首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malaria sporozoites must leave the bloodstream and cross a layer of sinusoidal lining cells in order to infect hepatocytes and undergo exoerythrocytic schizogony. To determine whether Kupffer cells (KC) derived from this layer interact with sporozoites, murine KC were isolated from perfused livers of BALB/cJ mice and incubated in vitro with Plasmodium berghei sporozoites. Isolated KC had characteristic macrophage surface Ag and were phagocytic, ingesting both latex particles and Leishmania major amastigotes. In the absence of immune serum, sporozoites associated with fewer than 10% of these KC. By 30 min, 10% of the cell-associated sporozoites were completely ingested, 30% were in the process of being ingested, and 60% were attached to the surface of the cells. Opsonization of sporozoites with monoclonal or polyclonal antibodies directed against P. berghei circumsporozoite protein markedly enhanced sporozoite association with KC. Up to 40% of cells exposed to opsonized sporozoites had parasites inside or attached to their surfaces. Sporozoites attached to or ingested by KC were uniformly destroyed within 240 min in all cultures; there was no evidence of conversion of sporozoites to the exoerythrocytic stage within KC by light microscopy, and there was no evidence of residual sporozoites, either inside or outside of cells, by either light or electron microscopy. These data suggest that under nonimmune conditions, KC play a minor role in resistance to infection by malaria sporozoites. However, when sporozoites are opsonized by circumsporozoite antibodies, phagocytosis by KC may be an important immune mechanism that prevents parasitization of hepatocytes.  相似文献   

2.
3.
4.
Avian and rodent malaria sporozoites selectively invade different vertebrate cell types, namely macrophages and hepatocytes, and develop in distantly related vector species. To investigate the role of the circumsporozoite (CS) protein in determining parasite survival in different vector species and vertebrate host cell types, we replaced the endogenous CS protein gene of the rodent malaria parasite Plasmodium berghei with that of the avian parasite P. gallinaceum and control rodent parasite P. yoelii. In anopheline mosquitoes, P. berghei parasites carrying P. gallinaceum and rodent parasite P. yoelii CS protein gene developed into oocysts and sporozoites. Plasmodium gallinaceum CS expressing transgenic sporozoites, although motile, failed to invade mosquito salivary glands and to infect mice, which suggests that motility alone is not sufficient for invasion. Notably, a percentage of infected Anopheles stephensi mosquitoes showed melanotic encapsulation of late stage oocysts. This was not observed in control infections or in A. gambiae infections. These findings shed new light on the role of the CS protein in the interaction of the parasite with both the mosquito vector and the rodent host.  相似文献   

5.
Exoerythrocytic forms of Plasmodium gallinaceum were cultured in vitro using salivary gland sporozoites extracted from experimentally infected Aedes fluviatilis mosquitoes. The host cells were macrophage precursors from chicken bone marrow. At various times after introduction of sporozoites, the cultures were stained by Giemsa or by immunofluorescence assay (IFA) using anti-sporozoite-specific monoclonal antibodies (MAb). The time to complete parasite development in vitro was 50-70 h. By 70 h, ruptured segmenters and free merozoites were visible within the cells. Inoculation of normal chickens with infected cultures induced parasitemia after a pre-patent period of 10-11 days. In vitro young exoerythrocytic forms, late schizonts that include the matured segmenters, and free merozoites shared common antigens with the sporozoites as revealed by IFA using anti-sporozoite-specific MAbs. Our data indicate that macrophages support development of P. gallinaceum sporozoites and that the circumsporozoite proteins are present until the end of the primary exoerythrocytic schizogony.  相似文献   

6.
Mice were protected against challenge with infective Sporozoites following immunization with X-ray irradiated Sporozoites. The immunity lasted at least 8 weeks. Mice immune against sporozoite challenge remained fully susceptible to challenge with erythrocytic stages. Immunization of mice with extracts of mosquito thorax failed to protect them, indicating that mosquito antigens were not directly responsible for the immunity observed in the basic experiments.  相似文献   

7.
Studies of in vitro interactions between Plasmodium berghei sporozoites and peritoneal macrophages from mice and rats were performed. A videomicroscopic analysis was made of interactions observed by phase-contrast microscopy. Our results showed a diversity of dynamic interactions between sporozoites and macrophages that included no interaction, surface interaction without sporozoite interiorization, active sporozoite penetration, active penetration with subsequent sporozoite escape, macrophage destruction, and the formation of "tethers" or web-like structures by sporozoites that had actively invaded macrophages. Sporozoites are thus clearly capable of actively invading host macrophages and are not restricted to being phagocytosed for interiorization. The formation of "tethers" by the moving sporozoite might function in vivo by anchoring the sporozoite to the cells lining the lumen of the liver sinusoid. Active sporozoite motility appears to be a functional phenomenon involved in sporozoite invasion of host liver cells.  相似文献   

8.
To track malaria parasites for biological studies within the mosquito and mammalian hosts, we constructed a stably transformed clonal line of Plasmodium berghei, PbFluspo, in which sporogonic and pre‐erythrocytic liver‐stage parasites are autonomously fluorescent. A cassette containing the structural gene for the FACS‐adapted green fluorescent protein mutant 2 (GFPmut2), expressed from the 5′ and 3′ flanking sequences of the circumsporozoite (CS) protein gene, was integrated and expressed at the endogenous CS locus. Recombinant parasites, which bear a wild‐type copy of CS, generated highly fluorescent oocysts and sporozoites that invaded mosquito salivary glands and were transmitted normally to rodent hosts. The parasites infected cultured hepatocytes in vitro, where they developed into fluorescent pre‐erythrocytic forms. Mammalian cells infected by these parasites can be separated from non‐infected cells by fluorescence activated cell sorter (FACS) analysis. These fluorescent insect and mammalian stages of P. berghei should be useful for phenotypic studies in their respective hosts, as well as for identification of new genes expressed in these parasite stages.  相似文献   

9.
10.
Long-term in vitro culture of Plasmodium berghei was established using the Petri dish candle jar method of Trager and Jensen (1976). Cultures were established at 22, 27 and 37°C. As optimal growth was observed at 27°C, subsequent cultivation was carried out at this temperature. RPMI 1640 medium was modified by incorporating additional glucose (1 mg ml−1) and bactopeptone (1 mg ml−1) in the medium. This medium was found suitable for maintenance of mouse erythrocytes in vitro. P. berghei cultures were maintained using candle jars and this modified RPMI 1640 medium for 45 weeks.  相似文献   

11.
12.
Plasmodium berghei sporozoites were observed to react with human hepatoma (HepG2) target cells which had been fixed with methanol, formaldehyde, or glutaraldehyde. The reaction consisted of attachment of sporozoites to the fixed target cells and the release of circumsporozoite protein which bound to target cell areas adjacent to the attachment sites. Treatment of fixed target cells with 0.1 N H2SO4 at 80 C, neuraminidases, neuraminidase plus galactose oxidase or inclusion of transferrin, orosomucoid, their asialo forms, or various monosaccharides in the incubation medium had no significant effect on target cell reactivity with sporozoites. Fixed cells oxidized with periodate or cells extracted with methanol or chloroform-methanol were reactive but lost activity if allowed to air dry after treatment. Treatment with papain or chymotrypsin at levels producing heavy cell structure damage caused a major loss of activity.  相似文献   

13.
Motility of Plasmodium berghei ookinetes, which developed in primary and established cell line cultures obtained from Anopheles stephensi mosquitoes, was studied by using still photomicrographs and normal speed cinephotomicrography. At 18–72 hr after inoculation of P. berghei infected blood from hamsters or mice, motile ookinetes were seen in both mosquito cell cultures; the most active specimens were observed at 24–30 hr. Ookinetes underwent a sporadic forward gliding movement, during which a variable degree of rotation of the body upon its longitudinal axis usually occurred. Some specimens rotated repeatedly upon their axes without any forward progression. The direction of the gliding movement always coincided with the curvature of the ookinete body. In those specimens in which no rotation of the body occurred, a circular course resulted. Ookinetes covered a distance of as much as 50 μm during a single gliding movement. A few ookinetes undergoing locomotion appeared to leave a path or trail on the substrate. Occasionally, an ookinete penetrated a red cell with its slender anterior projection, resulting in lysis of the cell. After red cells had been penetrated by ookinetes, the parasites already within these cells fused with each other to form larger spheroidal bodies. Penetration of cultured cells was not observed.  相似文献   

14.
15.
The invasion of liver parenchymal cells by sporozoites of Plasmodium berghei Vincke & Lips, 1948, was studied in vivo using transmission electron microscopy. Livers of Brown Norway rats were examined 30 and 60 min after intraportal injection of 15 million sporozoites each. Sporozoites found after incorporation into vacuoles in hepatocytes were often located near a bile canaliculus at the lateral cell surface, surrounded by hepatocyte lysosomal structures; however, degradation of sporozoites caused by lysosomal digestion inside hepatocytes was never observed. Due to the crescent shape of sporozoites, serial sections were necessary to demonstrate the actual process of invasion of the hepatocyte. The hepatocyte's plasmalemma appeared to invaginate due to the sporozoite's action, thereby creating a parasitophorous vacuole. It was suggested that the sporozoite actively penetrated the hepatocyte; however, no visible depletion of rhoptries and micronemes was observed.  相似文献   

16.
The interactions between Plasmodium berghei sporozoites and Kupffer cells in rat liver were studied by transmission electron microscopy. Between 10 and 45 min after inoculation, sporozoites were found in the process of entering Kupffer cells and inside phagolysosomes. The sporozoites entered the Kupffer cells by phagocytosis as determined by the presence of pseudopods and local accumulations of aggregated microfilaments and the resulting exclusion of other organelles in the phagocyte cytoplasm beneath the attached parasite. Sporozoites were taken up either with their anterior end first, or backwards. Scanning electron microscopy of in vitro sporozoite Kupffer cell interaction confirmed these observations. It was concluded that sporozoites are taken up in a normal phagocytic way by the Kupffer cells, regardless of their initial place of contact or position. Thirty min after inoculation sporozoites found in phagolysosomes were still morphologically intact but after 45 min we could encounter completely digested sporozoites.  相似文献   

17.
A specific DNA probe has been used to quantify the neutralizing effects of monoclonal antibodies (3D11) against the circumsporozoite protein of Plasmodium berghei sporozoites. The amount of parasite DNA was measured in the livers of Norway Brown rats at the peak of proliferation of the exoerythrocytic forms (EEF). In vitro treatment of 1.5 X 10(5) sporozoites with 0.36 microgram/0.5 ml of whole 3D11 IgG neutralized about 90% of the sporozoite infectivity. When the dose was 3.6 micrograms no signal was detected, indicating that less than ten sporozoites developed into EEF in the liver. In contrast, 3.6 micrograms of Fab obtained from 3D11 neutralized sporozoite infectivity by only 60%. Although the neutralizing effect of 3D11 was very marked, the infected rats developed parasitemias after a prolonged delay in patency, suggesting that a small proportion of sporozoites was resistant to the effects of 3D11. The sporozoites were subjected to four cycles of 3D11-mediated selection, each one involving treatment of sporozoites with the antibodies, injection of the mixture into rats, infection of hamsters with blood stage parasites obtained from the rats, feeding of Anopheles stephensi on these hamsters, and obtaining sporozoites from the salivary glands of the infected mosquitoes. After four cycles of selection, the susceptibility of the resulting sporozoites to different concentrations of 3D11 was compared with that of nonselected sporozoites. No differences were detected, indicating that the capacity of a few sporozoites to escape the neutralizing effect of 3D11 antibodies is not inherited.  相似文献   

18.
19.
Summary Intrahepatocytic transformation in vivo of the rodent malaria sporozoite of Plasmodium berghei, into the young trophic exoerythrocytic tissue stage was studied by immunofluorescence, light- and electron microscopy. The first 20 h of intracellular life were involved entirely in dedifferentiation with limited proliferation of organelles. From about 20 h onwards nuclear division commenced, rough endoplasmic reticulum became markedly expanded, and mitochondria increased in numbers. However, remains of the sporozoite pellicle (i.e., inner membranes and subpellicular microtubules) persisted for at least 28 h, which correlates with the persisting reaction of young exoerythrocytic forms with antisporozoite antibodies. In general, the basic mechanism of transformation resembles that of the ookinete into oocyst and that of the merozoite into erythrocytic trophozoite.  相似文献   

20.
Attempts were made to develop techniques for the continuous in vitro culture of Plasmodium berghei. The candle jar method (Trager &; Jensen, 1976) proved to be insufficient for the culture of this rodent malaria parasite. Parasitaemia decreased rapidly after the first schizogonic cycle in culture. A simple suspension technique was developed using a newly designed culture apparatus which can be placed in the laminar-flow. All manipulations necessary for the refreshment of medium and cells can be made with almost no disturbance of the culture conditions. With this system it was possible to culture P. berghei repeatedly for more than a week, completing at least four schizogonic cycles with considerable mcrozoite invasion and a 2–6-fold multiplication. Infection rates of up to 6.0% were achieved and cultures were maintained for 9 days. Several specific properties of P. berghei and the differences between the candle jar method and the new suspension method are discussed to explain the results obtained in both systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号