首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Towards purification of the scrapie agent   总被引:7,自引:0,他引:7  
A method for the partial purification of scrapie infectivity from hamster brain is described. About a 100-1000-fold, 20-fold, and 200-fold enrichment in scrapie infectivity with respect to protein, RNA, and DNA content has been achieved using differential centrifugation, enzyme and detergent treatment. The inbred CLAC strain of hamsters used in our experiments contained about 10 times less infectivity in brain than has been found in randomly bred animals or other inbred strains.  相似文献   

2.
Prions are pathogens with an unusually high tolerance to inactivation and constitute a complex challenge to the re-processing of surgical instruments. On the other hand, however, they provide an informative paradigm which has been exploited successfully for the development of novel broad-range disinfectants simultaneously active also against bacteria, viruses and fungi. Here we report on the development of a methodological platform that further facilitates the use of scrapie prions as model pathogens for disinfection. We used specifically adapted serial protein misfolding cyclic amplification (PMCA) for the quantitative detection, on steel wires providing model carriers for decontamination, of 263K scrapie seeding activity converting normal protease-sensitive into abnormal protease-resistant prion protein. Reference steel wires carrying defined amounts of scrapie infectivity were used for assay calibration, while scrapie-contaminated test steel wires were subjected to fifteen different procedures for disinfection that yielded scrapie titre reductions of ≤10(1)- to ≥10(5.5)-fold. As confirmed by titration in hamsters the residual scrapie infectivity on test wires could be reliably deduced for all examined disinfection procedures, from our quantitative seeding activity assay. Furthermore, we found that scrapie seeding activity present in 263K hamster brain homogenate or multiplied by PMCA of scrapie-contaminated steel wires both triggered accumulation of protease-resistant prion protein and was further propagated in a novel cell assay for 263K scrapie prions, i.e., cerebral glial cell cultures from hamsters. The findings from our PMCA- and glial cell culture assays revealed scrapie seeding activity as a biochemically and biologically replicative principle in vitro, with the former being quantitatively linked to prion infectivity detected on steel wires in vivo. When combined, our in vitro assays provide an alternative to titrations of biological scrapie infectivity in animals that substantially facilitates the use of prions as potentially highly indicative test agents in the search for novel broad-range disinfectants.  相似文献   

3.
The practice of validating processes for their capacity to inactivate a range of non-enveloped and enveloped viruses also provides confidence that plasma products will be safe from emerging viral pathogens with known aetiology. Of greater concern are diseases of unknown or poorly defined aetiology such as the group of neurological diseases collectively called the transmissible spongiform encephalopathies (TSEs), or prion diseases, for which the best known human disease is Creutzfeldt-Jakob Disease (CJD) and its variant form (vCJD). The goal of the current study was to investigate the potential for manufacturing steps used in the production of albumin and immunoglobulin products by Kistler-Nitschmann fractionation, and the utility of nanofiltration of immunoglobulin to remove TSE agents. Two different scrapie model systems were used. In the first system infectious material used for spiking was scrapie sheep brain homogenate with infectivity titres being measured in hamsters. In the second system purified scrapie agent was used (PrP fibrils) with Western blot analysis measuring reduction in the proteinase K resistant form being used as a measure of removal. The data demonstrated substantial removal of the infectious agent by the manufacturing process in both model systems although some differences were observed in partitioning of the two different infectious materials. The hamster infectivity studies were shown to be approximately 1000 fold more sensitive than the Western Blot assay. The data from both studies provide added confidence that these plasma products are safe with respect to their potential to transmit TSE.  相似文献   

4.
Cattle infected with bovine spongiform encephalopathy (BSE) appear to be a reservoir for transmission of variant Creutzfeldt-Jakob disease (vCJD) to humans. Although just over 100 people have developed clinical vCJD, millions have probably been exposed to the infectivity by consumption of BSE-infected beef. It is currently not known whether some of these individuals will develop disease themselves or act as asymptomatic carriers of infectivity which might infect others in the future. We have studied agent persistence and adaptation after cross-species infection using a model of mice inoculated with hamster scrapie strain 263K. Although mice inoculated with hamster scrapie do not develop clinical disease after inoculation with 10 million hamster infectious doses, hamster scrapie infectivity persists in brain and spleen for the life span of the mice. In the present study, we were surprised to find a 1-year period postinfection with hamster scrapie where there was no evidence for replication of infectivity in mouse brain. In contrast, this period of inactive persistence was followed by a period of active replication of infectivity as well as adaptation of new strains of agent capable of causing disease in mice. In most mice, neither the early persistent phase nor the later replicative phase could be detected by immunoblot assay for protease-resistant prion protein (PrP). If similar asymptomatic carriers of infection arise after exposure of humans or animals to BSE, this could markedly increase the danger of additional spread of BSE or vCJD infection by contaminated blood, surgical instruments, or meat. If such subclinical carriers were negative for protease-resistant PrP, similar to our mice, then the recently proposed screening of brain, tonsils, or other tissues of animals and humans by present methods such as immunoblotting or immunohistochemistry might be too insensitive to identify these individuals.  相似文献   

5.
The persistence of infectious biomolecules in soil constitutes a substantial challenge. This holds particularly true with respect to prions, the causative agents of transmissible spongiform encephalopathies (TSEs) such as scrapie, bovine spongiform encephalopathy (BSE), or chronic wasting disease (CWD). Various studies have indicated that prions are able to persist in soil for years without losing their pathogenic activity. Dissemination of prions into the environment can occur from several sources, e.g., infectious placenta or amniotic fluid of sheep. Furthermore, environmental contamination by saliva, excrements or non-sterilized agricultural organic fertilizer is conceivable. Natural transmission of scrapie in the field seems to occur via the alimentary tract in the majority of cases, and scrapie-free sheep flocks can become infected on pastures where outbreaks of scrapie had been observed before. These findings point to a sustained contagion in the environment, and notably the soil. By using outdoor lysimeters, we simulated a contamination of standard soil with hamster-adapted 263K scrapie prions, and analyzed the presence and biological activity of the soil-associated PrP(Sc) and infectivity by Western blotting and hamster bioassay, respectively. Our results showed that 263K scrapie agent can persist in soil at least over 29 months. Strikingly, not only the contaminated soil itself retained high levels of infectivity, as evidenced by oral administration to Syrian hamsters, but also feeding of aqueous soil extracts was able to induce disease in the reporter animals. We could also demonstrate that PrP(Sc) in soil, extracted after 21 months, provides a catalytically active seed in the protein misfolding cyclic amplification (PMCA) reaction. PMCA opens therefore a perspective for considerably improving the detectability of prions in soil samples from the field.  相似文献   

6.
Abnormal tubulovesicular particles in brains of hamsters with scrapie   总被引:2,自引:0,他引:2  
Abnormal tubulovesicular particles of an average diameter of 23 nm have been observed in brains of mice with scrapie as well as in other animals with spongiform encephalopathies, but they were thought to be absent from the brains of hamsters with scrapie in which the highest known concentrations of the infectious agent occur. We observed in neuronal processes of hamsters as well as mice clusters of those tubulovesicular structures, most often in postsynaptic terminals. Such particles have now been seen regularly in both experimental and natural scrapie in all species examined as well as in other spongiform encephalopathies.  相似文献   

7.
Prion transmission can occur by blood transfusion in human variant Creutzfeldt-Jakob disease and in experimental animal models, including sheep. Screening of blood and its derivatives for the presence of prions became therefore a major public health issue. As infectious titer in blood is reportedly low, highly sensitive and robust methods are required to detect prions in blood and blood derived products. The objectives of this study were to compare different methods - in vitro, ex vivo and in vivo assays - to detect prion infectivity in cells prepared from blood samples obtained from scrapie infected sheep at different time points of the disease. Protein misfolding cyclic amplification (PMCA) and bioassays in transgenic mice expressing the ovine prion protein were the most efficient methods to identify infected animals at any time of the disease (asymptomatic to terminally-ill stages). However scrapie cell and cerebellar organotypic slice culture assays designed to replicate ovine prions in culture also allowed detection of prion infectivity in blood cells from asymptomatic sheep. These findings confirm that white blood cells are appropriate targets for preclinical detection and introduce ex vivo tools to detect blood infectivity during the asymptomatic stage of the disease.  相似文献   

8.
Although the ultimate target of infection is the central nervous system (CNS), there is evidence that the enteric nervous system (ENS) and the peripheral nervous system (PNS) are involved in the pathogenesis of orally communicated transmissible spongiform encephalopathies. In several peripherally challenged rodent models of scrapie, spread of infectious agent to the brain and spinal cord shows a pattern consistent with propagation along nerves supplying the viscera. We used immunocytochemistry (ICC) and paraffin-embedded tissue (PET) blotting to identify the location and temporal sequence of pathological accumulation of a host protein, PrP, in the CNS, PNS, and ENS of hamsters orally infected with the 263K scrapie strain. Enteric ganglia and components of splanchnic and vagus nerve circuitry were examined along with the brain and spinal cord. Bioassays were carried out with selected PNS constituents. Deposition of pathological PrP detected by ICC was consistent with immunostaining of a partially protease-resistant form of PrP (PrP(Sc)) in PET blots. PrP(Sc) could be observed from approximately one-third of the way through the incubation period in enteric ganglia and autonomic ganglia of splanchnic or vagus circuitry prior to sensory ganglia. PrP(Sc) accumulated, in a defined temporal sequence, in sites that accurately reflected known autonomic and sensory relays. Scrapie agent infectivity was present in the PNS at low or moderate levels. The data suggest that, in this scrapie model, the infectious agent primarily uses synaptically linked autonomic ganglia and efferent fibers of the vagus and splanchnic nerves to invade initial target sites in the brain and spinal cord.  相似文献   

9.
Single-stranded polyanions ≥40 bases in length facilitate the formation of hamster scrapie prions in vitro, and polyanions co-localize with PrP(Sc) aggregates in vivo. To test the hypothesis that intact polyanionic molecules might serve as a structural backbone essential for maintaining the infectious conformation(s) of PrP(Sc), we produced synthetic prions using a photocleavable, 100-base oligonucleotide (PC-oligo). In serial Protein Misfolding Cyclic Amplification (sPMCA) reactions using purified PrP(C) substrate, PC-oligo was incorporated into physical complexes with PrP(Sc) molecules that were resistant to benzonase digestion. Exposure of these nuclease-resistant prion complexes to long wave ultraviolet light (315 nm) induced degradation of PC-oligo into 5 base fragments. Light-induced photolysis of incorporated PC-oligo did not alter the infectivity of in vitro-generated prions, as determined by bioassay in hamsters and brain homogenate sPMCA assays. Neuropathological analysis also revealed no significant differences in the neurotropism of prions containing intact versus degraded PC-oligo. These results show that polyanions >5 bases in length are not required for maintaining the infectious properties of in vitro-generated scrapie prions, and indicate that such properties are maintained either by short polyanion remnants, other co-purified cofactors, or by PrP(Sc) molecules alone.  相似文献   

10.
Classical scrapie is one of the transmissible spongiform encephalopathies (TSEs), a group of fatal infectious diseases that affect the central nervous system (CNS). Classical scrapie can transmit laterally from ewe to lamb perinatally or between adult animals. Here we report detection of infectivity in tissues of an unborn fetus, providing evidence that in utero transmission of classical scrapie is also possible.  相似文献   

11.
The epidemic of bovine spongiform encephalopathy (BSE) has led to a world-wide drop in the market for beef by-products, such as Meat-and-Bone Meal (MBM), a fat-containing but mainly proteinaceaous product traditionally used as an animal feed supplement. While normal rendering is insufficient, the production of biodiesel from MBM has been suggested to destroy infectivity from transmissible spongiform encephalopathies (TSEs). In addition to producing fuel, this method simultaneously generates a nutritious solid residue. In our study we produced biodiesel from MBM under defined conditions using a modified form of alkaline methanolysis. We evaluated the presence of prion in the three resulting phases of the biodiesel reaction (Biodiesel, Glycerol and Solid Residue) in vitro and in vivo. Analysis of the reaction products from 263K scrapie infected MBM led to no detectable immunoreactivity by Western Blot. Importantly, and in contrast to the biochemical results the solid MBM residue from the reaction retained infectivity when tested in an animal bioassay. Histochemical analysis of hamster brains inoculated with the solid residue showed typical spongiform degeneration and vacuolation. Re-inoculation of these brains into a new cohort of hamsters led to onset of clinical scrapie symptoms within 75 days, suggesting that the specific infectivity of the prion protein was not changed during the biodiesel process. The biodiesel reaction cannot be considered a viable prion decontamination method for MBM, although we observed increased survival time of hamsters and reduced infectivity greater than 6 log orders in the solid MBM residue. Furthermore, results from our study compare for the first time prion detection by Western Blot versus an infectivity bioassay for analysis of biodiesel reaction products. We could show that biochemical analysis alone is insufficient for detection of prion infectivity after a biodiesel process.  相似文献   

12.
13.
Diarrhea was encountered in a group of adult female golden Syrian hamsters (Mesocricetus auratus) used for titrating the scrapie agent. Ninety percent of the cases occurred in animals over 210 days old even though animals of all age groups lived in the colony concurrently. The cause of diarrhea was investigated in both uninoculated animals and those receiving greater than a limiting dilution of scrapie infectivity, i.e., animals that were not expected to contract the experimental scrapie disease. Three forms of diarrhea were observed. The most commonly encountered was profuse and watery. A chronic form presented with semiformed, thin fecal material smearing the retroperitoneal region. Hemorrhagic diarrhea was observed rarely. Mortality was high among animals with acute watery or hemorrhagic diarrhea. Animals with semiformed soft stools were dehydrated, had a roughened hair-coat, and hunched back. Cardinal lesions were necrosis, inflammation, and mucosal hyperplasia of the cecum and colon and cholangiohepatitis with amyloid deposition. Diffuse renal amyloidosis was present in chronic cases. Toxigenic, cytotoxin B-positive Clostridium difficile was isolated from a majority of affected animals. Cytotoxin B was also present in cecal homogenates of diarrheic animals with C. difficile. The pathological and microbiologic findings indicated a typhlitis and colitis in adult hamsters that was associated with C. difficile infection.  相似文献   

14.
Prion infectivity and its molecular marker, the pathological prion protein PrP(Sc), accumulate in the central nervous system and often also in lymphoid tissue of animals or humans affected by transmissible spongiform encephalopathies. Recently, PrP(Sc) was found in tissues previously considered not to be invaded by prions (e.g., skeletal muscles). Here, we address the question of whether prions target the skin and show widespread PrP(Sc) deposition in this organ in hamsters perorally or parenterally challenged with scrapie. In hamsters fed with scrapie, PrP(Sc) was detected before the onset of symptoms, but the bulk of skin-associated PrP(Sc) accumulated in the clinical phase. PrP(Sc) was localized in nerve fibres within the skin but not in keratinocytes, and the deposition of PrP(Sc) in skin showed no dependence from the route of infection and lymphotropic dissemination. The data indicated a neurally mediated centrifugal spread of prions to the skin. Furthermore, in a follow-up study, we examined sheep naturally infected with scrapie and detected PrP(Sc) by Western blotting in skin samples from two out of five animals. Our findings point to the skin as a potential reservoir of prions, which should be further investigated in relation to disease transmission.  相似文献   

15.
Prions are unique infectious agents which have been shown to be transmitted iatrogenically through contaminated surfaces. Surface contamination is a concern on reusable medical devices and various industrial surfaces, but there is currently no standard, accepted model to evaluate surface prion decontamination. In this report, a set of both in vitro and in vivo methods were investigated based on the contamination of surface through artificial exposure to infected brain. An in vitro surface contamination protocol was developed with subsequent biochemical detection of the prion protein (PrPres). In parallel, the in vivo investigations included the contamination of different types of surface materials (stainless steel or plastic wires) with different prion strains (scrapie strain adapted to hamsters 263K or bovine spongiform encephalopathy strain adapted to mouse 6PB1). The in vivo models with various prion strains and brain homogenate dilutions reproducibly transmitted the disease and a relationship was established between the infectivity titre, the transmission rate and the incubation period. Moreover, the in vivo models were studied for their ability to demonstrate the efficacy of heat and chemical-based decontamination methods, with similar results. The in vivo scrapie method described is proposed as a standard to evaluate existing and developing prion decontamination technologies.  相似文献   

16.
The dynamics of the circulation and distribution of transmissible spongiform encephalopathy (TSE) agents in the blood of infected individuals remain largely unknown. This clearly limits the understanding of the role of blood in TSE pathogenesis and the development of a reliable TSE blood detection assay. Using two distinct sheep scrapie models and blood transfusion, this work demonstrates the occurrence of a very early and persistent prionemia. This ability to transmit disease by blood transfusion was correlated with the presence of infectivity in white blood cells (WBC) and peripheral blood mononucleated cells (PBMC) as detected by bioassay in mice overexpressing the ovine prion protein PrP (tg338 mice) and with the identification of abnormal PrP in WBC after using protein misfolding cyclic amplification (PMCA). Platelets and a large variety of leukocyte subpopulations also were shown to be infectious. The use of endpoint titration in tg338 mice indicated that the infectivity in WBC (per ml of blood) was 10(6.5)-fold lower than that in 1 g of posterior brainstem sample. In both WBC and brainstem, infectivity displayed similar resistance to PK digestion. The data strongly support the concept that WBC are an accurate target for reliable TSE detection by PMCA. The presence of infectivity in short-life-span blood cellular elements raises the question of the origin of prionemia.  相似文献   

17.
Biological activity of polyoma viral DNA in mice and hamsters.   总被引:12,自引:0,他引:12       下载免费PDF全文
The biological activity of polyoma viral DNA was evaluated in mice and hamsters. Viral DNA administered parenterally is about 4 to 5 logs less efficient than polyoma virions in establishing infection in mice. Supercoiled viral DNA was infectious for mice after parenteral administration, giving mean infective doses of 10(-3) to 10(-4) microgram. However, animals fed microgram quantities of polyoma DNA I did not become infected. Linearization of viral DNA with R.EcoRI or R.BamHI, which are single-cut enzymes cleaving in the early and late regions of the genome, respectively, reduced the infectivity for mice approximately fivefold. Approximately 10% of newborn hamsters inoculated intraperitoneally with polyoma DNA I developed tumors. In contrast, the same amount of viral DNA which had been cleaved in the early region with R.EcoRI induced tumors in 50% of inoculated hamsters.  相似文献   

18.
To clarify the mechanisms leading to the development of Creutzfeldt-Jakob disease in some recipients of pituitary-derived human growth hormone (hGH), we investigated the effects of repeated injections of low prion doses in mice. The injections were performed, as in hGH-treated children, by a peripheral route at short intervals and for an extended period. Twelve groups of 24 mice were intraperitoneally inoculated one, two, or five times per week for 200 days with 2 x 10(-5) to 2 x 10(-8) dilutions of brain homogenate containing the mouse-adapted C506M3 scrapie strain. Sixteen control mice were injected once a week for 200 days with a 2 x 10(-4) dilution of normal brain homogenate. Of mice injected in a single challenge with a scrapie inoculum of a 2 x 10(-4), 2 x 10(-5), or 2 x 10(-6) dilution, 2/10, 1/10, and 0/10 animals developed scrapie, respectively. Control mice remained healthy. One hundred thirty-five of 135 mice injected with repeated prion doses of a 2 x 10(-5) or 2 x 10(-6) dilution succumbed to scrapie. Of mice injected with repeated scrapie doses of a 2 x 10(-7) or 2 x 10(-8) dilution, 52/59 and 38/67 animals died of scrapie, respectively. A high incidence of scrapie was observed in mice receiving repeated doses at low infectivity, whereas there was no disease in mice that were injected once with the same doses. Repeated injections of low prion doses thus constitute a risk for development of prion disease even if the same total dose inoculated in a single challenge does not induce the disease.  相似文献   

19.
Scrapie-associated fibril protein (SAF-protein) extracted from infectious scrapie-associated fibrils (SAF) isolated from scrapie hamster brains is not infectious. SAF-protein is composed of various mol. wt. species of glycoproteins differing in carbohydrate content rather than amino acid composition. The N-linked carbohydrate chains represent approximately 40-60% of the mol. wt. of SAF-protein. The deglycosylated SAF-protein has a surprisingly low mol. wt. of approximately 7 kd, representing approximately 55 amino acid residues. This size and chemical analyses indicate that SAF-protein is an amyloid-type of protein. The simplest explanation for the available data is that SAF-polypeptide is very likely not to be part of the scrapie agent but that it is, like other amyloid proteins, derived from host-encoded proteins and not infectious. It is suggested that the infectivity of fractions rich in SAF is due to co-purification of scrapie virus and SAF caused by the high carbohydrate content of SAF-protein.  相似文献   

20.
Although genetically engineered human growth hormone (hGH) is now commercially available, native pituitary-derived hGH is still used by physicians in many countries for the treatment of hormone deficiency states. We describe a method using ultrafiltration and 6 M urea that reduced infectivity in human pituitary tissue that had been deliberately contaminated with scrapie virus (an animal analogue of human Creutzfeldt-Jakob disease virus) from an initial level of 10(9.7) infectious units to just 5 infectious units. Based on estimates of the frequency of contamination and infectivity levels in batches of human pituitaries, the use of this protocol to prepare GH from cadaveric human glands yields a calculated probability of exposure to a contaminated vial of not greater than 1 in 3.2 million recipients; therefore, native hormone prepared by this method may be considered to be essentially risk-free. The same methodology may be useful in the preparation of other hormones, such as prolactin, for which no synthetic substitutes are currently available, as well as biological products derived from sheep or cattle, that may be infected with scrapie or bovine spongiform encephalopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号