol (TRAP) assay, for proliferation profile by Ki-67 antigen expression, and the myofibroblast or smooth muscle cell-like differentiation pattern by immunofluorescence with monoclonal antibodies specific for smooth muscle markers. Serial passages of fibroblasts from normal or tumour breast reveal that the relationship between the levels of telomerase activity and phenotypic/proliferation profile changes with cell subcultivation in a different manner in the two cell populations. The fibroblasts from normal tissue completed 12 passages in a CM-independent way prior to senescence whereas fibroblasts from tumour stroma senescence were attained after 48 passages. These cells showed a marked decrease of telomerase activity, growth rate and smooth muscle -actin expressing myofibroblasts after the 32nd passage. CM treatment of this fibroblast population induces a decline in the myofibroblast content, which precedes the changes in telomerase activity. Passaged fibroblasts from normal breast tissue can be converted to myofibroblasts upon CM treatment whereas those from tumour stroma were CM-insensitive. Taken together our data suggest that a heterogeneous fibroblast population with different life span is activated/recruited in the breast interstitium and poses the problem of a unique activation/recruitment of fibroblasts in neoplastic conditions.  相似文献   

7.
Collagen deposition by fibroblasts contributes to scarring in fibrotic diseases. Activation of protein kinase A (PKA) by cAMP represents a pivotal brake on fibroblast activation, and the lipid mediator prostaglandin E(2) (PGE(2)) exerts its well known anti-fibrotic actions through cAMP signaling. However, fibrotic fibroblasts from the lungs of patients with idiopathic pulmonary fibrosis, or of mice with bleomycin-induced fibrosis, are resistant to the normal collagen-inhibiting action of PGE(2). In this study, we demonstrate that plasminogen activation to plasmin restores PGE(2) sensitivity in fibrotic lung fibroblasts from human and mouse. This involves amplified PKA signaling resulting from the promotion of new interactions between AKAP9 and PKA regulatory subunit II in the perinuclear region as well as from the inhibition of protein phosphatase 2A. This is the first report to show that an extracellular mediator can dramatically reorganize and amplify the intracellular PKA-A-kinase anchoring protein signaling network and suggests a new strategy to control collagen deposition by fibrotic fibroblasts.  相似文献   

8.
Abnormal cutaneous wound healing can lead to formation of fibrotic hypertrophic scars. Although several clinical risk factors have been described, the cross‐talk between different cell types resulting in hypertrophic scar formation is still poorly understood. The aim of this in vitro study was to investigate whether endothelial cells (EC) may play a role in skin fibrosis, for example, hypertrophic scar formation after full‐thickness skin trauma. Using a collagen/elastin matrix, we developed an in vitro fibrosis model to study the interaction between EC and dermal fibroblasts or adipose tissue‐derived mesenchymal stromal cells (ASC). Tissue equivalents containing dermal fibroblasts and EC displayed a normal phenotype. In contrast, tissue equivalents containing ASC and EC displayed a fibrotic phenotype indicated by contraction of the matrix, higher gene expression of ACTA2, COL1A, COL3A, and less secretion of follistatin. The contraction was in part mediated via the TGF‐β pathway, as both inhibition of the ALK4/5/7 receptors and the addition of recombinant follistatin resulted in decreased matrix contraction (75 ± 11% and 24 ± 8%, respectively). In conclusion, our study shows that EC may play a critical role in fibrotic events, as seen in hypertrophic scars, by stimulating ASC‐mediated matrix contraction via regulation of fibrosis‐related proteins.  相似文献   

9.
Recent studies show that apoptosis affects surrounding tissue, playing a role in diseases such as fibrosis, a significant global disease burden. Elucidating the mechanisms by which the different apoptotic cells present during fibrotic wound healing affect their environment would enable development of new therapies. We describe here a simple, rapid, and cost-effective method for inducing apoptosis of primary normal human dermal fibroblasts without affecting the overall cell viability of the population. Such population could be used for in vitro models of fibrotic wound healing in co-culture with other cells involved in this process to study events such as apoptosis-induced proliferation.  相似文献   

10.
Chronic liver injury leads to the accumulation of myofibroblasts resulting in increased collagen deposition and hepatic fibrogenesis. Treatments specifically targeting fibrogenesis are not yet available. Mesenchymal stromal cells (MSCs) are fibroblast‐like stromal (stem) cells, which stimulate tissue regeneration and modulate immune responses. In the present study we assessed whether liver fibrosis and cirrhosis can be reversed by treatment with MSCs or fibroblasts concomitant to partial hepatectomy (pHx)‐induced liver regeneration. After carbon tetrachloride‐induced fibrosis and cirrhosis, mice underwent a pHx and received either systemically or locally MSCs in one of the two remaining fibrotic/cirrhotic liver lobes. Eight days after treatment, liver fibrogenesis was evaluated by Sirius‐red staining for collagen deposition. A significant reduction of collagen content in the locally treated lobes of the regenerated fibrotic and cirrhotic livers was observed in mice that received high dose MSCs. In the non‐MSC‐treated counterpart liver lobes no changes in collagen deposition were observed. Local fibroblast administration or intravenous administration of MSCs did not ameliorate fibrosis. To conclude, local administration of MSCs after pHx, in contrast to fibroblasts, results in a dose‐dependent on‐site reduction of collagen deposition in mouse models for liver fibrosis and cirrhosis.  相似文献   

11.
Pancreatic cancer contains both fibrotic tissue and tumor cells with embedded vasculature. Therefore anti-cancer nanoparticles need to extravasate from tumor vasculature and permeate thick fibrotic tissue to target tumor cells. To date, permeation of drugs has been investigated in vitro using monolayer models. Since three-dimensional migration of nanoparticles cannot be analyzed in a monolayer model, we established a novel, three-dimensional, multilayered, in vitro model of tumor fibrotic tissue, using our hierarchical cell manipulation technique with K643f fibroblasts derived from a murine pancreatic tumor model. NIH3T3 normal fibroblasts were used in comparison. We analyzed the size-dependent effect of nanoparticles on permeation in this experimental model using fluorescent dextran molecules of different molecular weights. The system revealed permeation decreased as number of layers of cultured cells increased, or as molecule size increased. Furthermore, we showed changes in permeation depended on the source of the fibroblasts. Observations of this sort cannot be made in conventional monolayer culture systems. Thus our novel technique provides a promising in vitro means to investigate permeation of nanoparticles in fibrotic tissue, when both type and number of fibroblasts can be regulated.  相似文献   

12.
PURPOSE: The objective of this study is to evaluate the fibrotic process induced in vivo by NAMI-A in mice with solid tumours. In addition, the in vitro effects of NAMI-A on collagen fibres and the expression of TGFbeta1 in TS/A adenocarcinoma cells, NIH/3T3 fibroblasts and co-culture of fibroblasts and tumour cells have also been studied. METHODS: Collagen fibres release was assayed in supernatant of culture cells treated with 0.1 and 0.01 mM NAMI-A. TGFbeta1 was detected by RT-PCR and immunoblot on cellular lysates. RESULTS: NAMI-A, given to mice bearing MCa mammary carcinoma at advanced stages of growth, increased the thickness of connective tissue and induced recruitment of leukocytes, particularly in the peritumour capsule. In vitro NAMI-A stimulated collagen production by NIH/3T3 fibroblasts and decreased collagen release by TS/A tumour cells after prolonged exposure, either after single cell treatment or in co-cultures. In co-cultures, NAMI-A, in a dose-dependent manner, down-regulated the expression of TGFbeta1 mRNA and protein in tumour cells and up-regulated it in fibroblasts. The isoform of this cytokine is involved in fibrosis, invasion and metastatic processes. CONCLUSIONS: These data emphasize the ability of NAMI-A to evoke beneficial effects from healthy cells against tumour growth and metastases. The contribution of fibroblasts to the fibrosis arising in tumour masses is due to TGFbeta1, and its down-regulation in tumour cells might explain the documented reduction of gelatinase release.  相似文献   

13.
Razzaque MS  Ahmed AR 《Cytokine》2002,17(6):311-316
Cicatricial pemphigoid (CP) is an autoimmune mucocutaneous blistering disease associated with scarring. Heat shock protein 47 (HSP47) is thought to play an important role in fibrogenesis, but its role in skin lesions of cicatricial pemphigoid is not yet known. In the present study, we examined the role of HSP47 in dermal fibrosis in cutaneous lesions of a CP patient. Skin biopsies from a patient with CP, and from normal subjects were studied for the expression of HSP47, and interstitial collagens (type I and type III collagens) by immunohistochemistry. Dermal fibroblasts isolated from skin of normal individuals and from fibrotic skin of a CP patient were used to study the expression of HSP47, transforming growth factor beta 1 (TGF-beta 1), type I and type III collagens. Compared to the control skin sections, an increased expression of HSP47 was associated with an increased deposition of interstitial collagens in the fibrotic skin section of the CP patient. Similarly, in contrast to control dermal fibroblasts, the fibroblasts isolated and cultured from fibrotic skin of the CP patient, and grown in vitro, exhibited increased expression of HSP47, type I and type III collagens. Furthermore, compared to the normal control fibroblasts, an increased expression of TGF-beta 1 was detected in the dermal fibroblasts isolated from fibrotic skin of the CP patient. When dermal fibroblasts were treated with various concentrations of TGF-beta 1 (6.25, 12.5, 25, 50 and 100 ng/ml for 24 h), it induced the expression of both type I collagen and HSP47, as determined by quantitative real-time PCR. In conclusion, the expression of TGF-beta 1, HSP47, type I collagen and type III collagen was up-regulated in the fibrotic skin of CP patient, and a complex interaction of these molecules may initiate and propagate the fibrotic cascade in the skin of CP patients.  相似文献   

14.
Skin fibrotic disorders are understood to develop under the influence of some growth factors, such as transforming growth factor-beta (TGF-β), basic fibroblast growth factor (bFGF), or connective tissue growth factor (CTGF). To establish an appropriate animal model of skin fibrosis by exogenous application of growth factors, we investigated the in vivo effects of growth factors by injecting TGF-β, CTGF, and bFGF into the subcutaneous tissue of newborn mice. A single application of TGF-β or bFGF resulted in the formation of transient granulated tissue that disappeared despite 7 days of consecutive injections. A single CTGF injection also caused slight granulation. However, injecting TGF-β plus CTGF produced long-term fibrotic tissue, which persisted for at least 14 days. Also, fibrotic tissue was observed when CTGF was injected from 4 to 7 days after TGF-β injections for the first 1–3 days. In situ hybridization analysis revealed the expression of CTGF mRNA in the fibroblasts at least in a few fibrotic conditions. These findings suggest that either CTGF mRNA or an application of exogenous CTGF protein is required for the development of persistent fibrosis. From our study, it appears that interaction of several growth factors is required for persistent fibrotic tissue formation, with TGF-β causing the induction and CTGF needed for maintenance of skin fibrosis. The animal model on skin fibrosis by exogenous application of growth factors developed in this study may prove useful for future studies on fibrotic disorders. J. Cell. Physiol. 181:153–159, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

15.
体外培养的牛耳成纤维细胞的细胞周期研究   总被引:1,自引:0,他引:1  
陈彦  吴健  张芳 《生物技术》2004,14(6):14-17
通过细胞体外培养,对牛耳成纤维细胞的周期分布进行了研究。不同代数的细胞在生长至70-85%汇合和血清饥饿72h两种状态的细胞周期分布无显著差异。对于体外培养的第8代细胞,生长至50-60%、70-85%和完全汇合时,细胞周期分布存在显著差异;而培养时间对血清饥饿培养和正常培养至充分汇合时的细胞周期分布无显著影响。结果表明,体外培养代数及培养方法不会明显影响细胞周期的分布,但同代细胞因处于不同生长阶段细胞周期分布会存在显著差异。  相似文献   

16.
Oxidative stress with reactive oxygen species (ROS) can contribute to the pathogenesis of idiopathic pulmonary fibrosis. Antioxidant enzymes, such as extracellular superoxide dismutase (ECSOD), may modulate the injury and repair components of the fibrogenic response. Here we determined whether ECSOD could attenuate experimental TGF-β1-induced persistent lung fibrosis. In this study, primary human lung fibroblasts, MRC-5 fibroblasts and A549 epithelial cells were exposed to recombinant active TGF-β1. An adenovirus vector that expresses human ECSOD (AdECSOD) was constructed and rats were endotracheally intubated with an adenoviral vector encoding active TGF-β1 (AdTGF-β1), AdECSOD or a control vector (AdDL70) alone or in combinations AdTGF-β1/AdDL70 or AdTGF-β1/AdECSOD. TGF-β1 alone induced fibrotic responses and significantly down-regulated endogenous ECSOD gene expression both in vitro and in vivo and caused oxidative stress in rat lung, associated with increased levels of activated TGF-β1 in lung fluid and tissue. ECSOD protein was markedly reduced in the interstitium and fibrotic foci in TGF-β1 induced experimental lung fibrosis. The fibrotic response caused by AdTGF-β1 was markedly attenuated by concomitant gene transfer using AdECSOD, detected by lung function measurements, histologic and morphometric analysis, hydroxyproline content and fibrosis-related gene expression. In addition, the oxidative stress and increased presence of activated TGF-β1 in rat lung induced by AdTGF-β1 was significantly reduced by ECSOD gene transfer. These findings suggest a substantial role for oxidative stress in the pathogenesis of TGF-β1 driven persistent pulmonary fibrosis and enhanced presence of ECSOD can inhibit latent TGF-β1 activation by ROS and diminish subsequent fibrotic responses.  相似文献   

17.
Development of fibrosis involves an increase in the deposition of connective tissue components including collagens, fibronectin and proteoglycans. One hypothesis to account for matrix deposition in fibrosis is that fibroblast with differing matrix producing capacity are involved in the fibrotic process. To test this hypothesis, primary fibroblast cultures and clones derived from these primary lines were established from the lung tissue of control patients and patients with pulmonary fibrosis. The primary lines and derived clones were studied in relation to their capacity to proliferate and to produce proteoglycans and hyaluronan. Primary fibroblast cultures and clones from normal subjects and patients with lung fibrosis differed considerably, with up to 13-fold difference, in both hyaluronan and proteoglycan production. The major proteoglycan produced was decorin in both controls and cultures from fibrotic patients, while cultures from patients with lung fibrosis had a higher expression of mRNA for both collagen and decorin. Clones derived from a primary line from a fibrotic patient secreted 3-fold greater amounts of decorin than those from a control subject. Furthermore, a negative correlation between proliferation and synthesis of decorin was noted. We suggest that different fibroblast clones accumulate in the lung, and that specific cell populations of high decorin producing fibroblasts may exist which are crucial in the pathogenesis of fibrosis.  相似文献   

18.
19.
Summary Liver connective tissue cells (LCTC) isolated from patients with fibrotic livers have morphological and biochemical characteristics of myofibroblasts. We have examined the proliferation of LCTC derived from normal livers and from livers with fibrosis of different etiologies, as well as proliferation of skin fibroblasts. We have compared proliferation rates in the presence of fresh human serum and heat-inactivated serum. While skin fibroblast and LCTC from normal liver showed no difference, proliferation of LCTC from fibrotic livers was markedly decreased in the presence of heat-inactivated serum. We demonstrate that the native complement component C1 is a factor involved in the induction of DNA synthesis and proliferation of LCTC isolated from fibrotic livers. We propose that native C1, acting probably in cooperation with other growth factors, is involved in the expansion of connective tissue cells during the development of liver fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号