首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cloned 5.8-kb genomic fragment of the green sulfur bacteriumChlorobium vibrioforme encodes the genes for three enzymes catalyzing early steps in the biosynthetic pathway of tetrapyrroles, common to chlorophyll and heme. ThehemA, hemC andhemD genes encode the enzymes glutamyl tRNA dehydrogenase, porphobilinogen deaminase and uroporphyrinogen III synthase, respectively. The cloned genes were expressed in transformedEscherichia coli orSalmonella typhimurium and conferred autotrophy on the respective auxotrophs. Activities of the enzymes encoded by the cloned genes were demonstrated in vitro, with cell extracts obtained from the transformed enterobacteria. The proximity of these genes indicates that they form a cluster inChlorobium vibrioforme, while in most other organisms they appear to be scattered. The presence of this cluster may imply coordinate regulation of the genes involved and they may constitute an operon.  相似文献   

2.
3.
4.
A NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) was isolated and purified over 400-fold from Anacystis nidulans. The enzyme activity responded slowly to rapid changes in ligand (NADP+, isocitrate, Mg2+-ions) or enzyme concentration as well as to rapid changes in temperature. These are properties characteristic of the hysteretic enzymes. In addition, the enzyme activity was subject to product (-ketoglutarate) inhibition. ATP, ADP and CDP also inhibited the enzyme. Unlike several other cyanobacterial enzymes, the isocitrate dehydrogenase of Anacystis is not under redox control.  相似文献   

5.

Purpose of work  

To clone, express and characterize uroporphyrinogen III synthase/methyltransferase gene (cobA/hemD) from Lactobacillus reuteri.  相似文献   

6.
DNA was prepared from cyanobacteria freshly isolated from coralloid roots of natural populations of five cycad species: Ceratozamia mexicana mexicana (Mexico), C. mexicana robusta (Mexico), Dioon spinulosum (Mexico), Zamia furfuraceae (Mexico) and Z. skinneri (Costa Rica). Using the Southern blot technique and cloned Anabaena PCC 7120 nifK and glnA genes as probes, restriction fragment length polymorphisms of these cyanobacterial symbionts were compared. The five cyanobacterial preparations showed differences in the sizes of their DNA fragments hybridizing with both probes, indicating that different cyanobacterial species and/or strains were in the symbiotic associations. On the other hand, a similar comparison of cyanobacteria freshly collected from a single Encephalartos altensteinii coralloid root and from three independently subcultured isolates from the same coralloid root revealed that these were likely to be one and the same organism. Moreover, the complexity of restriction patterns shows that a mixture of Nostoc strains can associate with a single cycad species although a single cyanobacterial strain can predominate in the root of a single cycad plant. Thus, a wide range of Nostoc strains appear to associate with the coralloid roots of cycads.Non-standard abbreviations bp base pairs - kbp kilobase pairs - RFLP's restriction fragment length polymorphisms  相似文献   

7.
During the biosynthesis of heme d1, the essential cofactor of cytochrome cd1 nitrite reductase, the NirE protein catalyzes the methylation of uroporphyrinogen III to precorrin-2 using S-adenosyl-l-methionine (SAM) as the methyl group donor. The crystal structure of Pseudomonas aeruginosa NirE in complex with its substrate uroporphyrinogen III and the reaction by-product S-adenosyl-l-homocysteine (SAH) was solved to 2.0 Å resolution. This represents the first enzyme-substrate complex structure for a SAM-dependent uroporphyrinogen III methyltransferase. The large substrate binds on top of the SAH in a “puckered” conformation in which the two pyrrole rings facing each other point into the same direction either upward or downward. Three arginine residues, a histidine, and a methionine are involved in the coordination of uroporphyrinogen III. Through site-directed mutagenesis of the nirE gene and biochemical characterization of the corresponding NirE variants the amino acid residues Arg-111, Glu-114, and Arg-149 were identified to be involved in NirE catalysis. Based on our structural and biochemical findings, we propose a potential catalytic mechanism for NirE in which the methyl transfer reaction is initiated by an arginine catalyzed proton abstraction from the C-20 position of the substrate.  相似文献   

8.
Hydrogenases are important enzymes in the energy metabolism of microorganisms. Therefore, they are widespread in prokaryotes. We analyzed the occurrence of hydrogenases in cyanobacteria and deduced a FeFe-hydrogenase in three different heliobacterial strains. This allowed the first phylogenetic analysis of the hydrogenases of all five major groups of photosynthetic bacteria (heliobacteria, green nonsulfur bacteria, green sulfur bacteria, photosynthetic proteobacteria, and cyanobacteria). In the case of both hydrogenases found in cyanobacteria (uptake and bidirectional), the green nonsulfur bacterium Chloroflexus aurantiacus was found to be the closest ancestor. Apart from a close relation between the archaebacterial and the green sulfur bacterial sulfhydrogenase, we could not find any evidence for horizontal gene transfer. Therefore, it would be most parsimonious if a Chloroflexus-like bacterium was the ancestor of Chloroflexus aurantiacus and cyanobacteria. After having transmitted both hydrogenase genes vertically to the different cyanobacterial species, either no, one, or both enzymes were lost, thus producing the current distribution. Our data and the available data from the literature on the occurrence of cyanobacterial hydrogenases show that the cyanobacterial uptake hydrogenase is strictly linked to the occurrence of the nitrogenase. Nevertheless, we did identify a nitrogen-fixing Synechococcus strain without an uptake hydrogenase. Since we could not find genes of a FeFe-hydrogenase in any of the tested cyanobacteria, although strains performing anoxygenic photosynthesis were also included in the analysis, a cyanobacterial origin of the contemporary FeFe-hydrogenase of algal plastids seems unlikely. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Lauren Ancel Meyers]  相似文献   

9.
Evolution of carotene desaturation: the complication of a simple pathway   总被引:2,自引:0,他引:2  
In a series of desaturation reactions, the trienoic structures of phytoene and diapophytoene are extended to a maximum of 15 or 11 conjugated double bonds, respectively. After the cloning of several genes from bacteria and eukaryotes, the desaturation reactions were first analyzed in a heterologous host by functional genetic complementation. In addition, different desaturases were heterologously expressed and the reactions studied in vitro. This revealed that in archaea, non-photosynthetic prokaryotes and fungi the desaturases differ significantly from convergently evolved desaturases in cyanobacteria, Chlorobaculum (old name Chlorobium) species and eukaryotic photosynthetic organisms including plants. Detailed analysis of the desaturation reactions including the determination of the substrates converted by the enzymes, the intermediates and the products formed in the reactions revealed the bacterial all-trans desaturation pathway catalyzed by a single enzyme and the cyanobacterial/plant type poly-cis desaturation pathway which involves two closely related desaturases. This indicates that in the course of evolution of carotenogenesis from bacteria via cyanobacteria to plants, the simple situation of one enzyme for the entire reaction sequence from phytoene to all-trans lycopene changed to a more complex process. Three individual enzymes, newly acquired phytoene and ζ-carotene desaturases, as well as a carotene isomerase which is phylogenetically related to CrtI are involved. Only the CrtI-type enzymes seem to have the property to catalyze cis to trans conversion of carotenes.  相似文献   

10.
11.
12.
Strains of Bradyrhizobium japonicum with the ability to catabolize indole-3-acetic acid (IAA) and strains of B. japonicum, Rhizobium loti, and Rhizobium galegae, unable to catabolize IAA, were analyzed for enzymes involved in the pathway for IAA degradation. Two enzymes having isatin as substrate were detected. An isatin amidohydrolase catalyzing the hydrolysis of isatin into isatinic acid was found in some B. japonicum strains and in two Rhizobium species, R loti and R. galegae. The enzyme was inducible (4–5-fold) by its substrate, isatin, and the partially purified enzyme from R. loti showed an apparent KM of 11 M for isatin. A NADPH-dependent isatin reductase was measured in extracts from a strain of B. japonicum lacking the isatin amidohydrolase. The structure of the reaction product, dioxindole was verified by NMR spectroscopy. Isatin reductase activity was also detected in extracts of dry pea seeds, and present in at least two isoforms. A low KM of 10 M for isatin was found with a partially purified preparation of the pea enzyme. The presence of such an enzyme activity in pea indicates dioxindole and isatin as possible intermediates in IAA degradation in pea.  相似文献   

13.
The present study described that the systematic mining and identification of potentially active β-glucosidase family enzymes toward indican, which extracted from the plant Polygonum tinctorium as one of precursors of production for indigo-blue. Some of the mined enzymes were previously identified as glycosyl hydrolases or putative enzymes with unknown properties. In addition, there were no reports on the hydrolytic activity toward indican. In order to confirm the activity, we analyzed the activity on indican or related substrates in selective medium and amplified four genes from mined strains using PCR, then cloned into E. coli. Using a related fluorescent substrate MUG, we verified successful cloning through checking the expression of genes and comparing characteristics with wild-type strains. Then, using recombinant enzymes and chemically synthesized pure indican or the plant extract, it was confirmed that indican was readily converted into indigo-blue. For the overexpression of an enzyme derived from Shinorhizobium meliloti, which was found to be the most active through comparative analyses, we subcloned the gene in pMAL-c2X vector and expressed it as a MBP fusion protein. The resulting enzyme was overexpressed (>35% of whole cell protein) and found mainly in soluble fraction. The purified enzyme was determined to be a monomer with calculated molecular mass of 52 kDa and showed a specific activity (0.8 unit/mg protein) on the plant extract including indican. These results demonstrated that the mined enzymes not only could be an alternative resource for indigo-blue production, but also might be useful in the production of indigo from the plant indican by a single process.  相似文献   

14.
Screening for alkane hydroxylase genes (alkB) was performed in thermophilic aerobic bacteria of the genus Geobacillus. Total DNAs were isolated from the biomass of 11 strains grown on a mixture of saturated C10–C20 hydrocarbons. Fragments of alkB genes were amplified by PCR with degenerate oligonucleotide primers, and the PCR products were cloned and sequenced. For the first time, a set of alkB gene homologs was detected in the genomes of thermophilic bacteria. The strains each contained three to six homologs, of which only two were common for all of the strains. Phylogenetic analysis of the nucleotide sequences and the deduced amino acid sequences showed that six of the variants revealed in Geobacillus were closely related to alkB4, alkB3, and alkB2, found in Rhodococcus erythropolis strains NRRL B-16531 and Q15. All variants of alkB sequences were unique. Analysis of the GC composition showed that the Geobacillus alkB homologs are closer to Rhodococcus than to Geobacillus chromosomal DNA. It was assumed that the alkB genes were introduced in the Geobacillus genome via interspecific horizontal transfer and that Rhodococcus or other representatives of Actinobacteria served as donors. Analysis of the codon usage in the fragments of alkB genes confirmed the suggestion that the pool of these genes is common to the majority of Gram-positive and certain Gram-negative bacteria. The formation of a set of several alkB homologs in a genome of a particular microorganism may result from free gene exchange within this pool.  相似文献   

15.
Pseudomonas sp. strain CF600 is an efficient degrader of phenol and methylsubstituted phenols. These compounds are degraded by the set of enzymes encoded by the plasmid locateddmpoperon. The sequences of all the fifteen structural genes required to encode the nine enzymes of the catabolic pathway have been determined and the corresponding proteins have been purified. In this review the interplay between the genetic analysis and biochemical characterisation of the catabolic pathway is emphasised. The first step in the pathway, the conversion of phenol to catechol, is catalysed by a novel multicomponent phenol hydroxylase. Here we summarise similarities of this enzyme with other multicomponent oxygenases, particularly methane monooxygenase (EC 1.14.13.25). The other enzymes encoded by the operon are those of the well-knownmeta-cleavage pathway for catechol, and include the recently discoveredmeta-pathway enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10). The known properties of thesemeta-pathway enzymes, and isofunctional enzymes from other aromatic degraders, are summarised. Analysis of the sequences of the pathway proteins, many of which are unique to themeta-pathway, suggests new approaches to the study of these generally little-characterised enzymes. Furthermore, biochemical studies of some of these enzymes suggest that physical associations betweenmeta-pathway enzymes play an important role. In addition to the pathway enzymes, the specific regulator of phenol catabolism, DmpR, and its relationship to the XylR regulator of toluene and xylene catabolism is discussed.  相似文献   

16.
17.
Summary The Mycobacterium tuberculosis shikimate pathway genes designated aroB and aroQ encoding 3-dehydroquinate synthase and 3-dehydroquinase, respectively were isolated by molecular cloning and their nucleotide sequences determined. The deduced dehydroquinate synthase amino acid sequence from M. tuberculosis showed high similarity to those of equivalent enzymes from prokaryotes and filamentous fungi. Surprisingly, the deduced M. tuberculosis 3-dehydroquinase amino acid sequence showed no similarity to other characterised prokaryotic biosynthetic 3-dehydroquinases (bDHQases). A high degree of similarity was observed, however, to the fungal catabolic 3-dehydroquinases (cDHQases) which are active in the quinic acid utilisation pathway and are isozymes of the fungal bDHQases. This finding indicates a common ancestral origin for genes encoding the catabolic dehydroquinases of fungi and the biosynthetic dehydroquinases present in some prokaryotes. Deletion of genes encoding shikimate pathway enzymes represents a possible approach to generation of rationally attenuated strains of M. tuberculosis for use as live vaccines.  相似文献   

18.
19.
Summary Tzs and ipt are two Ti plasmid genes coding for proteins with isopentenyltransferase (IPT) activity in vitro. We cloned both genes for protein expression in Escherichia coli and in Agrobacterium tumefaciens, and we investigated differences between the two genes by analysing the properties of the proteins in vitro and in vivo. In vitro, extracts with tzs or ipt-coded proteins had high IPT activity, and the enzymes were identical in most properties. The most important difference was detected in vivo: the tzs-encoded protein was very active in cytokinin production, while the ipt protein required overexpression in order to obtain measurable activity in bacteria. In both cases, rans-zeatin was the major product of the gene activity. Formation of this cytokinin requires a hydroxylase function in addition to the IPT reaction. No such activity could be ascribed to tzs or ipt-encoded proteins in vitro or in vivo, but cytokinin hydroxylase activity was detected in cells and extracts of E. coli, regardless of the presence or absence of the cytokinin genes. Based on these results it is proposed that both genes code for a single enzyme activity (isopentenyltransferase), that the genes and proteins are adapted for function either in bacteria (tzs) or in transformed plant cells (ipt), and that in both prokaryotic and eukaryotic cells hydroxylation to trans-zeatin is a function contributed by host enzymes.Abbreviations DMAPP dimethylallylpyrophosphate - iP isopentenyladenine - iPA isopentenyladenosine - iPMP isopentenyladenosine 5-monophosphate - IPT isopentenyltransferase - trans-Z trans-zeatin  相似文献   

20.
Increasing reports of cylindrospermopsins (CYNs) in freshwater ecosystems have promoted the demand for identifying all of the potential CYN-producing cyanobacterial species. The present study explored the phylogenetic distribution and evolution of cyr genes in cyanobacterial strains and water samples from China. Four Cylindrospermopsis strains and two Raphidiopsis strains were confirmed to produce CYNs. Mutant cyrI and cyrK genes were observed in these strains. Cloned cyr gene sequences from eight water bodies were clustered with cyr genes from Cylindrospermopsis and Raphidiopsis (C/R group) in the phylogenetic trees with high similarities (99%). Four cyrI sequence types and three cyrJ sequence types were observed to have different sequence insertions and repeats. Phylogenetic analysis of the rpoC1 sequences of the C/R group revealed four conserved clades, namely, clade I, clade II, clade III, and clade V. High sequence similarities (>97%) in each clade and a divergent clade IV were observed. Therefore, CYN producers were sporadically distributed in congeneric and paraphyletic C/R group species in Chinese freshwater ecosystems. In the evolution of cyr genes, intragenomic translocations and intergenomic transfer between local Cylindrospermopsis and Raphidiopsis were emphasized and probably mediated by transposases. This research confirms the existence of CYN-producing Cylindrospermopsis in China and reveals the distinctive variations of cyr genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号