首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The cps5-138 fission yeast mutant shows an abnormal lemon-like morphology at 28 degrees C in minimal medium and a lethal thermosensitive phenotype at 37 degrees C. Cell growth is completely inhibited at 28 degrees C in a Ca2+-free medium, in which the wild type is capable of growing normally. Under these conditions, actin patches become randomly distributed throughout the cell, and defects in septum formation and subsequent cytokinesis appear. The mutant cell is hypersensitive to the cell wall-digesting enzymatic complex Novozym234 even under permissive conditions. The gene SPBC31E1.02c, which complements all the mutant phenotypes described above, was cloned and codes for the Ca2+-ATPase homologue Pmr1p. The gene is not essential under optimal growth conditions but is required under conditions of low Ca2+ (<0.1 mM) or high temperature (>35 degrees C). The green fluorescent protein-tagged Cps5 proteins, which are expressed under physiological conditions (an integrated single copy with its own promoter in the cps5Delta strain), display a localization pattern typical of endoplasmic reticulum proteins. Biochemical analyses show that 1,3-beta-D-glucan synthase activity in the mutant is decreased to nearly half that of the wild type and that the mutant cell wall contains no detectable galactomannan when the cells are exposed to a Ca2+-free medium. The mutant acid phosphatase has an increased electrophoretic mobility, suggesting that incomplete protein glycosylation takes place in the mutant cells. These results indicate that S. pombe Pmr1p is essential for the maintenance of cell wall integrity and cytokinesis, possibly by allowing protein glycosylation and the polarized actin distribution to take place normally. Disruption and complementation analyses suggest that Pmr1p shares its function with a vacuolar Ca2+-ATPase homologue, Pmc1p (SPAPB2B4.04c), to prevent lethal activation of calcineurin for cell growth.  相似文献   

2.
Nakano K  Arai R  Mabuchi I 《FEBS letters》2005,579(23):5181-5186
The small GTPase Rho1 plays an essential role in controlling the organization of the actin cytoskeleton and synthesis of the cell wall in the fission yeast Schizosaccharomyces pombe. Here we studied the role of Rho5 whose primary structure is very similar to that of Rho1. It was found that elevated expression of Rho5 was able to compensate for the lethality of cells lacking Rho1. Rho5 was localized to the ends of interphase cells and the mid-region of mitotic cells. Overexpression of Rho5 caused depolarization of F-actin patches and abnormal formation of the cell wall, as did Rho1. Although rho5(+) was not essential for maintaining the cell shape, rho1 rho5-double null cells showed more severe defects in cell viability than rho1-null cells. Thus, it is likely that Rho5 has an overlapping function with Rho1 in controlling cell growth and division in S. pombe.  相似文献   

3.
Mutants supersensitive to the spindle poison, Isopropyl N-3-chlorophenyl carbamate (CIPC) of the fission yeast Schizosaccharomyces pombe were isolated and characterized genetically. Fourteen different recessive loci were assigned for the mutation (donated as cps1 to cps14) and two, cps1 and cps3, were mapped precisely on the chromosomes. Nine mutant strains were also supersensitive to phenothiazine derivatives, inhibitors of calcium-binding protein calmodulin. Four of nine strains were incapable of growing in the presence of 10 microM calcium ionophore A23187, at which the drug had no effect on cell growth in other strains. Fluorescence microscopy using the DAPI and Calcofluor staining methods showed two strains out of four to be defective in normal cell division; most stationary-phase cells of the cps6 mutant were seen to be bi- or tetra-nucleate, being partitioned with one or three septa, respectively. In the other mutant (cps8), enlarged cells were unequally partitioned with multisepta, and each compartment contained several daughter nuclei. The septa appeared aberrant in position within the cell, and situated diagonally but not vertically along the long cell axis.  相似文献   

4.
A number of temperature-sensitive cdc- mutants ofSchizosaccharomyces pombe that are affected in septum formation were analyzed with respect to their ultrastructure and the composition of their cell wall polymers. One mutant strain, cdc 16–116, has a cell wall composition similar to the wild type (strain 972 h-). However two other mutants, cdc 4 and cdc 7, show a higher galactomannan content and a lower -glucan content. In all the mutants tested, total glucose incorporation, protein, RNA and DNA synthesis increased similarly to wild type over 3 1/2 h. After 2–3 h of incubation at the non permissive temperature-35°C-, cell numbers remained constant although, increases in optical densities at 600 nm were observed. According to scanning electron microscopy, the mutants had aberrant shapes after 5h of incubation at 35°C. Transmission electron microscopy showed that cdc 3 is unable to complete septum formation. cdc 4 showed the most varied morphological shapes and aberrant depositions of cell wall material. cdc 8 exhibited a deranged plasma membrane and cell wall regions near of cell poles; an abnormal septum and several nuclei. cdc 7 showed elongated cells with several nuclei and with an apparently normal cell wall completely lacking in septum and septal material. cdc 16 showed more than one septum per cell.  相似文献   

5.
Eukaryotic cells assemble actomyosin rings during cytokinesis to function as force-generating machines to drive membrane invagination and to counteract the intracellular pressure and the cell surface tension. How the extracellular matrix affects actomyosin ring contraction has not been fully explored. While studying the Schizosaccharomyces pombe 1,3-β-glucan-synthase mutant cps1-191, which is defective in division septum synthesis and arrests with a stable actomyosin ring, we found that weakening of the extracellular glycan matrix caused the generated spheroplasts to divide under the nonpermissive condition. This nonmedial slow division was dependent on a functional actomyosin ring and vesicular trafficking, but independent of normal septum synthesis. Interestingly, the high intracellular turgor pressure appears to play a minimal role in inhibiting ring contraction in the absence of cell wall remodeling in cps1-191 mutants, as decreasing the turgor pressure alone did not enable spheroplast division. We propose that during cytokinesis, the extracellular glycan matrix restricts actomyosin ring contraction and membrane ingression, and remodeling of the extracellular components through division septum synthesis relieves the inhibition and facilitates actomyosin ring contraction.  相似文献   

6.
Hu Y  Zhong R  Morrison WH  Ye ZH 《Planta》2003,217(6):912-921
The Arabidopsis thaliana (L.) Heynh. ROOT HAIR DEFECTIVE3 (RHD3) gene has previously been shown to be essential for normal cell expansion [H. Wang et al. (1997) Genes Dev 11:799-811]. In this report, we demonstrated that mutation of the RHD3 gene in the Arabidopsis fragile fiber 4 (fra4) mutant caused a dramatic reduction in the wall thickness of fibers, vessels, and pith cells in the inflorescence stems and, concomitantly, a decrease in the mechanical strength of stems. The reduced wall thickness in the fra4 mutant was accompanied by an alteration in cell wall composition. Consistent with the defective fiber and vessel wall phenotypes, the RHD3 gene exhibited a strong expression in developing fiber and xylem cells. We showed that the Arabidopsis genome contains two additional RHD3-like genes, one of which was expressed specifically in flowers. In addition, we found that mutation of the RHD3 gene caused an alteration in the organization of the actin cytoskeleton but no effects on cortical microtubules. Our findings suggest an essential role of RHD3 in cell wall biosynthesis and actin organization, both of which are known to be important for cell expansion.  相似文献   

7.
The water and mineral conductive tube, the xylem vessel and tracheid, is a highly conspicuous tissue due to its elaborately patterned secondary-wall deposition. One constituent of the xylem vessel and tracheid, the tracheary element, is an empty dead cell that develops secondary walls in the elaborate patterns. The wall pattern is appropriately regulated according to the developmental stage of the plant. The cytoskeleton is an essential component of this regulation. In fact, the cortical microtubule is well known to participate in patterned secondary cell wall formation. The dynamic rearrangement of the microtubules and actin filaments have also been recognized in the cultured cells differentiating into tracheary elements in vitro. There has recently been considerable progress in our understanding of the dynamics and regulation of cortical microtubules, and several plant microtubule associated proteins have been identified and characterized. The microtubules have been observed during tracheary element differentiation in living Arabidopsis thaliana cells. Based on this recently acquired information on the plant cytoskeleton and tracheary element differentiation, this review discusses the role of the cytoskeleton in secondary cell wall formation.  相似文献   

8.
The morphology of three Saccharomyces cerevisiae strains, all lacking chitin synthase 1 (Chs1) and two of them deficient in either Chs3 (calR1 mutation) or Chs2 was observed by light and electron microscopy. Cells deficient in Chs2 showed clumpy growth and aberrant shape and size. Their septa were very thick; the primary septum was absent. Staining with WGA-gold complexes revealed a diffuse distribution of chitin in the septum, whereas chitin was normally located at the neck between mother cell and bud and in the wall of mother cells. Strains deficient in Chs3 exhibited minor abnormalities in budding pattern and shape. Their septa were thin and trilaminar. Staining for chitin revealed a thin line of the polysaccharide along the primary septum; no chitin was present elsewhere in the wall. Therefore, Chs2 is specific for primary septum formation, whereas Chs3 is responsible for chitin in the ring at bud emergence and in the cell wall. Chs3 is also required for chitin synthesized in the presence of alpha-pheromone or deposited in the cell wall of cdc mutants at nonpermissive temperature, and for chitosan in spore walls. Genetic evidence indicated that a mutant lacking all three chitin synthases was inviable; this was confirmed by constructing a triple mutant rescued by a plasmid carrying a CHS2 gene under control of a GAL1 promoter. Transfer of the mutant from galactose to glucose resulted in cell division arrest followed by cell death. We conclude that some chitin synthesis is essential for viability of yeast cells.  相似文献   

9.
Septum formation in fungi is equivalent to cytokinesis. It differs mechanistically in filamentous ascomycetes (Pezizomycotina) from that of ascomycete yeasts by the retention of a central septal pore in the former group. However, septum formation in both groups is accomplished by contractile actin ring (CAR) assembly and constriction. The specific components regulating septal pore organization during septum formation are poorly understood. In this study, a novel Pezizomycotina-specific actin regulatory protein GlpA containing gelsolin domains was identified using bioinformatics. A glpA deletion mutant exhibited increased distances between septa, abnormal septum morphology and defective regulation of septal pore closure. In glpA deletion mutant hyphae, overaccumulation of actin filament (F-actin) was observed, and the CAR was abnormal with improper assembly and failure in constriction. In wild-type cells, GlpA was found at the septum formation site similarly to the CAR. The N-terminal 329 residues of GlpA are required for its localization to the septum formation site and essential for proper septum formation, while its C-terminal gelsolin domains are required for the regular CAR dynamics during septum formation. Finally, in this study we elucidated a novel Pezizomycotina-specific actin modulating component, which participates in septum formation by regulating the CAR dynamics.  相似文献   

10.
Cytokinesis in fission yeast involves the coordination of septum deposition with the contraction of a cytokinetic actomyosin ring. We have examined the role of the type V myosin Myo52 in the coupling of these two events by the construction of a series of deletion mutants of the Myo52 tail and a further mutant within the ATP binding domain of the head. Each mutant protein was ectopically expressed in fission yeast cells. Each truncation was assayed for the ability to localize to the cell poles and septum (the normal cellular locations of Myo52) and to rescue the morphology defects and temperature sensitivity of a myo52Delta strain. A region within the Myo52 tail (amino acids 1320-1503), with a high degree of similarity to the vesicle-binding domain of the budding yeast type V myosin Myo2p, was essential for Myo52's role in the maintenance of growth polarity and cell division. A separate region (amino acids 1180-1320) was required for Myo52 foci to move throughout the cytoplasm; however, constructs lacking this region, but which retained the ability to dimerize still associated with actin at sites of cell growth. Not all of the Myo52 truncations which localized rescued the morphological defects of myo52Delta, demonstrating that loss of function was not simply brought about by an inability of mutant proteins to target the correct cellular location. By contrast, Myo52 motor activity was required for both localization and cellular function. myo52Delta cells were unable to efficiently localize the beta-1,3-glucan synthase, Bgs1, either at the cell poles or at the division septum, regions of cell wall deposition. Bgs1 and Myo52 localized to vesicle-like dots at the poles in interphase and these moved together to the septum at division. These data have led to the formulation of a model in which Myo52 is responsible for the delivery of Bgs1 and associated molecules to polar cell growth regions during interphase. On the commencement of septum formation, Myo52 transports Bgs1 to the cell equator, thus ensuring the accurate deposition of beta-1,3-glucan at the leading edge of the primary septum.  相似文献   

11.
Sphingosine-1-phosphate (S1P) induces capillary formation of endothelial cells on Matrigel in accompany with actin assembly and accumulation of cortactin and Arp2/3 complex at the cell-leading edge. Suppression of cortactin expression with a cortactin antisense oligo significantly impaired S1P-induced capillary formation, migration of endothelial cells, and actin assembly at the cell periphery. Overexpression of wild-type cortactin tagged by green fluorescent protein (GFP) increased the S1P-induced tube formation and cell motility, whereas the cells overexpressing the mutant formed poorly capillary network and became less motile in response to S1P. Analysis of distribution in Triton X-100 insoluble fractions demonstrated that the cortactin mutant inhibited the association of wild-type cortactin and Arp2/3 complex with the actin-enriched complex. Furthermore, actin polymerization at and distribution of Arp2/3 complex as well as endogenous cortactin into the cell-leading edge mediated by S1P was disturbed. These data suggest that the interaction between cortactin and Arp2/3 complex plays an important role in S1P-mediated remodeling of endothelial cells.  相似文献   

12.
Several genetic mutants of Schizosaccharomyces pombe that form multiple septa and pseudohyphae (i.e. branching growth) have been isolated.1-15 The current understanding of these mutants is that they lack the ability to separate the two sister cells after formation of the septum. Here it is shown that switching to multisepta and pseudohyphal growth can be induced in a reversible manner in wild-type S. pombe cells by changing the growth conditions, thus indicating an inherent cellular switch. Flow cytometry profiles of exponentially growing cultures of both wild-type and mutant cells further support that a bi-stable switch is controlling the morphological state of the cell in a stress-dependent manner.  相似文献   

13.
Cofilin/ADF proteins are a ubiquitously expressed family of F-actin depolymerizing factors found in eukaryotic cells including plants. In vitro, cofilin/ADF activity has been shown to be essential for actin driven motility, by accelerating actin filament turnover. Three actin depolymerizing factors (n-cofilin, m-cofilin, ADF) can be found in mouse and human. Here we show that in mouse the non-muscle-specific gene-n-cofilin-is essential for migration of neural crest cells as well as other cell types in the paraxial mesoderm. The main defects observed in n-cofilin mutant embryos are an impaired delamination and migration of neural crest cells, affecting the development of neural crest derived tissues. Neural crest cells lacking n-cofilin do not polarize, and F-actin bundles or fibers are not detectable. In addition, n-cofilin is required for neuronal precursor cell proliferation and scattering. These defects result in a complete lack of neural tube closure in n-cofilin mutant embryos. Although ADF is overexpressed in mutant embryos, this cannot compensate the lack of n-cofilin, suggesting that they might have a different function in embryonic development. Our data suggest that in mammalian development, regulation of the actin cytoskeleton by the F-actin depolymerizing factor n-cofilin is critical for epithelial-mesenchymal type of cell shape changes as well as cell proliferation.  相似文献   

14.
Thiol oxidants are expected to have multiple effects in living cells. Hence, mutations giving resistance to such agents are likely to reveal important targets and/or mechanisms influencing the cellular capacity to withstand thiol oxidation. A screen for mutants resistant to the thiol-specific oxidant dipyridyl disulfide (DPS) yielded tao3-516, which is impaired in the function of the RAM signaling network protein Tao3/Pag1p. We suggest that the DPS-resistance of the tao3-516 mutant might be due to deficient cell-cycle-regulated production of the chitinase Cts1p, which functions in post-mitotic cell separation and depends on Tao3p and the RAM network for regulated expression. Consistent with this, deletion of other RAM genes or CTS1 also resulted in increased resistance to DPS. Exposure to DPS caused extensive depolarization of the actin cytoskeleton. We found that tao3-516 is resistant to latrunculin, a specific inhibitor of actin polymerization, and that ram, Deltaace2, and Deltacts1 mutants are resistant to benomyl, a microtubule-destabilizing drug. Since septum build-up depends on the organization of cytoskeletal proteins, the resistance to cytoskeletal stress of Cts1p-deficient mutants might relate to bypass for abnormal septum-associated protein sorting. The broad resistance toward oxidants (DPS, diamide and H(2)O(2)) of the Deltacts1 strain links cell wall function to the resistance to oxidative stress and suggests the existence of targets that are common for these oxidants.  相似文献   

15.
Lactobacillus rhamnosus GG (LGG) produces two major secreted proteins, designated here Msp1 (LGG_00324 or p75) and Msp2 (LGG_00031 or p40), which have been reported to promote the survival and growth of intestinal epithelial cells. Intriguingly, although each of these proteins shares homology with cell wall hydrolases, a physiological function that correlates with such an enzymatic activity remained to be substantiated in LGG. To investigate the bacterial function, we constructed knock-out mutants in the corresponding genes aiming to establish a genotype to phenotype relation. Microscopic examination of the msp1 mutant showed the presence of rather long and overly extended cell chains, which suggests that normal daughter cell separation is hampered. Subsequent observation of the LGG wild-type cells by immunofluorescence microscopy revealed that the Msp1 protein accumulates at the septum of exponential-phase cells. The cell wall hydrolyzing activity of the Msp1 protein was confirmed by zymogram analysis. Subsequent analysis by RP-HPLC and mass spectrometry of the digestion products of LGG peptidoglycan (PG) by Msp1 indicated that the Msp1 protein has D-glutamyl-L-lysyl endopeptidase activity. Immunofluorescence microscopy and the failure to construct a knock-out mutant suggest an indispensable role for Msp2 in priming septum formation in LGG.  相似文献   

16.
The Schizosaccharomyces pombe cps1-12 (for chlorpropham supersensitive) mutant strain was originally isolated as hypersensitive to the spindle poison isopropyl N-3-chlorophenyl carbamate (chlorpropham) (J. Ishiguro and Y. Uhara, Jpn. J. Genet. 67:97-109, 1992). We have found that the cps1-12 mutation also confers (i) hypersensitivity to the immunosuppressant cyclosporin A (CsA), (ii) hypersensitivity to the drug papulacandin B, which specifically inhibits 1,3-beta-D-glucan synthesis both in vivo and in vitro, and (iii) thermosensitive growth at 37 degrees C. Under any of these restrictive treatments, cells swell up and finally lyse. With an osmotic stabilizer, cells do not lyse, but at 37 degrees C they become multiseptated and multibranched. The cps1-12 mutant, grown at a restrictive temperature, showed an increase in sensitivity to lysis by enzymatic cell wall degradation, in in vitro 1,3-beta-D-glucan synthase activity (173% in the absence of GTP in the reaction), and in cell wall biosynthesis (130% of the wild-type amount). Addition of Ca2+ suppresses hypersensitivity to papulacandin B and septation and branching phenotypes. All of these data suggest a relationship between the cps1+ gene and cell wall synthesis. A DNA fragment containing the cps1+ gene was cloned, and sequence analysis indicated that it encodes a predicted membrane protein of 1,729 amino acids with 15 to 16 transmembrane domains. S. pombe cps1p has overall 55% sequence identity with Fks1p or Fks2p, proposed to be catalytic or associated subunits of Saccharomyces cerevisiae 1,3-beta-D-glucan synthase. Thus, the cps1+ product might be a catalytic or an associated copurifying subunit of the fission yeast 1,3-beta-D-glucan synthase that plays an essential role in cell wall synthesis.  相似文献   

17.
18.
We have analyzed the behavior of nuclei and actin during the cell cycle of Neozygites sp. with mithramycin and rhodamine-labeled phalloidin. This fungus is an entomophagous zygomycete which grows as a rod-shaped fission yeast containing 2 to 12, mostly 3 to 4, nuclei per cell. The cell cycle is regulated such that there is not a constant nucleus-to-cytoplasmic volume ratio, and mitosis is initiated slightly asynchronously from one end of the cell. During interphase, detected actin occurs exclusively as peripheral plaques, which are most abundant at growing cell tips, and as perinuclear shells. Because the shells disperse and reform concomitantly with the formation and breakdown of a new septum-associated actin array, we infer that they are a novel form of actin storage. Intranuclear mitosis occurs in the absence of detectable spindle actin which suggests that actin is not a universal feature of mitotic systems and may be a cytoplasmic contaminant in open spindles of plant cells. Actin is involved in septum synthesis in previously unreported ways. Prior to morphologically detectable septum initiation, a peripheral equatorial band of longitudinal actin filaments assembles and then shortens to a transverse belt at the future site of septum synthesis. We suggest that this actin array recruits and organizes cell wall synthetic complexes for subsequent septum growth. During detectable septum synthesis, the invaginating plasmalemma bears plaques at a similar concentration to those at growing cellular tips.  相似文献   

19.
Diaphanous-related formins (DRFs) drive the nucleation and elongation of linear actin filaments downstream of Rho GTPase signalling pathways. Dictyostelium formin C (ForC) resembles a DRF, except that it lacks a genuine formin homology domain 1 (FH1), raising the questions whether or not ForC can nucleate and elongate actin filaments. We found that a recombinant ForC-FH2 fragment does not nucleate actin polymerization, but moderately decreases the rate of spontaneous actin assembly and disassembly, although the barbed-end elongation rate in the presence of the formin was not markedly changed. However, the protein bound to and crosslinked actin filaments into loose bundles of mixed polarity. Furthermore, ForC is an important regulator of morphogenesis since ForC-null cells are severely impaired in development resulting in the formation of aberrant fruiting bodies. Immunoblotting revealed that ForC is absent during growth, but becomes detectable at the onset of early aggregation when cells chemotactically stream together to form a multicellular organism, and peaks around the culmination stage. Fluorescence microscopy of cells ectopically expressing a GFP-tagged, N-terminal ForC fragment showed its prominent accumulation in the leading edge, suggesting that ForC may play a role in cell migration. In agreement with its expression profile, no defects were observed in random migration of vegetative mutant cells. Notably, chemotaxis of starved cells towards a source of cAMP was severely impaired as opposed to control. This was, however, largely due to a marked developmental delay of the mutant, as evidenced by the expression profile of the early developmental marker csA. In line with this, chemotaxis was almost restored to wild type levels after prolonged starvation. Finally, we observed a complete failure of phototaxis due to abolished slug formation and a massive reduction of spores consistent with forC promoter-driven expression of β-galactosidase in prespore cells. Together, these findings demonstrate ForC to be critically involved in signalling of the cytoskeleton during various stages of development.  相似文献   

20.
The Rho family of GTPases is present in all eukaryotic cells from yeast to mammals; they are regulators in signaling pathways that control actin organization and morphogenetic processes. In yeast, Rho GTPases are implicated in cell polarity processes and cell wall biosynthesis. It is known that Rho1 and Rho2 are key proteins in the construction of the cell wall, an essential structure that in Schizosaccharomyces pombe is composed of beta-glucan, alpha-glucan, and mannoproteins. Rho1 regulates the synthesis of 1,3-beta-D-glucan by activation of the 1,3-beta-D-glucan synthase, and Rho2 regulates the synthesis of alpha-glucan by the 1,3-alpha-D-glucan synthase Mok1. Here we describe the characterization of another Rho GTPase in fission yeast, Rho4. rho4Delta cells are viable but display cell separation defects at high temperature. In agreement with this observation, Rho4 localizes to the septum. Overexpression of rho4(+) causes lysis and morphological defects. Several lines of evidence indicate that both rho4(+) deletion or rho4(+) overexpression result in a defective cell wall, suggesting an additional role for Rho4 in cell wall integrity. Rho4Delta cells also accumulate secretory vesicles around the septum and are defective in actin polarization. We propose that Rho4 could be involved in the regulation of the septum degradation during cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号