首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
A cDNA encoding insulin-degrading enzyme (IDE) was cloned from tomato (Solanum lycopersicum) and expressed in Escherichia coli in N-terminal fusion with glutathione S-transferase. GST-SlIDE was characterized as a neutral thiol-dependent metallopeptidase with insulinase activity: the recombinant enzyme cleaved the oxidized insulin B chain at eight peptide bonds, six of which are also targets of human IDE. Despite a certain preference for proline in the vicinity of the cleavage site, synthetic peptides were cleaved at apparently stochastic positions indicating that SlIDE, similar to IDEs from other organisms, does not recognize any particular amino acid motif in the primary structure of its substrates. Under steady-state conditions, an apparent K(m) of 62+/-7 microm and a catalytic efficiency (k(cat)/K(m)) of 62+/-15 mm(-1) s(-1) were determined for Abz-SKRDPPKMQTDLY(NO(3))-NH(2) as the substrate. GST-SlIDE was effectively inhibited by ATP at physiological concentrations, suggesting regulation of its activity in response to the energy status of the cell. While mammalian and plant IDEs share many of their biochemical properties, this similarity does not extend to their function in vivo, because insulin and the beta-amyloid peptide, well-established substrates of mammalian IDEs, as well as insulin-related signaling appear to be absent from plant systems.  相似文献   

2.
Insulin-degrading enzyme (IDE) is central to the turnover of insulin and degrades amyloid beta (Abeta) in the mammalian brain. Biochemical and genetic data support the notion that IDE may play a role in late onset Alzheimer disease (AD), and recent studies suggest an association between AD and diabetes mellitus type 2. Here we show that a natively folded recombinant IDE was capable of forming a stable complex with Abeta that resisted dissociation after treatment with strong denaturants. This interaction was also observed with rat brain IDE and detected in an SDS-soluble fraction from AD cortical tissue. Abeta sequence 17-27, known to be crucial in amyloid assembly, was sufficient to form a stable complex with IDE. Monomeric as opposed to aggregated Abeta was competent to associate irreversibly with IDE following a very slow kinetics (t(1/2) approximately 45 min). Partial denaturation of IDE as well as preincubation with a 10-fold molar excess of insulin prevented complex formation, suggesting that the irreversible interaction of Abeta takes place with at least part of the substrate binding site of the protease. Limited proteolysis showed that Abeta remained bound to a approximately 25-kDa N-terminal fragment of IDE in an SDS-resistant manner. Mass spectrometry after in gel digestion of the IDE .Abeta complex showed that peptides derived from the region that includes the catalytic site of IDE were recovered with Abeta. Taken together, these results are suggestive of an unprecedented mechanism of conformation-dependent substrate binding that may perturb Abeta clearance, insulin turnover, and promote AD pathogenesis.  相似文献   

3.
We reported in a previous work that insulin degradation by insulin-degrading enzyme (IDE) was inhibited by ATP (Exp Biol Med 226:334-341, 2001). Then we studied ATP hydrolysis as a possible mechanism for reversion of this inhibition. ATP hydrolysis was determined by (32)P release after hydrolysis of gamma[(32)P]ATP. ATP hydrolysis was studied by Sephadex G200 chromatography, immunoprecipitation, and nondissociating gel electrophoresis. Purified recombinant rat IDE and extractive homogenous IDE showed similar ATP hydrolysis. All results showed concordance between insulin degradation and ATP hydrolysis, suggesting that IDE has both functions. In order to define the type of hydrolysis, we studied inhibitors of IDE, phosphohydrolases, and ATPases. Each substance studied had no effect on ATP hydrolysis, except 1 mM orthovanadate, a known inhibitor of ATPases, phosphatases, and insulin degradation. ATP hydrolysis followed a Michaelis-Menten kinetic with Vmax: 570.45 +/- 113.08 pmol Pi/hr and apparent Michaelis constant (Km): 63.13 +/- 3.48 microM. ATP binding studies strongly suggested an ATP binding site and enzyme kinetics established only one active hydrolytic ATP binding site per IDE molecule. ATP-induced enzyme aggregation changes as observed by electrophoresis mobility in nondissociating conditions and conformational changes on insulin binding as shown by IDE-insulin cross-linking. We conclude that IDEs have ATPase activity and that insulin-binding and degradation are dependent on ATP concentration; however, insulin does not modify the ATPase activity of IDE.  相似文献   

4.
During its infectious cycle, vaccinia virus expresses a virus-encoded ribonucleotide reductase which is distinct from the host cellular enzyme (Slabaugh, M.B., and Mathews, C.K. (1984) J. Virol. 52, 501-506; Slabaugh, M.B., Johnson, T.L., and Mathews, C.K. (1984) J. Virol. 52, 507-514). We have cloned the gene for the small subunit of vaccinia virus ribonucleotide reductase (designated VVR2) into Escherichia coli and expressed the protein using a T7 RNA polymerase plasmid expression system. After isopropyl beta-D-thiogalactopyranoside induction, accumulation of a 37-kDa peptide was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and this peptide reacted with polyclonal antiserum raised against a TrpE-VVR2 fusion protein. The 37-kDa protein was purified to homogeneity, and gel filtration of the purified protein revealed that the recombinant protein existed as a dimer in solution. Purified recombinant VVR2 protein was shown to complement the activity of purified recombinant ribonucleotide reductase large subunit, with a specific activity that was similar to native VVR2 from a virus-infected cell extract. A CD spectrum of the recombinant viral protein showed that like the mouse protein, the vaccinia virus protein has 50% alpha-helical structure. Like other iron-containing ribonucleotide reductase small subunits, recombinant VVR2 protein contained a stable organic free radical that was detectable by EPR spectroscopy. The EPR spectrum of purified recombinant VVR2 was identical to that of vaccinia virus-infected mammalian cells. Both the hyperfine splitting character and microwave saturation behavior of VVR2 were similar to those of mouse R2 and distinct from E. coli R2. By using amino acid analysis to determine the concentration of VVR2, we determined that approximately 0.6 radicals were present per R2 dimer. Our results indicate that vaccinia virus small subunit is similar to mammalian ribonucleotide reductases.  相似文献   

5.
A new and rapid purification procedure has been developed for the mammalian 70,000-dalton (70-kDa) heat-shock (or stress) proteins. Both the constitutive 73-kDa protein and the stress-induced 72-kDa protein have been purified by a two-step procedure employing DE52 ion-exchange chromatography followed by affinity chromatography on ATP-agarose. The two proteins, present in approximately equal amounts in either the 12,000 X g supernatant or pellet of hypotonically lysed heat-shock-treated HeLa cells, were found to copurify in relatively homogenous form. The purified proteins were covalently labeled with the fluorescent dye tetramethylrhodamine isothiocyanate, and the fluorescently labeled proteins were introduced back into living rat embryo fibroblasts via microinjection. The microinjected cells maintained at 37 degrees C showed only diffuse nuclear and cytoplasmic fluorescence. After heat-shock treatment of the cells, fluorescence was observed throughout the nucleus and more prominently within the nucleolus. This result is consistent with our earlier indirect immunofluorescence studies which showed a nuclear and nucleolar distribution of the endogenous 72-kDa stress protein in heat-shock-treated mammalian cells. The result also indicates that, for at least the 72-kDa protein, (i) the protein has been purified in apparently "native" form and (ii) its nucleolar distribution is stress dependent.  相似文献   

6.
J V Garcia  B W Fenton  M R Rosner 《Biochemistry》1988,27(12):4237-4244
An insulin-degrading enzyme (IDE) from the cytoplasm of Drosophila Kc cells has been purified and characterized. The purified enzyme is a monomer with an s value of 7.2 S, an apparent Km for porcine insulin of 3 microM, and a specific activity of 3.3 nmol of porcine insulin degraded/(min.mg). N-Terminal sequence analysis of the gel-purified enzyme gave a single, serine-rich sequence. The Drosophila IDE shares a number of properties in common with its mammalian counterpart. The enzyme could be specifically affinity-labeled with [125I]insulin, has a molecular weight of 110K, and has a pI of 5.3. Although Drosophila Kc cells grow at room temperature, the optimal enzyme activity assay conditions parallel those of the mammalian IDE: 37 degrees C and a pH range of 7-8. The Drosophila IDE activity, like the mammalian enzymes, is inhibited by bacitracin and sulfhydryl-specific reagents. Similarly, the Drosophila IDE activity is insensitive to glutathione as well as protease inhibitors such as aprotinin and leupeptin. Insulin-like growth factor II, equine insulin, and porcine insulin compete for degradation of [125I]insulin at comparable concentrations (approximately 10(-6) M), whereas insulin-like growth factor I and the individual A and B chains of insulin are less effective. The high degree of evolutionary conservation between the Drosophila and mammalian IDE suggests an important role for this enzyme in the metabolism of insulin and also provides further evidence for the existence of a complete insulin-like system in invertebrate organisms such as Drosophila.  相似文献   

7.
Calreticulin is a 60-kDa Ca(2+)-binding protein of the endo(sarco)plasmic reticulum membranes of a variety of cellular systems. The protein binds approximately 25 mol of Ca2+ with low affinity and approximately 1 mol of Ca2+ with high affinity and is believed to be a site for Ca2+ binding/storage in the lumen of the endo(sarco)plasmic reticulum. In the present study, we describe purification procedures for the isolation of recombinant and native calreticulin. Recombinant calreticulin was expressed in Escherichia coli, using the glutathione S-transferase fusion protein system, and was purified to homogeneity on glutathione-Sepharose followed by Mono Q FPLC chromatography. A selective ammonium sulfate precipitation method was developed for the purification of native calreticulin. The protein was purified from ammonium sulfate precipitates by diethylaminoethyl-Sephadex and hydroxylapatite chromatography procedures, which eliminates the need to prepare membrane fractions. The purification procedures reported here for recombinant and native calreticulin yield homogeneous preparations of the proteins, as judged by the HPLC reverse-phase chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified native and recombinant calreticulin were identified by their NH2-terminal amino acid sequences, by their Ca2+ binding properties, and by their reactivity with anticalreticulin antibodies.  相似文献   

8.
Specific mycobacterial antigens are an important prerequisite in the serodiagnosis of tuberculosis. Many studies have reported the use of both native and recombinant proteins. Even though recombinant proteins can form standardized reagents with unlimited supply, their diagnostic test characteristics were not satisfactory in some cases. In this study we have purified the 38-, 30- (antigen 85B), and 16-kDa native antigens of Mycobacterium tuberculosis by procedures with limited number of steps. Starting with the secreted antigens of M. tuberculosis H37Rv, the 38-kDa form was purified by preparative isoelectric focusing, followed by preparative electrophoresis. Separation of antigen 85 components was achieved by anion-exchange chromatography, followed by hydrophobic interaction chromatography. Gel-permeation chromatography was employed for the isolation of the 16-kDa form, from the cytosol fraction of M. tuberculosis H37Rv. By using a minimal number of steps, considerable yields of these proteins were obtained without loss of immunological activity. The native proteins purified were characterized by analytical two-dimensional electrophoresis, HPLC, and circular dichroism studies. Conformation of the native 38-kDa form purified in our laboratory was different from that of the recombinant 38-kDa form from the WHO Bank. The identities of these native antigens were established by immunoblotting with known monoclonal antibodies from the WHO Bank.  相似文献   

9.
Nucleotide excision is a highly conserved DNA repair pathway for correcting DNA lesions that cause distortion of the double helical structure. The protein heterodimer XPC-Rad23 is involved in recognition of and binding to such lesions. We have isolated full-length cDNAs encoding two different members of the maize Rad23 family. The deduced amino acid sequences of both maize orthologues show a high degree of homology to plant and animal Rad23 proteins. The cDNA encoding maize Rad23A was cloned as an in-frame C-terminal fusion of glutathione S-transferase. This chimera was expressed in Escherichia coli as a soluble protein and purified to homogeneity using glutathione-agarose followed by MonoQ column chromatography. Purified recombinant maize Rad23 protein was used to generate polyclonal antibodies that cross-react with a approximately 48-kDa protein in extracts from plant as well as mammalian cells. The purified recombinant protein and antibodies would be useful reagents to study the biochemistry of nucleotide excision repair in plants.  相似文献   

10.
Paracoccidioides brasiliensis causes paracoccidioidomycosis, a systemic mycosis in Latin America. Formamidases hydrolyze formamide, putatively plays a role in fungal nitrogen metabolism. An abundant 45-kDa protein was identified as the P. brasiliensis formamidase. In this study, recombinant formamidase was overexpressed in bacteria and a polyclonal antibody to this protein was produced. We identified a 180-kDa protein species reactive to the antibody produced in mice against the P. brasiliensis recombinant purified formamidase of 45 kDa. The 180-kDa purified protein yielded a heat-denatured species of 45 kDa. Both protein species of 180 and 45 kDa were identified as formamidase by peptide mass fingerprinting using MS. The identical mass spectra generated by the 180 and the 45-kDa protein species indicated that the fungal formamidase is most likely homotetrameric in its native conformation. Furthermore, the purified formamidase migrated as a protein of 191 kDa in native polyacrylamide gel electrophoresis, thus revealing that the enzyme forms a homotetrameric structure in its native state. This enzyme is present in the fungus cytoplasm and the cell wall. Use of a yeast two-hybrid system revealed cell wall membrane proteins, in addition to cytosolic proteins interacting with formamidase. These data provide new insights into formamidase structure as well as potential roles for formamidase and its interaction partners in nitrogen metabolism.  相似文献   

11.
G Beaud  R Beaud    D P Leader 《Journal of virology》1995,69(3):1819-1826
Vaccinia virus gene B1R encodes a protein kinase, the previously identified substrates of which include the proteins S2 and Sa of 40S ribosomal subunits. This work characterizes another substrate of the B1R kinase: a 36-kDa protein induced at the early stage of infection. Partially purified 36-kDa protein, eluted from a single-stranded DNA-cellulose column by 0.5 M NaCl, was separated by two-dimensional gel electrophoresis. Phosphorylation in vitro yielded multiple forms of the 36-kDa protein with approximate isoelectric points (pI) of 5.5, 5.7, 5.9, and 6.3, in addition to the apparently unphosphorylated form with a pI of approximately 6.8. The tryptic peptides derived from 36-kDa proteins with pI values of 5.7, 5.9, and 6.3 yielded almost identical high-pressure liquid chromatography profiles, strongly suggesting that the 36-kDa protein was modified by the phosphorylation of at least four sites, which were characterized as threonine residues. The amino acid sequence of several tryptic peptides derived from the 36-kDa protein showed that the 36-kDa protein was encoded by gene H5R of vaccinia virus. Consistent with this, the B1R kinase--either expressed in Escherichia coli or highly purified from HeLa cells--phosphorylated a recombinant trpE-H5R fusion protein in vitro. Fingerprints of the trpE-H5R and 36-kDa proteins phosphorylated by recombinant B1R kinase revealed common sites of phosphorylation, although some tryptic peptides were specific to either protein. Comparison was made of fingerprints of tryptic phosphopeptides derived from 36-kDa single-stranded DNA-binding protein labelled in vivo or in vitro. A common subset of peptides was observed, suggesting that some sites on H5R protein are phosphorylated by the B1R kinase in infected cells. These results suggest that some of the multiple threonine sites in the H5R protein are phosphorylated in vivo by the B1R protein kinase.  相似文献   

12.
Lymphotoxin (LT) was purified from serum-free conditioned media of a recombinant mammalian cell line transfected with human lymphotoxin cDNA. The purification scheme consisted of controlled pore glass chromatography, Q-Sepharose ion-exchange chromatography, and concanavalin A-Sepharose chromatography. The purified protein was found to be homogeneous by reverse-phase high-performance liquid chromatography and had an approximate specific activity of 130 X 10(6) units per milligram protein as determined by the L-929 cytotoxicity assay. Purified LT had an isoelectric point of approximately 6.85 and an apparent molecular weight of 50,000 by gel permeation high-pressure liquid chromatography. However, when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two distinct bands at approximate molecular sizes of 25 and 20 kDa were observed. Both the bands were immunoreactive by Western blot analysis and found to be associated with biological activity. The two forms of lymphotoxin differed from each other with respect to protein structure. Amino-terminal amino acid sequence analysis revealed that the 25-kDa LT sequence starts with Leu-Pro-Gly-residues whereas that of the 20-kDa LT begins with His-Leu-Ala; thus the latter form is truncated by 20 amino acid residues from the amino terminal. Two species of LT also differed from each other with respect to carbohydrate structure. Enzymatic removal of sialic acid reduced the molecular weight of 25 kDa by approximately 5 kDa whereas that of the 20-kDa LT was unchanged. A reduction in an apparent molecular size by approximately 4 kDa of both species of LT was observed on removal of N-linked oligosaccharides. Treatment with O-Glycanase had minimal effect on either form of LT. The recombinant lymphotoxin described here was found superior in its solubility behavior as compared to bacterial cell derived LT. Overall, mammalian cell line derived recombinant LT appears closer in its properties to natural LT than does bacterial cell derived recombinant LT.  相似文献   

13.
Dipeptidyl aminopeptidase IV from Pseudomonas sp. WO24 was purified as two molecular forms of 84 and 82-kDa by SDS–PAGE. Peptide mapping and N-terminal sequence analyses indicated that both proteins might be derived from the same protein, and that the 82-kDa molecule might be a truncated form from the 84-kDa molecule at least at the N-terminus. The DAP IV gene of Pseudomonas sp. WO24 was cloned and expressed in E. coli. The enzyme expressed in E. coli JM109 harboring a hybrid plasmid, pYO-6A, with about a 3-kbp fragment containing the DAP IV gene, was purified with an activity recovery of 24%. The recombinant enzyme also had the same two molecular forms, though the ratio of the two forms (about 1:1) was different from that of the native ones (about 1:4). The native and recombinant enzyme preparations had similar specific activities, suggesting that the 84 and 82-kDa molecules are in an active form and have almost the same specific activity. The molecular mass, the subunit number, the substrate specificity, and the effects of various inhibitors of the native enzyme indicated that this enzyme was a typical DAP IV and had properties similar to those of Flavobacterium meningosepticum rather than others.  相似文献   

14.
An early event in Salmonella infection is the invasion of non-phagocytic intestinal epithelial cells. The pathogen is taken up by macropinocytosis, induced by contact-dependent delivery of bacterial proteins that subvert signalling pathways and promote cytoskeletal rearrangement. SipB, a Salmonella protein required for delivery and invasion, was shown to localize to the cell surface of bacteria invading mammalian target cells and to fractionate with outer membrane proteins. To investigate the properties of SipB, we purified the native full-length protein following expression in recombinant Escherichia coli. Purified SipB assembled into hexamers via an N-terminal protease-resistant domain predicted to form a trimeric coiled coil, reminiscent of viral envelope proteins that direct homotypic membrane fusion. The SipB protein integrated into both mammalian cell membranes and phospholipid vesicles without disturbing bilayer integrity, and it induced liposomal fusion that was optimal at neutral pH and influenced by membrane lipid composition. SipB directed heterotypic fusion, allowing delivery of contents from E. coli-derived liposomes into the cytosol of living mammalian cells.  相似文献   

15.
mAb M.1 was previously shown to recognize a 28-kDa Ag in all stages of the human helminth parasite, Schistosoma mansoni, and to bind to the surface membranes of newly transformed schistosomula in a transient manner. Here we demonstrate that M.1 passively transfers partial resistance (41-49%) to cercarial challenge in naive mice. Thus, the 28-kDa Ag recognized by M.1 is a putative vaccine candidate. After immunoaffinity purification, tryptic digests of the 28-kDa Ag were prepared and individual peptides were sequenced. Amino terminus sequences of tryptic peptides of the 28-kDa Ag had high (79-87%) sequence homology with the mammalian glycolytic/gluconeogenic enzyme triosephosphate isomerase (TPI). Purified, native 28-kDa Ag from adult parasites was shown to function enzymatically in an analogous manner to yeast and mammalian TPI in the reverse reaction. Addition of M.1 antibody to the enzyme reaction altered the catalytic activity of schistosome TPI. To determine the immunologic cross-reactivity of this vaccine candidate with mammalian TPI, Western blot analysis was performed and demonstrated that M.1 was immunologically specific for the schistosome enzyme.  相似文献   

16.
We have recently described the purification and characterization of an insulin-degrading enzyme (IDE) from Drosophila melanogaster that can cleave porcine insulin, is highly conserved through evolution and is developmentally regulated. We now report that the IDE is, in fact, an insulin EGF-binding protein (dp100) that we had isolated previously from Drosophila using an antihuman EGF receptor antiserum. This conclusion is based upon the following evidence. (a) dp100, identified by its ability to cross-link to labeled insulin, EGF, and transforming growth factor-alpha (TGF-alpha), and to be immunoprecipitated by anti-EGF receptor antisera, copurifies with the IDE activity. Thus, the purified IDE can be affinity labeled with either 125I-insulin, 125I-EGF, or 125I-TGF-alpha, and this labeling is specifically inhibited with unlabeled insulin, EGF, and the insulin B chain. (b) The antiserum to the human EGF receptor, which recognizes dp100, is able to specifically immunoprecipitate the insulin-degrading activity. (c) The purified IDE preparation contains a single protein of 110 kD which is recognized by both the anti-EGF receptor antiserum and anti-Drosophila IDE antiserum. (d) Polyclonal antiserum to the purified IDE, which specifically recognized only the 110-kD band in Drosophila Kc cells, immunoprecipitates dp100 cross-linked to 125I-TGF-alpha and dp100 cross-linked to 125I-insulin from the purified IDE preparation. (e) EGF, which competes with insulin for binding to dp100, also inhibits the degradation of insulin by the purified IDE. These results raise the possibility that a functional interaction between the insulin and EGF growth factor families can occur which is mediated by the insulin-degrading enzyme.  相似文献   

17.
Infection of mammalian cells with herpes simplex virus (HSV) induces a virus-encoded ribonucleotide reductase which is different from the cellular enzyme. This essential viral enzyme consists of two nonidentical subunits of 140 and 38 kilodaltons (kDa) which have not previously been purified to homogeneity. The small subunit of ribonucleotide reductases from other species contains a tyrosyl free radical essential for activity. We have cloned the gene for the small subunit of HSV-1 ribonucleotide reductase into a tac expression plasmid vector. After transfection of Escherichia coli, expression of the 38-kDa protein was detected in immunoblots with a specific monoclonal antibody. About 30 micrograms of protein was produced per liter of bacterial culture. The 38-kDa protein was purified to homogeneity in an almost quantitative yield by immunoaffinity chromatography. It contained a tyrosyl free radical which gave a specific electron paramagnetic resonance spectrum identical to that we have observed in HSV-infected mammalian cells and clearly different from that produced by the E. coli and mammalian ribonucleotide reductases. The recombinant 38-kDa subunit had full activity when assayed in the presence of HSV-infected cell extracts deficient in the native 38-kDa subunit.  相似文献   

18.
The peptide-N4-(N-acetyl-beta-D-glucosaminyl) asparagine amidase F (PNGase F) gene from Flavobacterium meningosepticum was cloned into a high copy number Escherichia coli plasmid. Levels of PNGase F activity produced in cultures of the recombinant strain were up to 100-fold higher than those obtained in cultures of F. meningosepticum. The complete PNGase F gene sequence was determined. Comparison of the predicted amino acid sequence of pre-PNGase F to the N-terminal sequence of the native mature enzyme indicates that the protein is synthesized with a 40-amino acid signal sequence that is removed during secretion in F. meningosepticum. The recombinant PNGase F produced in E. coli is a mixture of products comprised predominantly of two proteins with molecular masses of 36.3 and 36.6 kDa. These proteins have a higher apparent molecular mass than the 34.7-kDa native enzyme. N-terminal amino acid sequencing demonstrated that these higher molecular mass products result from cleavage of the pre-PNGase F in E. coli upstream of the native N terminus. The PNGase F gene was engineered to encode a preenzyme that was processed in E. coli to give an N terminus identical to that of the native enzyme. Purified preparations of this form of recombinant PNGase F were shown to be suitable for glycoprotein analyses since they possess no detectable endo-beta-N-acetylglucosaminidase F, exoglycosidase, or protease activity.  相似文献   

19.
20.
The studies reported here are the first to demonstrate that recombinant zona pellucida (ZP) proteins will elicit a humoral immune response that recognizes native ZP proteins. Three cDNAs encoding rabbit ZP protein antigens expressed in bacteria were used to immunize cynomolgus monkeys. Four groups of six monkeys each were immunized with bacterially expressed cro-beta-galactosidase recombinant proteins encoded by a full-length cDNA (rc55) encoding the 55-kDa rabbit ZP recombinant protein (rec55), two partial cDNAs (rc75a and rc75b) encoding two recombinant peptides (rec75a and rec75b) of the 75-kDa rabbit ZP protein, and the plasmid-encoded cro-beta-galactosidase control protein. Initial immunizations with these fusion proteins using the muramyl dipeptide adjuvant did not elicit significant levels of antibodies to native or recombinant ZP proteins. Further immunizations were therefore carried out using recombinant ZP proteins conjugated to either protein A or keyhole limpet hemocyanin. Antibodies were detected in the groups immunized with the rec55 and rec75a; however, no antibodies were generated against the rec75b protein. These antibodies have been characterized by two-dimensional PAGE immunoblotting and shown to recognize antigenic domains associated with two of the native rabbit ZP proteins. Reprobes of these immunoblots with sheep anti-total native rabbit ZP proteins, affinity-purified on pig ZP, further demonstrate that a fourth distinct rabbit ZP antigen may be present. The characterization of species-conserved antigenic domains of mammalian ZP proteins is important for studies of the functional regions of ZP proteins and is critical for the design of safe and effective contraceptive vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号