首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analytically pure samples of the Romanowsky dyes eosin y, erythrosin b and tetrachlorofluorescein are prepared. DC of the dye samples shows no contaminations. We measured the absorption spectra of the dye dianions in alkaline aqueous solution and of the dye acids in 95% ethanol at very low dye concentrations. The molar extinction coefficients of the long wavelength absorption of the monomeric dye species are determined (Table 1). The extinction coefficients may be used for standardisation of dye samples. The absorption spectra of eosin y in aqueous solution are dependent on concentration. Using a new very sensitive method it was possible to identify two association equilibria from the concentration dependency of the spectra. Dimers are formed even in very dilute solutions, at higher concentrations tetramers. The dissociation constant of the dimers D in monomers M at 293 K, pH = 12, is K21 = 2,9 X 10(-5) M; of the tetramers Q in dimers D K42 = 2,4 X 10(-3) M. From the experimental spectra of eosin solutions at various concentrations, pH = 12, and the equilibrium constants K21, K42 the absorption spectra of the pure monomers, dimers and tetramers are calculated. M has one long wavelength absorption band, VM = 19300 cm-1, epsilon M = 1,03 X 10(5) M-1 cm-1; D also one absorption band, VD = 19300 cm-1, epsilon D = 1,74 X 10(5) M-1 cm-1; Q two absorption bands, VQ1 = 19100, VQ2 = 20200 cm-1, epsilon Q1 = 1,65 X 10(5), epsilon Q2 = 1,96 X 10(5) M-1 cm-1. The absorption spectrum of the dimers is discussed by quantum mechanics.  相似文献   

2.
Co(II) derivatives of Cu,Zn-superoxide dismutase having cobalt substituted for the copper (Co,Zn-superoxide dismutase and Co,Co-superoxide dismutase) were studied by optical and EPR spectroscopy. EPR and electronic absorption spectra of Co,Zn-superoxide dismutase are sensitive to solvent perturbation, and in particular to the presence of phosphate. This behaviour suggests that cobalt in Co,Zn-superoxide dismutase is open to solvent access, at variance with the Co(II) of the Cu,Co-superoxide dismutase, which is substituted for the Zn. Phosphate binding as monitored by optical titration is dependent on pH with an apparent pKa = 8.2. The absorption spectrum of Co,Zn-superoxide dismutase in water has three weak bands in the visible region (epsilon = 75 M-1 X cm-1 at 456 nm; epsilon = 90 M-1 X cm-1 at 520 nm; epsilon = 70 M-1 X cm-1 at 600 nm) and three bands in the near infrared region, at 790 nm (epsilon = 18 M-1 X cm-1), 916 nm (epsilon = 27 M-1 X cm-1) and 1045 nm (epsilon = 25 M-1 X cm-1). This spectrum is indicative of five-coordinate geometry. In the presence of phosphate, three bands are still present in the visible region but they have higher intensity (epsilon = 225 M-1 X cm-1 at 544 nm; epsilon = 315 M-1 X cm-1 at 575 nm; epsilon = 330 M-1 X cm-1 at 603 nm), whilst the lowest wavelength band in the near infrared region is at much lower energy, 1060 nm (epsilon = 44 M-1 X cm-1). The latter property suggests a tetrahedral coordination around the Co(II) centre. Addition of 1 equivalent of CN- gives rise to a stable Co(II) low-spin intermediate, which is characterized by an EPR spectrum with a highly rhombic line shape. Formation of this CN- complex was found to require more cyanide equivalents in the case of the phosphate adduct, suggesting that binding of phosphate may inhibit binding of other anions. Titration of the Co,Co-derivative with CN- provided evidence for magnetic interaction between the two metal centres. These results substantiate the contention that Co(II) can replace the copper of Cu,Zn-superoxide dismutase in a way that reproduces the properties of the native copper-binding site.  相似文献   

3.
The binding of 6-nitro-L-tryptophan to trp aporepressor and human serum albumin has been examined by visible difference spectroscopy and circular dichroism. 6-Nitro-L-tryptophan, prepared by nitration of L-tryptophan with nitric acid in glacial acetic acid, exhibits a visible and near-uv absorption spectrum with lambda max at about 330 nm (epsilon = 7 X 10(3) M-1 cm-1) and a shoulder near 380 nm in H2O. In the presence of trp aporepressor, the visible absorption intensity is sharply diminished. Visible difference spectral titration data give KD = 1.27 X 10(-4) M and n = 0.95 per subunit at 25 degrees C. While 6-nitro-L-tryptophan exhibits no significant circular dichroism between 300 and 500 nm, the complex with trp aporepressor exhibits strong circular dichroism signals, with a negative maximum at 386 nm (delta epsilon = -7.5 M-1 cm-1) and a positive maximum at 310 nm (delta epsilon = +6 M-1 cm-1). Circular dichroism titration data give KD = 1.69 X 10(-4) M and n = 0.90 per subunit at 25 degrees C. The KD values determined spectroscopically are in excellent agreement with that determined by equilibrium dialysis, KD = 1.5 X 10(-4) M at 25 degrees C. In the presence of human serum albumin, the spectrum of 6-nitro-L-tryptophan exhibits a blue shift and an increase in absorption intensity; similar changes are observed in solvents of low dielectric contrast such as 80% aqueous dioxane. Visible difference spectral titration data give KD = 8.0 X 10(-5) M and n = 0.95 for human serum albumin. The complex of 6-nitro-L-tryptophan with human serum albumin exhibits a strong positive circular dichroism maximum at 380 nm (delta epsilon = +9.8 M-1 cm-1) with a shoulder at 310-320 nm. Circular dichroism titration data give KD = 6.4 X 10(-5) M and n = 0.83, in good agreement with the visible difference spectral results. Taken together, our results demonstrate the utility of 6-nitro-L-tryptophan as a spectroscopic probe for tryptophan-binding proteins.  相似文献   

4.
Azure B is the most important Romanowsky dye. In combination with eosin Y it produces the well known Romanowsky-Giemsa staining pattern on the cell. Usually commercial azure B is strongly contaminated. We prepared a sample of azure B-BF4 which was analytically pure and had no coloured impurities. The substance was used to redetermine the molar extinction coefficient epsilon (v)M of monomeric azur B in alcoholic solution. In the maximum of the long wavelength absorption at v = 15.61 kK (lambda = 641 nm) the absorptivity is epsilon (15.61)M = (9.40 +/- 0.15) x 10(4)M-1 cm-1. This extinction coefficient may be used for standardization of dye samples. In aqeuous solution azur B forms dimers and even higher polymers with increasing concentration. The dissociation constant of the dimers, K = 2,2 x 10(-4)M (293 K), and the absorption spectra of pure monomers and dimers in water have been calculated from the concentration dependence of the spectra using an iterative procedure. The molar extinction coefficient of the monomers at 15.47 kK (646 nm) is epsilon (15.47)M = 7.4 x 10(4)M-1 cm-1. The dimers have two long wavelength absorption bands at 14.60 and 16.80 kK (685 and 595 nm) with very different intensities 2 x 10(4) and 13.5 x 10(4)M-1 cm-1. The spectrum of the dimers in aqueous solution is in agreement with theoretical considerations of F?rster (1946) and Levinson et al. (1957). It agrees with an antiparallel orientation of the molecules in the dimers. It may be that dimers bound to a substrate in the cell have another geometry than dimers in solution. In this case the weak long wavelength absorption of the dimers can increase.  相似文献   

5.
The RNA binding protein of 56 residues encoded by the extreme 3' region of the gag gene of Rauscher murine leukemia virus (MuLV) has been chemically synthesized by a solid-phase synthesis approach. Since the peptide contains a Cys26-X2-Cys29-X4-His34-X2-Cys39 sequence that is shared by all retroviral gag polyproteins which has been proposed to be a metal binding region, it was of considerable interest to examine the metal binding properties of the complete p10 protein. As postulated, p10 binds the metal ions Cd(II), Co(II), and Zn(II). The Co(II) protein shows a set of d-d absorption bands typical of a tetrahedral Co(II) complex at 695 (epsilon = 565 M-1 cm-1), 642 (epsilon = 655 M-1 cm-1), and 615 nm (epsilon = 510 M-1 cm-1) and two intense bands at 349 (epsilon = 2460 M-1 cm-1) and 314 nm (epsilon = 4240 M-1 cm-1) typical of Co(II)----(-)S- charge transfer. The ultraviolet absorption spectrum also indicates Cd(II) binding by the appearance of a Cd(II)----(-)S- charge-transfer band at 255 nm. The 113Cd NMR spectrum of 113Cd(II)-p10 reveals one signal at delta = 648 ppm. This chemical shift correlates well with that predicted for ligation of 113Cd(II) to three -S- from the three Cys residues of p10. The chemical shift of 113Cd(II)-p10 changes by only 4 ppm upon binding of d(pA)6, indicating that the chelate complex is little changed by oligonucleotide binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Distribution, activity level and properties of alpha-lysinamidase have been studied in Salmonella strains. The Km value for L-lysinamide was calculated to be 4.2 mM and for L-alpha-aminocaprolactame--5.1 mM. This enzyme, parallel with lysinamide, catalyzes hydrolysis of alpha-aminocaprolactam and leucinamide. Asparagine, glutamine, caprolactam, triptophanamide were not lysinamidase substrates.  相似文献   

7.
The role of copper in pig kidney diamine oxidase has been probed by examining the effects of potential Cu(II) ligands on the spectroscopic and catalytic properties of the enzyme. In the presence of azide and thiocyanate, new absorption bands are evident at 410 nm (epsilon = 6300 M-1 cm-1) and 365 nm (epsilon = 3000 M-1 cm-1), respectively. These bands are assigned as ligand-to-metal charge-transfer transitions, N3-/SCN- leads to Cu(II). One anion/Cu(II) is coordinated in an equitorial position. Anion binding can be completely reversed by dialysis. The equilibrium constants for diamine oxidase-anion complex formation are 134 M-1 (N3-) and 55 M-1 (SCN-). Azide and thiocyanate are linear uncompetitive inhibitors with respect to the amine substrate when O2 is present at saturating concentrations. Taken together, the data are consistent with a functional role for Cu(II) in diamine oxidase catalysis.  相似文献   

8.
The ground state magnetic properties of manganese superoxide dismutase from Thermus thermophilus in its native and reduced forms have been determined using saturation magnetization data. Parallel EPR measurements were used to verify that commonly encountered paramagnetic impurities were at low concentration relative to the metalloprotein. The native enzyme contains high spin Mn(III) (S = 2) with D = +2.44(5) cm-1 and E/D = 0. The reduced enzyme contains high spin Mn(II) (S = 5/2) with D = +0.50(5) cm-1 and E/D = 0.027. These results are in keeping with the suggestions of several previous groups of workers concerning the permissible oxidation and spin states of the manganese, but the zero field splitting parameters are unlike those of known manganese model compounds. In addition, the extinction coefficient for the visible region absorption maximum of the native enzyme and the corresponding difference extinction coefficient (native minus reduced) have been measured using saturation magnetization data to quantitate Mn(III) present. The result, epsilon 480 = 950(80) M-1 cm-1 (delta epsilon 480 = 740(60) M-1 cm-1) agrees with the previously reported value of epsilon 480 = 910 M-1 cm-1 found by total manganese determination (Sato, S. and Nakazawa, K. (1978) J. Biochem. 83, 1165-1171). The wide variation in the reported visible region extinction coefficients of manganese superoxide dismutases from different sources is discussed.  相似文献   

9.
The Formation of Triton X-100-silicotungstic acid complex was studied. Quantitative turbidimetric determination of the detergent based on this process was suggested. This method allows to determining the complex formation at any wavelength in the range from 350 (epsilon 350 = 15,600 cm-1 M-1) to 600 nm (epsilon 600 = = 9090 cm-1 M-1). The calibration curve for Triton X-100 recorded at 350 nm is linear in the concentration range of 0 to 30 micrograms/ml. A sigmoid calibration curve was observed at longer wavelengths. A linear fragment of the calibration curve recorded at 600 nm was found at a concentration of Triton X-100 of about 5 micrograms/ml. The complex nature of calibration curves can be explained by heterogeneity of the complex dispersion.  相似文献   

10.
Ultraviolet difference spectroscopy of the binary complex of isozyme 4-4 of rat liver glutathione S-transferase with glutathione (GSH) and the enzyme alone or as the binary complex with the oxygen analogue, gamma-L-glutamyl-L-serylglycine (GOH), at neutral pH reveals an absorption band at 239 nm (epsilon = 5200 M-1 cm-1) that is assigned to the thiolate anion (GS-) of the bound tripeptide. Titration of this difference absorption band over the pH range 5-8 indicates that the thiol of enzyme-bound GSH has a pKa = 6.6, which is about 2.4 pK units less than that in aqueous solution and consistent with the kinetically determined pKa previously reported [Chen et al. (1988) Biochemistry 27, 647]. The observed shift in the pKa between enzyme-bound and free GSH suggests that about 3.3 kcal/mol of the intrinsic binding energy of the peptide is utilized to lower the pKa into the physiological pH range. Apparent dissociation constants for both GSH and GOH are comparable and vary by a factor of less than 2 over the same pH range. Site occupancy data and spectral band intensity reveal large extinction coefficients at 239 nm (epsilon = 5200 M-1 cm-1) and 250 nm (epsilon = 1100 M-1 cm-1) that are consistent with the existence of either a glutathione thiolate (E.GS-) or ion-paired thiolate (EH+.GS-) in the active site. The observation that GS- is likely the predominant tripeptide species bound at the active site suggested that the carboxylate analogue of GSH, gamma-L-glutamyl-(D,L-2-aminomalonyl)glycine, should bind more tightly than GSH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Titration of native ascorbate oxidase from green zucchini squash (Cucurbita pepo) with azide in 0.1 M-phosphate buffer, pH 6.8, exhibits a biphasic spectral behaviour. Binding of the anion with 'high affinity' (K greater than 5000 M-1) produces a broad increase of absorption in the 400-500 nm region (delta epsilon approximately 1000 M-1.cm-1) and c.d. activity in the 300-450 nm region, whereas azide binding with 'low affinity' (K approximately 100 M-1) is characterized by an intense absorption band at 420 nm (delta epsilon = 6000 M-1.cm-1), corresponding to negative c.d. activity and a decrease of absorption at 330 nm (delta epsilon = -2000 M-1.cm-1). The high-affinity binding involves a minor fraction of the protein containing Type 3 copper in the reduced state, and the spectral features of this azide adduct can be eliminated by treatment of the native enzyme with small amounts of H2O2, followed by dialysis before azide addition. As shown by e.s.r. spectroscopy, Type 2 copper is involved in both types of binding, its signal being converted into that of a species with small hyperfine splitting constant [12 mT (approximately 120 G)] in the case of the low-affinity azide adduct. The spectral similarities of the two types of azide adducts with the corresponding adducts formed by native laccase, which also exhibits Type 3 copper heterogeneity, are discussed.  相似文献   

12.
The nucleocapsid (NC) protein (p15) of the human immunodeficiency virus (HIV) has been cloned and overproduced (under the control of a phage T7 promoter) in soluble form in an Escherichia coli host. The soluble NC protein is a fusion protein containing 15 amino acids from the T7 gene 10 and 7 amino acids from the HIV p24 protein at the N-terminus to make a protein of 171 amino acids. The plasmid containing the fusion gene is designated p15DF. A homogeneous product has been isolated from the induced cells and, when isolated under aerobic conditions, contains 0.3-0.5 mol of Zn/mol of protein and has only 2 titratable SH groups. Reduction and refolding in the presence of Zn(II) yields a protein containing 2.0 mol of Zn/mol of protein and 6 titratable SH groups. On the other hand, if the cells are sonicated in 2 mM CdCl2 and purified at pH 5.0, an unoxidized protein containing 2 mol of Cd/mol of protein is obtained. The Cd(II) ions can be exchanged with Zn(II), Co(II), or 113Cd(II). The Co(II)2 NC protein shows d-d electronic transitions at 695 nm [epsilon = 675 M-1 cm-1 per Co(II)] and 640 nm [epsilon = 825 M-1 cm-1 per Co(II)] compatible with regular tetrahedral geometry around both Co(II) ions. The Co(II)2 and Cd(II)2 NC proteins show intense charge-transfer bands in the near-UV, at 355 nm (epsilon = approximately 4000 M-1 cm-1) and 310 nm (epsilon = approximately 8000 M-1 cm-1) for the Co(II) protein and 255 nm (epsilon = approximately 10(4) M-1 cm-1) for the Cd(II)2 NC protein, compatible with -S- coordination. 113Cd NMR of the 113Cd(II)2 NC protein shows two 113Cd NMR signals at 659 and 640 ppm, respectively, each integrating to approximately 1 Cd(II) ion. The downfield chemical shifts suggest coordination of each 113Cd(II) ion to 3 sulfur donor atoms. The spectroscopic data fully support the prediction that the NC protein binds metal ions to each of the tandem repeats of the -Cys-X2-Cys-X4-His-X4-Cys- sequence contained in the N-terminal half of the molecule. 113Cd NMR shows, however, that the sites are not identical. Isolation of the NC protein under standard aerobic conditions results in oxidation of the sulfhydryl groups and loss of the coordinated Zn(II) ions, while preparation of the NC protein as the Cd(II) derivative at low pH protects the sulfhydryl groups from oxidation.  相似文献   

13.
1-[2-Amino-5-(6-carboxyindol-2-yl)phenoxyl]-2-(2'- amino-5'-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid (indo-1) and 2-[2-(bis(carboxymethyl)amino-5-methylphenoxy) methyl]-6- methyl-8-[bis-(carboxymethyl)amino]quinoline (quin-2) are sensitive, spectral indicators for Zn2+. Additions of subsaturating Zn2+ to 10-80 microM indo-1 or quin-2 at pH 7.0 produce uv difference spectra with isosbestic wavelengths at 342 and 282 nm or at 342, 317, and 252 nm, respectively. Formation of 1:1 Zn2+:indicator complexes at pH 7.0 and 20 degrees C in the absence (presence) of 100 mM KCl gives delta epsilon max = -2.4 +/- 0.2 X 10(4) M-1 cm-1 at 367 nm (-2.1 +/- 0.2 X 10(4) M-1 cm-1 at 365 nm) for indo-1 and delta epsilon max = -2.7 +/- 0.1 X 10(4) M-1 cm-1 at 266 nm (-2.6 +/- 0.1 X 10(4) M-1 cm-1 at 265 nm) for quin-2. Competition experiments at pH 7.0 and 20 degrees C with indo-1 and quin-2 and also 4-(2-pyridylazo)resorcinol (PAR) as the second chelator in the absence (presence) of 100 mM KCl yield apparent affinity constants: K'A = 2.5 +/- 1.0 X 10(10) M-1 (6.2 +/- 0.5 X 10(9) M-1) for indo-1 binding Zn2+ and K'A = 9.4 +/- 3.3 X 10(11) M-1 (2.7 +/- 0.1 X 10(11) M-1) for quin-2 binding Zn2+. The above constants provide the basis for rapid steady-state spectrophotometric determinations of the affinity of a protein for Zn2+ with K'A approximately 10(10) - 10(13) M-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The reactions of Fe(II)EDTA, Fe(II)DTPA, and Fe(II)HEDTA with hydrogen peroxide near neutral pH have been investigated. All these reactions have been assumed to proceed through an active intermediate, I1, (Formula: see text) where pac is one of the three polyaminocarboxylates mentioned above. I1, whether .OH radical or an iron complex, reacts with ethanol, formate, and other scavengers at rates relative to k2 that, with the exception of t-butanol and benzoate, are similar, but not identical, to those expected for the.OH radical. In contrast, at pH 3, in the absence of ligands the reaction of I1 with Fe2+ was inhibited by ethanol and t-butanol and the reactivity of I1 towards these two scavengers relative to ferrous ion is identical to that exhibited by the hydroxyl radical. When pac = HEDTA, the intermediate of the first reaction reacts with formate ion to form the ferrous HEDTA ligand radical complex, which is characterized by absorption maxima at 295 nm (epsilon = 2,640 M-1 cm-1) and 420 nm (epsilon = 620 M-1 cm-1). For the reaction of Fe(II)HEDTA with H2O2, the following mechanism is proposed: (Formula: see text) where k17 = 4.2 X 10(4) M-1 sec-1 and k19 = 5 +/- 0.2 sec-1.  相似文献   

15.
The Type 3 copper site is intact but labile in Type 2-depleted laccase   总被引:1,自引:0,他引:1  
We report results of experiments designed to characterize the Type 1 and Type 3 copper sites in Rhus laccase depleted of Type 2 copper (T2D). Use of the Lowry method for determining protein concentration yielded the value 5620 +/- 570 M-1 cm-1 for the extinction of the 615-nm absorption band of this protein. Anaerobic reductive titrations with Ru(NH)3)6(2)+ and Cr(II)aq ions established the presence of three electron-accepting centers, which are reduced in a complex manner. Treatment of T2D laccase with a 70-fold excess of H2O2 induced a new shoulder at 330 nm (delta epsilon = 660 M-1 cm-1), as well as intensity perturbations at 280 and 615 nm. Comparison of difference spectra show that this 330-nm band derives from a Type 3 copper-bound peroxide and not from a reoxidized Type 3 site. Dioxygen reoxidation of ascorbate-reduced T2D laccase produced new difference bands at 330 nm (delta epsilon = 770 M-1 cm-1) and 270 nm (delta epsilon = 13,000 M-1 cm-1), the former assigned to a bound peroxide which is a dioxygen reduction intermediate. In the corresponding epr spectrum of this material new Cu(II) g parallel features (A parallel approximately 130 G) indicative of an isolated copper ion and a triplet signal near 3,400 G were observed, originating from the Type 3 sites of separate T2D laccase molecules. Reoxidation by ferricyanide or by dioxygen as mediated by iron hexacyanide did not produce these changes. Thus the magnetism of the reoxidized Type 3 site in T2D laccase can be perturbed as a consequence of aerobic turnover. The suggestion is advanced that there are presently three forms of T2D laccase, possibly metastable conformational isotypes, accounting for the apparently contradictory reports on the properties of this protein.  相似文献   

16.
4-Nitro-1-cyclohexyl-3-ethoxy-2-oxo-3-pyrroline reacts with both amino and sulfhydryl groups. The instability of the product with sulfhydryl groups makes the reagent a useful amino-group specific protein reagent. The advantages of this compound include (1) rapid reaction with protein (less than 15 min at pH 9), (2) EASE OF REVERSAL UNDER MILDLY ALKALINE CONDITIONS (PH larger than or equal to 8) with formation of a water-soluble by-product (lambdamax = 363 nm), and (3) ease of quantitation utilizing the high extinction coefficients of the amino derivative (lambdamax = 383 and 397 nm, epsilon397 = 20 200 M-1 . cm-1) and the reversal by-product (lambdamax = 363 nm, epsilon = 16 300 M-1 . cm-1). With these characteristics and the stability of the amino derivative under physiological conditions (t1/2 for reversal = 167 h at pH 7.0 and room temperature), nitrocyclohexylethoxyoxopyrroline can be a useful reagent in a wide variety of protein sequencing and structure studies.  相似文献   

17.
The interaction between mouse submaxillary gland renin and a statine-containing, iodinated substrate analog inhibitor was studied. The compound, 1 (Boc-His-Pro-Phe-(4-iodo)-Phe-Sta-Leu-Phe-NH2, Sta = (3S,4S)-4-amino-3-hydroxy-6-methyl-heptanoic acid), a statine-containing analog of the renin substrate octapeptide, was a competitive inhibitor of cleavage of synthetic tetradecapeptide renin substrate by mouse submaxillary gland renin, with a Ki of 6.2 x 10(-10) M (pH 7.2, 37 degrees C). Titration of the partial quenching of the tryptophan fluorescence of the enzyme by 1 revealed tight binding with a dissociation constant less than 3 nM and a binding stoichiometry of one mole 1 per mole enzyme. The time course of tight binding of 1 to mouse renin appeared to be fast, with kON greater than or equal to 1.3 x 10(6) s-1 M-1. The UV difference spectrum generated upon binding of 1 to mouse renin had two prominent features: a strong, broad band that had a minimum at 242 nm with delta epsilon (242) = -19,500 cm-1 M-1, and a triplet of enhanced bands centered at 286 nm with delta epsilon (286) about +1100 cm-1 M-1. The strong, broad, negative band was similar to the difference between the UV absorbance of 1 in methanol and in 0.1 M citrate phosphate pH 7.2. A structure-activity correlation for analogs of 1 showed some moieties of 1 that are important for potent inhibition of mouse renin. The inhibition data for these compounds versus human kidney renin suggested that the solution of the crystal structure of 1 bound to mouse renin will provide useful information for the design of inhibitors of human kidney renin.  相似文献   

18.
A ferredoxin, which functions as an electron acceptor for the CO dehydrogenase complex from Methanosarcina thermophila, was purified from acetate-grown cells. It was isolated as a trimer having a native molecular weight of approximately 16,400 and monomer molecular weight of 4,888 calculated from the amino acid composition. The ferredoxin contained 2.80 +/- 0.56 Fe atoms and 1.98 +/- 0.12 acid-labile sulfide. UV-visible absorption maxima were 395 and 295 nm with monomeric extinction coefficients of epsilon 395 = 12,800 M-1 cm-1 and epsilon 295 = 14,460 M-1 cm-1. The A395/A295 ratio ranged from 0.80 to 0.88. There were 5 cysteines per monomer but no methionine, histidine, arginine, or aromatic amino acids. The N-terminal amino acid sequence showed a 4-cysteine cluster with potential to coordinate a Fe:S center. The protein was stable for 30 min at 70 degrees C, but denatured during incubation at 85 degrees C.  相似文献   

19.
The molar absorption coefficient, epsilon, of a protein is usually based on concentrations measured by dry weight, nitrogen, or amino acid analysis. The studies reported here suggest that the Edelhoch method is the best method for measuring epsilon for a protein. (This method is described by Gill and von Hippel [1989, Anal Biochem 182:319-326] and is based on data from Edelhoch [1967, Biochemistry 6:1948-1954]). The absorbance of a protein at 280 nm depends on the content of Trp, Tyr, and cystine (disulfide bonds). The average epsilon values for these chromophores in a sample of 18 well-characterized proteins have been estimated, and the epsilon values in water, propanol, 6 M guanidine hydrochloride (GdnHCl), and 8 M urea have been measured. For Trp, the average epsilon values for the proteins are less than the epsilon values measured in any of the solvents. For Tyr, the average epsilon values for the proteins are intermediate between those measured in 6 M GdnHCl and those measured in propanol. Based on a sample of 116 measured epsilon values for 80 proteins, the epsilon at 280 nm of a folded protein in water, epsilon (280), can best be predicted with this equation: epsilon (280) (M-1 cm-1) = (#Trp)(5,500) + (#Tyr)(1,490) + (#cystine)(125) These epsilon (280) values are quite reliable for proteins containing Trp residues, and less reliable for proteins that do not. However, the Edelhoch method is convenient and accurate, and the best approach is to measure rather than predict epsilon.  相似文献   

20.
The absorption spectra of the hydroxycyclohexadienyl radicals formed upon the addition of OH radicals to six substrates for phenol hydroxylase have been determined using pulse radiolysis. Combining the radical spectra of thiophenol (lambda max, 390 nm; epsilon, 10,500 M-1 cm-1) and resorcinol (lambda max, 340 nm; epsilon, 4,100 M-1 cm-1) with their respective published spectra of enzyme-bound reduced flavin that is substituted in the C(4a) position of the dihydroflavin ring gave composite spectra that closely match the spectra formed concomitantly with the introduction of an oxygen atom into the substrates, the so-called Intermediate II species. A similar procedure for the substrates hydroquinone, 3-aminophenol, 3-chlorophenol, and 3-methylphenol yielded spectra that are also consistent with the known characteristics of their Intermediate II species. These spectral results give further support to the proposed biradical mechanism (Anderson, R.F., Patel, K. B., and Stratford, M. R. L. (1987) J. Biol. Chem. 262, 17475-17479) for the functioning of this class of flavoprotein hydroxylases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号