首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ontogenesis of alpha 2-adrenoceptors and GTP-binding proteins and their coupling activity were investigated in telencephalon membranes of developing rats. The manganese-induced elevation of [3H]clonidine binding was increased in an age-dependent manner but the guanosine 5'-O-(3-thio)triphosphate-induced decrease in binding did not change. The extent of the binding of [3H]clonidine at 15 nM (saturable concentration) increased in an age-dependent manner and reached the adult level at 4 days after birth. Cholera toxin and pertussis toxin catalyzed ADP-ribosylation of proteins of 46 and 41/39 kilodaltons (kDa) in solubilized cholate extracts of the membranes. The 41/39-kDa proteins ADP-ribosylated by pertussis toxin (Gi alpha + Go alpha) were increased with age and reached the adult level at day 12, whereas the 46-kDa protein (Gs alpha) reached its peak on day 12 and then decreased to the fetal level at the adult stage. The immunoblot experiments of the homogenates with antiserum (specific antibody against alpha- and beta-subunit of GTP-binding proteins) demonstrated that the 39-kDa alpha-subunit of (Go alpha) and the 36-kDa beta-subunit of GTP-binding protein (beta 36) increased with postnatal age. In contrast, 35-kDa beta-subunit (beta 35) did not change. From these results, it is suggested that the coupling activity of alpha 2-adrenoceptor with GTP-binding protein gradually develops in a manner parallel with the increase of alpha 2-adrenoceptor and pertussis toxin sensitive GTP-binding proteins, Gi, and that alpha 39 beta 36 gamma may be related to the differentiation and/or growth of nerve cells in rat telencephalon.  相似文献   

2.
The effect of repeated treatment with electroconvulsive shock (ECS) on the turnover of cortical alpha 1-adrenoceptors in rats was measured using the N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-induced irreversible receptor inactivation method. Repeated treatment with ECS did not affect parameters (the synthesis rate constant r, the degradation rate constant k) of alpha 1-adrenoceptor turnover. Because increase in the density of alpha 1-adrenoceptors in the ECS-treated group disappears later during measurement of turnover, several calculation possibilities were discussed. The present data confirm that repeated treatment with ECS produces a short-lasting up-regulation of cortical alpha 1-adrenoceptors, but does not affect the turnover of this receptor type.  相似文献   

3.
Influences of alpha 2-adrenoceptor stimulation on adenylate cyclase activity were investigated in cerebral cortical membranes of rats. Pretreatment of the membranes with islet-activating protein and NAD resulted in a significant increase in basal activity as well as in GTP- or forskolin/GTP-induced elevation of adenylate cyclase activity. Strong activation of adenylate cyclase was also caused in membranes pretreated with cholera toxin together with NAD in comparison to that in control membranes, suggesting that adenylate cyclase activity is perhaps regulated by stimulatory and inhibitory GTP binding regulatory protein existing in synaptic membranes. In addition, adrenaline (with propranolol) or clonidine significantly reduced adenylate cyclase activity stimulated by pretreatment with forskolin and GTP. The inhibitory effects of adrenaline were also observed in membranes pretreated with cholera toxin and NAD. Moreover, the inhibition by adrenaline or clonidine was completely abolished by treatment with (a) yohimbine or (b) islet-activating protein and NAD. It is suggested that alpha 2-receptor stimulation causes inhibitory influences on adenylate cyclase activity mediated by the inhibitory GTP binding regulatory protein in synaptic membranes of rat cerebral cortex.  相似文献   

4.
The antinociceptive actions of intrathecal injections of two alpha 2-adrenergic agonists, UK-14,304 and guanfacine, were investigated in rats after pretreatment of the animals with the noradrenaline neurotoxin N-2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP4) 14 days in advance. The chronic noradrenaline depletion induced by DSP4 caused a marked increase in sensitivity of the antinociceptive action of UK-14,304 in the tail-flick test. By contrast, the antinociceptive effect of guanfacine was not appreciably affected by the DSP4 treatment. The antinociceptive effects of both UK-14,304 and guanfacine were blocked by intraperitoneal injections of yohimbine, a result indicating that both drugs induced their actions by activating alpha 2-adrenoceptors. Both UK-14,304 and guanfacine were found to reduce the production of cyclic AMP (cAMP) in the spinal cord, as determined using an in vitro radioisotopic method. The cAMP inhibitory effects of both agonists were effectively blocked by yohimbine, but not by prazosin, a finding indicating the alpha 2-adrenergic nature of the response. However, the cAMP inhibitory effect of UK-14,304 was not potentiated by pretreatment with DSP4, a finding in marked contrast with the strong potentiation of the antinociceptive action of UK-14,304 induced by the chronic depletion of endogenous noradrenaline. Moreover, intrathecal injections of forskolin, which increased the endogenous levels of spinal cord cAMP fivefold, did not modify the antinociceptive effects of UK-14,304 or guanfacine in neither normal nor DSP4-treated animals. It is suggested that there exist pharmacologically differing alpha 2-adrenergic receptor pathways capable of mediating antinociceptive effects at the level of the spinal cord. The cAMP inhibitory actions of spinal cord alpha 2-adrenoceptors appear not to be directly linked with the antinociceptive actions of these receptors.  相似文献   

5.
Regulation of Rat Pineal α1-Adrenoceptors   总被引:2,自引:2,他引:0  
Some aspects of the physiological regulation of the pineal alpha 1-adrenoceptor have been studied using the selective, high-affinity ligand [125I] iodo-2-[beta-(4-hydroxyphenyl)ethylaminomethyl]tetralone ([125I]HEAT). Pineal glands taken from rats housed in a diurnal lighting cycle showed no circadian rhythm in the number of specific [125I]HEAT binding sites, although a characteristic rhythm in pineal melatonin was seen. It was established that the pineal alpha 1-adrenoceptor is under neural control because interruption of neural stimulation of the pineal by bilateral superior cervical ganglionectomy (SCGX) or by exposing rats to constant light for 3 weeks doubled receptor density but did not change affinity for [125I]HEAT. Administration of various alpha 1-adrenoceptor agonists either acutely (i.p. injection) or chronically (s.c. infusion) did not alter the number of specific [125I]HEAT binding sites. Together these results indicate that the pineal alpha 1-adrenoceptor, like the pineal beta-adrenoceptor, is regulated by sympathetic nerve activity, probably through the physiological release of the neurotransmitter norepinephrine. However the absence of a circadian rhythm in alpha 1-adrenoceptor number and lack of down-regulation by adrenergic agonists imply different mechanisms of regulation.  相似文献   

6.
Abstract: The role of the stimulatory GTP-binding protein (GS) in the α2-autoinhibitory modulation of noradrenaline release was investigated in cultured chick sympathetic neurons. The α2-adrenoceptor agonist UK 14,304 caused a concentration-dependent reduction of electrically evoked [3H]noradrenaline release with half-maximal effects at 14.0 ± 5.5 nM. In neurons treated with 100 ng/ml cholera toxin for 24 h, the half-maximal concentration was lowered to 3.2 ± 1.4 nM without changes in the maximal effect of UK 14,304. The pretreatment with cholera toxin also increased the inhibitory action of 10 nM UK 14,304 when compared with the inhibition of noradrenaline release in untreated cultures derived from the same cell population. In cultures treated with either 10 µM forskolin or 100 µM 8-bromo-cyclic AMP, neither the half-maximal concentration nor the maximal effect of UK 14,304 was altered. Cholera toxin, forskolin, and 8-bromo-cyclic AMP all induced an increase in spontaneous outflow and a reduction in electrically evoked overflow, effects not observed after a pretreatment with dideoxyforskolin. Exposure of neurons to cholera toxin, but not to forskolin or 8-bromo-cyclic AMP, induced a translocation of α-subunits of Gs (G) from particulate to soluble fractions and led ultimately to a complete loss of G from the neurons. In contrast, no effect was seen on the distribution of either α-subunits of Gi- or Go-type G proteins or of β-subunits. These results indicate that cholera toxin causes a selective, cyclic AMP-independent down-regulation of G. This down-regulation of G is associated with the sensitization of α2-autoreceptors.  相似文献   

7.
Abstract: The binding of [3H]rauwolscine to α2A- (also referred to as α2D-) and α2C-adrenoceptors in homogenates of rat cerebral cortex was measured by exploiting the selectivity of oxymetazoline for α2A-adrenoceptors. Inhibition of [3H]rauwolscine binding by oxymetazoline was modeled best assuming binding to two sites (p < 0.001). Competition curves for oxymetazoline were shifted rightward by the addition of GTP (250 µM) but were still fit best by a two-site model (p < 0.001). A concentration of oxymetazoline was calculated that would optimally antagonize [3H]rauwolscine binding (with GTP present) to oxymetazoline-sensitive α2A-adrenoceptors, minimally inhibiting binding to α2C-adrenoceptors. Subsequently, [3H]rauwolscine binding to α2A- and α2C-adrenoceptors in cortex was examined 3 weeks after destruction of noradrenergic terminals. Binding to α2C-adrenoceptors was increased significantly after treatment with 6-hydroxydopamine (6-OHDA) compared with vehicle-treated controls, whereas binding to α2A-adrenoceptors was unchanged. Pretreatment of rats with desipramine before 6-hydroxydopamine, to protect noradrenergic neurons, resulted in no changes in binding to either α2A- or α2C-adrenoceptors. Thus, α2C-adrenoceptors are regulated by changes in synaptic availability of norepinephrine. α2A-Adrenoceptors are either not regulated by synaptic norepinephrine or are located both post- and presynaptically so that up-regulation of postsynaptic α2A-adrenoceptors is offset by a loss of presynaptic α2A-adrenoceptors.  相似文献   

8.
Repeated administration of electroconvulsive shock (ECS) increases [3H]prazosin binding to alpha 1-adrenoceptors in rat cerebral cortex. In contrast, [3H]WB4101 binding in cortex has been reported to be unchanged after ECS. [3H]Prazosin labels two alpha 1-adrenoceptor subtypes, termed alpha 1a and alpha 1b, whereas [3H]WB4101 labels the alpha 1a subtype preferentially. The purpose of this study was to determine whether ECS increases one or both alpha 1-adrenoceptor subtypes in rat cerebral cortex. We found that treatment of rats with ECS once daily for 10-12 days increased [3H]prazosin binding in cortex by about 25% but did not significantly alter [3H]WB4101 binding to alpha 1-adrenoceptors. Measurement of alpha 1a and alpha 1b receptors by competition analysis of the selective alpha 1a antagonist 5-methylurapidil against [3H]prazosin and measurement of [3H]prazosin binding in homogenates preincubated with chlorethylclonidine, which alkylates alpha 1b binding sites, also indicated that the ECS-induced increase in alpha 1-adrenoceptors is confined to the alpha 1b subtype. In contrast to its effect on [3H]prazosin binding, ECS did not increase phosphoinositide hydrolysis as measured by [3H]inositol 1-phosphate accumulation in slices of rat cerebral cortex stimulated by either norepinephrine or phenylephrine. The failure of ECS to increase [3H]inositol 1-phosphate accumulation stimulated by phenylephrine, which is a partial agonist for this response, suggests that spare receptors do not account for the apparent absence of effect of ECS on alpha 1-adrenoceptor-mediated phosphoinositide hydrolysis.  相似文献   

9.
Abstract: The effect of the antidepressant and selective noradrenaline reuptake blocker desipramine (DMI) on noradrenergic transmission was evaluated in vivo by dual-probe microdialysis. DMI (1, 3, and 10 mg/kg, i.p.) dose-dependently increased extracellular levels of noradrenaline (NA) in the locus coeruleus (LC) area. In the cingulate cortex (Cg), DMI (3 and 10 mg/kg, i.p.) also increased NA dialysate, but at the lowest dose (1 mg/kg, i.p.) it decreased NA levels. When the α2-adrenoceptor antagonist RX821002 (1 µ M ) was perfused in the LC, DMI (1 mg/kg, i.p.) no longer decreased but rather increased NA dialysate in the Cg. In electrophysiological experiments, DMI (1 mg/kg, i.p.) inhibited the firing activity of LC neurons by a mechanism reversed by RX821002. Local DMI (0.01–100 µ M ) into the LC increased concentration-dependently NA levels in the LC and simultaneously decreased NA levels in the Cg. This decrease was abolished by local RX821002 administration into the LC. The results demonstrate in vivo that DMI inhibits NA reuptake at somatodendritic and nerve terminal levels of noradrenergic cells. The increased NA dialysate in the LC inhibits noradrenergic activity, which in part counteracts the effects of DMI on the Cg. The modulation of cortical NA release by activity of DMI at the somatodendritic level is mediated through α2-adrenoceptors located in the LC.  相似文献   

10.
The IC50 value for inhibition of specific [3H]yohimbine binding to rat cerebral cortical membranes by clonidine was increased, and the Hill coefficient (nH) approached unity in the presence of 150 microM GTP. Pretreatment of membranes with islet-activating protein (IAP) in the presence of NAD caused an increase in IC50 and nH values for clonidine compared with control membranes in the absence of GTP, the addition of which was without effect. Scatchard analysis showed that the Bmax value of the high-affinity component in [3H]clonidine binding was decreased by pretreatment with IAP/NAD. GTP in a concentration range of 0.1 microM-1 mM caused a significant elevation of [3H]yohimbine binding. In IAP/NAD-pretreated membranes, however, [3H]yohimbine binding was no longer affected by GTP, although IAP/NAD significantly (p less than 0.01) increased [3H]yohimbine binding compared to control. IAP ADP-ribosylated 41,000 dalton proteins of cerebral cortical membranes. From these results, it can be suggested that inhibitory guanine nucleotide regulatory protein with Mr 41,000 couples to alpha 2-adrenoceptors to regulate binding affinity of agonists and antagonists in membranes of the rat cerebral cortex.  相似文献   

11.
Solubilization and Characterization of Rat Brain α2-Adrenergic Receptor   总被引:1,自引:4,他引:1  
alpha 2-Adrenergic receptors labelled by [3H]-clonidine (alpha 2-agonist) can be solubilized from the rat brain in a form sensitive to guanine nucleotides with a zwitterionic detergent, 3-[3-(cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS). About 40% of the original [3H]CLO binding sites in the membranes were solubilized with 6 mM CHAPS. Separation of the soluble [3H]CLO-bound complex was performed by the vacuum filtration method using polyethylenimine-treated GF/B filters. Solubilized [3H]CLO binding sites retained the same pharmacological characteristics of membrane-bound alpha 2-adrenergic receptors. Scatchard plots of [3H]CLO binding to solubilized alpha 2-receptors were curvilinear, indicating the existence of the two distinct binding components. Solubilized receptors were eluted as a single peak from Bio-Gel A-1.5 m column with a Stokes radius of 6.6 nm. The isoelectric point was 5.6-5.8. Regulations of the receptor binding by guanine nucleotides, monovalent cations, and sulfhydryl-reactive agents were maintained intact in the soluble state, whereas those by divalent cations were lost. The apparent retention of receptors and guanine nucleotide binding regulatory component(s) in the soluble state may allow a investigation of the regulation mechanisms of the brain alpha 2-adrenergic receptor system at the molecular level.  相似文献   

12.
The full agonist [3H]bromoxidine (UK 14304) was used to quantitate alpha 2-adrenoceptors in postmortem brains of patients with Alzheimer's disease. The effects of aging and human serum Cohn fraction IV on [3H]bromoxidine binding were also assessed. In patients with Alzheimer's disease, the binding capacity (Bmax) of [3H]bromoxidine was lower in the frontal cortex (37%), hypothalamus (33%), and cerebellum (52%) than in matched controls. In the hippocampus, amygdala, and head of caudate, the binding capacities (Bmax) were unchanged. Quantitative autoradiographic analyses with [3H]bromoxidine confirmed the existence of a marked reduction (55-60%) in alpha 2A-adrenoceptor density in the frontal cortex (layers I and III). In patients with dementia who did not meet neuropathological criteria for Alzheimer's disease, the density of alpha 2-adrenoceptors was unchanged. In control subjects, the density of alpha 2A-adrenoceptors in the frontal cortex showed a significant negative correlation with age at death. The inhibitory effect of human serum Cohn fraction IV on [3H]bromoxidine was very similar in control subjects and patients with Alzheimer's disease. The observed decrease in the density of brain alpha 2-adrenoceptors in Alzheimer's disease may represent direct biochemical evidence of a presynaptic location of this receptor on noradrenergic nerve terminals in the human CNS.  相似文献   

13.
Abstract: The adrenergic regulation of histamine release was studied in rat brain slices labeled with L-[3H]histidine. Noradrenaline in increasing concentrations progressively inhibited K+-evoked [3H]histamine release from cortical slices, whereas phenylephrine and isoprenaline were ineffective. Yohimbine, a preferential α2-adrenoceptor antagonist, reversed the noradrenaline effect in an apparently competitive manner and with a mean K i value of 30 n M . Phentolamine reversed the noradrenaline effect with a similar potency, whereas propranolol was ineffective. The imidazolines clo-nidine and oxymetazoline acted as partial agonists, oxymeta-zoline even behaving as an apparent antagonist. In vivo clo-nidine also inhibited [3H]histamine formation in cerebral cortex, an effect reversed by the administration of yohimbine. However, yohimbine failed to increase significantly [3H]histamine release in vitro and [3H]histamine formation in vivo, suggesting that adrenergic receptors are not activated by endogenous noradrenaline released under basal conditions. It is concluded that adrenergic α2-adrenoceptors presumably located on histaminergic axons control release and synthesis of histamine in the brain.  相似文献   

14.
The beta 1- and beta 2-adrenoceptor populations in rat cortex were individually quantified by labelling all of the receptors with [3H]dihydroalprenolol and displacing with isoprenaline (200 microM) or CGP 20712A (1-(2-[(3-carbamoyl-4-hydroxy)phenoxy]ethylamino)-3-[4-(1-methyl-4- trifluoromethyl-2-imidazolyl)phenoxy]-2-propanol methanesulphonate; 100 nM) to define total beta-adrenoceptors and beta 1-adrenoceptors, respectively. Binding parameters for beta 2-adrenoceptors were calculated by the difference. Oral administration of the monoamine reuptake inhibitors sibutramine HCl (3 mg/kg), amitriptyline (10 mg/kg), desipramine (10 mg/kg), or zimeldine (10 mg/kg) for 10 days decreased the total number of beta-adrenoceptors present in rat cortex. This effect was entirely due to a reduction in the number of beta 1-adrenoceptors. Similarly, 10 days of treatment with the monoamine oxidase inhibitor tranylcypromine (10 mg/kg p.o.) or five electroconvulsive shocks (ECSs; 200 V, 2 s) spread over this period also down-regulated beta-adrenoceptors by reducing the content of the beta 1-subtype. By contrast, treatment with clenbuterol (5 mg/kg p.o.) for 10 days reduced the number of cortical beta-adrenoceptors by an effect on the beta 2-adrenoceptor population. The effects of short-term treatment with these drugs were also investigated, and, using the doses shown above, the results of 3 days of administration or a single ECS were determined. Sibutramine HCl and desipramine were alone in producing a reduction in number of beta-adrenoceptors after 3 days. Once again, this was exclusively due to a loss of beta 1-adrenoceptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Abstract: Slices from human neocortex preincubated with [3H]serotonin ([3H]5-HT) were superfused and stimulated electrically to investigate whether the α2-adrenoceptors on serotonergic terminals can be stimulated by endogenous noradrenaline (NA) released from neighboring noradrenergic fibers. The stimulation-evoked 3H overflow, representing action potential-induced, exocytotic release of 5-HT, was depressed by the NA uptake blocker (+)-oxaprotiline. Rauwolscine (a mixed α2-adrenoceptor antagonist/5-HT autoreceptor agonist) or phentolamine [a combined α- adrenoceptor/5-HT autoreceptor antagonist; the latter drug in the presence of (+)-oxaprotiline] enhanced the release when the 5-HT autoreceptors had previously been blocked by metitepine. Under hypothermia the release of 5-HT was found to be decreased and that of NA to be increased; under these conditions idazoxan (an α2-adrenoceptor antagonist) enhanced the release of 5-HT. In neocortex slices from rats (+)-oxaprotiline similarly depressed the release of 5-HT (measured with the same methods) as in human tissue. When rats were pretreated with 6-hydroxydopamine, the inhibitory effect of exogenous NA on 5-HT release was increased, and in slices from rats pretreated with desipramine, it was decreased. In conclusion, α2-heteroreceptors can be activated by endogenous NA released from neighboring noradrenergic fibers. Because regulatory processes analogous to those in rats probably occur in humans as well, an up- or down-regulation of α2- heteroreceptors in depressed patients with a (pathological) decrease or a (therapeutic) enhancement of the noradrenergic neurotransmission may also be assumed to occur.  相似文献   

16.
[3H]Rauwolscine, a specific, potent, radiolabelled alpha 2-antagonist, binds to distinct high- and low-affinity alpha 2-adrenoceptors in crude membrane preparations of the rat cerebral cortex. The concentration of high-affinity alpha 2-adrenoceptors was increased by addition of sodium ions or guanylnucleotides. In synaptosomal plasma membrane preparations, only the low-affinity component was found. Neither sodium or guanylnucleotides caused any increase in the concentration of these low-affinity receptors for [3H]rauwolscine.  相似文献   

17.
Abstract: SR 58611A, a selective agonist of gut and brown adipose tissue β3-adrenoceptors (β3ARs), has been reported to have antidepressant-like activity in rodents by indicating brain β3ARs as the sites of this property. SR 58611A and its acid metabolite SR 58878A, as opposed to BRL 37344, ICI 215,001, and CGP 12177, increased cyclic AMP levels in rat frontal cortex. ICI 215,001, differently from BRL 37344, at concentrations in the millimolar range antagonized norepinephrine- or (−)-isoproterenol-stimulated adenylyl cyclase partially. The increase of cyclic AMP levels induced by SR 58878A was blocked selectively by β1AR antagonist CGP 20712A but not by β2AR antagonist ICI 118,551. In addition, PCR analysis did not reveal β3AR mRNA, and no specific β3AR binding sites were detected by [3H]CGP 12177 in rat frontal cortex. When down-regulation of the β1AR ligand binding and mRNA levels had been induced in frontal cortex by chronic administration of imipramine, SR 58878A as well as norepinephrine and (−)-isoproterenol increased the cyclic AMP production less markedly. Our findings indicate that β3ARs are absent in the adult rat frontal cortex, and that various β3AR agonists differently affect the frontal cortex β1ARs, indicating that SR 58611A may exert its putative antidepressant effect acting on the frontal cortex β1ARs.  相似文献   

18.
A cDNA from a rat hippocampal cDNA library encodes an isoform of the alpha polypeptide of the gamma-aminobutyric acid (GABA)/benzodiazepine (BZ) receptor. Its deduced amino acid sequence is 96% identical to that of the alpha 2 polypeptide of the bovine GABAA receptor. The polypeptide has features shared by all previously reported GABAA receptor alpha polypeptides and shares 71-76% identity with previously described rat alpha polypeptides. Most of the differences lie in the presumed extracellular and intracellular domains. On Northern blots, the alpha 2 cDNA detects two mRNAs, which are found in cortex, hippocampus, and striatum, brain regions enriched in pharmacologically defined "BZ type II" receptors. Other workers have previously shown that the alpha polypeptides of the GABAA receptor largely determine the BZ binding properties of reconstituted receptors. The distribution of alpha 2 mRNAs in rat brain suggests that the alpha 2 subunit may indeed be involved in the BZ type II receptors.  相似文献   

19.
Abstract: The β-amyloid peptide (Aβ) is a normal proteolytic processing product of the amyloid precursor protein, which is constitutively expressed by many, if not most, cells. For reasons that are still unclear, Aβ is deposited in an aggregated fibrillar form in both diffuse and senile plaques in the brains of patients with Alzheimer's disease (AD). The factor(s) responsible for the clearance of soluble Aβ from biological fluids or tissues are poorly understood. We now report that human α2-macroglobulin (α2M), a major circulating endoproteinase inhibitor, which has recently been shown to be present in senile plaques in AD, binds 125I-Aβ(1–42) with high affinity (apparent dissociation constant of 3.8 × 10?10M). Approximately 1 mol of Aβ is bound per mole of α2M. Both native and methylamine-activated α2M bind 125I-Aβ(1–42). The binding of 125I-Aβ(1–42) to α2M is enhanced by micromolar concentrations of Zn2+ (but not Ca2+) and is inhibited by noniodinated Aβ(1–42) and Aβ(1–40) but not by the reverse peptide Aβ(40-1) or the cytokines interleukin 1β or interleukin 2. α1-Antichymotrypsin, another plaque-associated protein, inhibits both the binding of 125I-Aβ(1–42) to α2M as well as the degradation of 125I-Aβ(1–42) by proteinase-activated α2M. Moreover, the binding of 125I-Aβ(1–42) to α2M protects the peptide from proteolysis by exogenous trypsin. These data suggest that α2M may function as a carrier protein for Aβ and could serve to either facilitate or impede clearance of Aβ from tissues such as the brain.  相似文献   

20.
Noradrenaline (NA) and the alpha 2-adrenergic agonists clonidine, BHT-920, and UK 14304-18 inhibit potassium-evoked release of [3H]NA from rat occipital cortex tissue chops with similar potencies. NA (10(-5) M) was most effective as up to 85% inhibition could be observed compared with 75%, 55%, and 35% for UK 14304-18, clonidine, and BHT-920, respectively, all at 10(-5) M. Potassium-evoked release was enhanced by both forskolin (10(-5) M) and 1 mM dibutyryl cyclic AMP. Pretreatment of tissue chops with 1 mM dibutyryl cyclic AMP in the presence of 3-isobutyl-1-methylxanthine partially reversed the alpha 2-adrenergic agonist inhibition of NA release. No reversal of inhibition was observed following pretreatment with 10(-5) M forskolin. The effects of clonidine, BHT-920, UK-14308-18, and NA on cyclic AMP formation stimulated by (a) forskolin, (b) isoprenaline, (c) adenosine, (d) potassium, and (e) NA were examined. Only cAMP formation stimulated by NA was inhibited by these alpha 2-adrenergic agonists. These results suggest that only a small fraction of adenylate cyclase in rat occipital cortex is coupled to alpha 2-adrenergic receptors. These results are discussed in relation to recent findings that several alpha 2-adrenergic receptor subtypes occur, not all of which are coupled to the inhibition of adenylate cyclase, and that alpha 2-adrenergic receptors inhibit NA release in rat occipital cortex by a mechanism that does not involve decreasing cyclic AMP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号