首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed density functional calculations of backbone 15N shielding tensors in the regions of beta-sheet and turns of protein G. The calculations were carried out for all twenty-four beta-sheet residues and eight beta-turn residues in the protein GB3 and the results were compared with the available experimental data from solid-state and solution NMR measurements. Together with the alpha-helix data, our calculations cover 39 out of the 55 residues (or 71%) in GB3. The applicability of several computational models developed previously (Cai et al. in J Biomol NMR 45:245–253, 2009) to compute 15N shielding tensors of alpha-helical residues is assessed. We show that the proposed quantum chemical computational model is capable of predicting isotropic 15N chemical shifts for an entire protein that are in good correlation with experimental data. However, the individual components of the predicted 15N shielding tensor agree with experiment less well: the computed values show much larger spread than the experimental data, and there is a profound difference in the behavior of the tensor components for alpha-helix/turns and beta-sheet residues. We discuss possible reasons for this.  相似文献   

2.
We describe a novel pulse sequence, MQ-HNCO-TROSY, for the measurement of scalar and residual dipolar couplings between amide proton and nitrogen in larger proteins. The experiment utilizes the whole 2TN polarization transfer delay for labeling of 15N chemical shift in a constant time manner, which efficiently doubles the attainable resolution in 15N dimension with respect to the conventional HNCO-TROSY experiment. In addition, the accordion principle is employed for measuring (J + D)NHs, and the multiplet components are selected with the generalized version of the TROSY scheme introduced by Nietlispach (J Biomol NMR 31:161–166, 2005). Therefore, cross peak overlap is diminished while the time period during which the 15N spin is susceptible to fast transverse relaxation associated with the anti-TROSY transition is minimized per attainable resolution unit. The proposed MQ-HNCO-TROSY scheme was employed for measuring RDCs in high molecular weight protein IgFLNa16-21 of 557 residues, resulting in 431 experimental RDCs. Correlations between experimental and back-calculated RDCs in individual domains gave relatively low Q-factors (0.19–0.39), indicative of sufficient accuracy that can be obtained with the proposed MQ-HNCO-TROSY experiment in high molecular weight proteins.  相似文献   

3.
Heteronuclear direct-detection experiments, which utilize the slower relaxation properties of low γ nuclei, such as 13C have recently been proposed for sequence-specific assignment and structural analyses of large, unstructured, and/or paramagnetic proteins. Here we present two novel 15N direct-detection experiments. The CAN experiment sequentially connects amide 15N resonances using 13Cα chemical shift matching, and the CON experiment connects the preceding 13C′ nuclei. When starting from the same carbon polarization, the intensities of nitrogen signals detected in the CAN or CON experiments would be expected four times lower than those of carbon resonances observed in the corresponding 13C-detecting experiment, NCA-DIPAP or NCO-IPAP (Bermel et al. 2006b; Takeuchi et al. 2008). However, the disadvantage due to the lower γ is counteracted by the slower 15N transverse relaxation during detection, the possibility for more efficient decoupling in both dimensions, and relaxation optimized properties of the pulse sequences. As a result, the median S/N in the 15N observe CAN experiment is 16% higher than in the 13C observe NCA-DIPAP experiment. In addition, significantly higher sensitivity was observed for those residues that are hard to detect in the NCA-DIPAP experiment, such as Gly, Ser and residues with high-field Cα resonances. Both CAN and CON experiments are able to detect Pro resonances that would not be observed in conventional proton-detected experiments. In addition, those experiments are free from problems of incomplete deuterium-to-proton back exchange in amide positions of perdeuterated proteins expressed in D2O. Thus, these features and the superior resolution of 15N-detected experiments provide an attractive alternative for main chain assignments. The experiments are demonstrated with the small model protein GB1 at conditions simulating a 150 kDa protein, and the 52 kDa glutathione S-transferase dimer, GST.  相似文献   

4.
In protein NMR spectroscopy the chemical shift provides important information for the assignment of residues and a first structural evaluation of dihedral angles. Furthermore, angular restraints are obtained from oriented samples by solution and solid-state NMR spectroscopic approaches. Whereas the anisotropy of chemical shifts, quadrupolar couplings and dipolar interactions have been used to determine the structure, dynamics and topology of oriented membrane polypeptides using solid-state NMR spectroscopy similar concepts have been introduced to solution NMR through the measurements of residual dipolar couplings. The analysis of 15N chemical shift spectra depends on the accuracy of the chemical shift tensors. When investigating alamethicin and other peptaibols, i.e. polypeptides rich in α-aminoisobutyric acid (Aib), the 15N chemical shift tensor of this Cα-tetrasubstituted amino acid exhibits pronounced differences when compared to glycine, alanine and other proteinogenic residues. Here we present an experimental investigation on the 15N amide Aib tensor of N-acetyl-Aib-OH and for the Aib residues within peptaibols. Furthermore, a statistical analysis of the tensors published for di- (glycine) and tri-substituted residues has been performed, where for the first time the published data sets are compiled using a common reference. The size of the isotropic chemical shift and main tensor elements follows the order di- < tri- < tetra-substituted amino acids. A 15N chemical shift-1H-15N dipolar coupling correlation NMR spectrum of alamethicin is used to evaluate the consequences of variations in the main tensor elements for the structural analysis of this membrane peptide.  相似文献   

5.
Extensive resonance overlap exacerbates assignment of intrinsically disordered proteins (IDPs). This issue can be circumvented by utilizing 15N, 13C′ and 1HN spins, where the chemical shift dispersion is mainly dictated by the characteristics of consecutive amino acid residues. Especially 15N and 13C′ spins offer superior chemical shift dispersion in comparison to 13Cα and 13Cβ spins. However, HN-detected experiments suffer from exchange broadening of amide proton signals on IDPs especially under alkali conditions. To that end, we propose here two novel HA-detected experiments, (HCA)CON(CA)H and (HCA)NCO(CA)H and a new assignment protocol based on panoply of unidirectional HA-detected experiments that enable robust backbone assignment of IDPs also at high pH. The new approach was tested at pH 6.5 and pH 8.5 on cancer/testis antigen CT16, a 110-residue IDP, and virtually complete backbone assignment of CT16 was obtained by employing the novel HA-detected experiments together with the previously introduced iH(CA)NCO scheme. Remarkably, also those 10 N-terminal residues that remained unassigned in our earlier HN-detection based assignment approach even at pH 6.5 were now readily assigned. Moreover, theoretical calculations and experimental results suggest that overall sensitivity of the new experiments is also applicable to small or medium sized globular proteins that require alkaline conditions.  相似文献   

6.
We describe an efficient NMR triple resonance approach for fast assignment of backbone amide resonance peaks in the 15N-HSQC spectrum. The exceptionally high resolutions achieved in the 3D HncocaNH and hNcocaNH experiments together with non-uniform sampling facilitate error-free sequential connection of backbone amides. Data required for the complete backbone amide assignment of the 56-residue protein GB1 domain were obtained in 14 h. Data analysis was vastly streamlined using a ‘backbone NH walk’ method to determine sequential connectivities without the need for 13C chemical shifts comparison. Amino acid residues in the sequentially connected NH chains are classified into two groups by a simple variation of the NMR pulse sequence, and the resulting ‘ZeBra’ stripe patterns are useful for mapping these chains to the protein sequence. In addition to resolving ambiguous assignments derived from conventional backbone experiments, this approach can be employed to rapidly assign small proteins or flexible regions in larger proteins, and to transfer assignments to mutant proteins or proteins in different ligand-binding states.  相似文献   

7.
The Src tyrosine kinase is the paradigm of an oncogenic kinase, and of regulation by intramolecular inhibitory interactions, as well as an important anticancer target due to its roles in cell proliferation and metastasis. The assignment of backbone 1HN, 13Cα, 13CO, and 15N, and sidechain 13Cβ resonances of the catalytic domain of Src (283 residues) in complex with the anticancer drug Imatinib is reported here. Consistent with previous X-ray studies of the same complex, most signals from the activation loop are not detected, indicating that, even in the presence of the drug, it probably adopts highly heterogeneous conformations in intermediate exchange. For the rest of the polypeptide backbone, assignments have been completed for ~88% of residues, with only a few solvent-exposed amides remaining unassigned.  相似文献   

8.
A simple spectroscopic filtering technique is presented that may aid the assignment of 13C and 15N resonances of methyl-containing amino-acids in solid-state magic-angle spinning (MAS) NMR. A filtering block that selects methyl resonances is introduced in two-dimensional (2D) 13C-homonuclear and 15N–13C heteronuclear correlation experiments. The 2D 13C–13C correlation spectra are recorded with the methyl filter implemented prior to a 13C–13C mixing step. It is shown that these methyl-filtered 13C-homonuclear correlation spectra are instrumental in the assignment of Cδ resonances of leucines by suppression of Cγ–Cδ cross peaks. Further, a methyl filter is implemented prior to a 15N–13C transferred-echo double resonance (TEDOR) exchange scheme to obtain 2D 15N–13C heteronuclear correlation spectra. These experiments provide correlations between methyl groups and backbone amides. Some of the observed sequential 15N–13C correlations form the basis for initial sequence-specific assignments of backbone signals of the outer-membrane protein G.  相似文献   

9.
Summary Two new 3D 1H-15N-13C triple-resonance experiments are presented which provide sequential cross peaks between the amide proton of one residue and the amide nitrogen of the preceding and succeeding residues or the amide proton of one residue and the amide proton of the preceding and succeeding residues, respectively. These experiments, which we term 3D-HN(CA)NNH and 3D-H(NCA)NNH, utilize an optimized magnetization transfer via the 2JNC coupling to establish the sequential assignment of backbone NH and 15N resonances. In contrast to NH-NH connectivities observable in homonuclear NOESY spectra, the assignments from the 3D-H(NCA)NNH experiment are conformation independent to a first-order approximation. Thus the assignments obtained from these experiments can be used as either confirmation of assignments obtained from a conventional homonuclear approach or as an initial step in the analysis of backbone resonances according to Ikura et al. (1990) [Biochemistry, 29, 4659–4667]. Both techniques were applied to uniformly 15N- and 13C-labelled ribonuclease T1.  相似文献   

10.
Assignment of backbone amide proton resonances is one of the most time-consuming stages of any protein NMR study when the protein samples behave non-ideally. A robust and convenient NMR procedure for analyzing spectra of marginal-to-low quality is helpful for high-throughput structure determination. The 14N selective- and inverse-labeling method is a candidate solution. Here, we present a simplified protocol for assigning protein backbone amide NMR signals. When 14N inversely labeled residues are present in a protein, their backbone NH cross peaks vanish from the protein’s 1H–15N HSQC spectrum, and thus, their chemical shifts can be readily identified by a process of elimination. Some metabolically related amino acids, for example, Ile, Leu, and Val, cannot be individually incorporated but can be inversely labeled together. We optimized and simplified the protocol and M9-based medium formula for the 14N selective- and inverse-labeling method without any additives. Our approach should be cost-effective, because the method could be additively applied stepwise, even when the proteins of interest were found to be non-ideal.  相似文献   

11.
Quantum mechanical calculations are presented that predict that one-bond deuterium isotope effects on the 15N chemical shift of backbone amides of proteins, 1Δ15N(D), are sensitive to backbone conformation and hydrogen bonding. A quantitative empirical model for 1Δ15N(D) including the backbone dihedral angles, Φ and Ψ, and the hydrogen bonding geometry is presented for glycine and amino acid residues with aliphatic side chains. The effect of hydrogen bonding is rationalized in part as an electric-field effect on the first derivative of the nuclear shielding with respect to N–H bond length. Another contributing factor is the effect of increased anharmonicity of the N–H stretching vibrational state upon hydrogen bonding, which results in an altered N–H/N–D equilibrium bond length ratio. The N–H stretching anharmonicity contribution falls off with the cosine of the N–H···O bond angle. For residues with uncharged side chains a very good prediction of isotope effects can be made. Thus, for proteins with known secondary structures, 1Δ15N(D) can provide insights into hydrogen bonding geometries. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Summary A rapid and sensitive 2D approach is presented for measuring amide proton exchange rates and the NOE interaction between amide protons and water. The approach is applicable to uniformly 13C/15N-enriched proteins and can measure magnetization exchange rates in the 0.02 to >20s–1 range. The experiments rely on selective excitation of the water resonance, coupled with purging of underlying H resonances, followed by NOESY-or ROESY-type transfer to amide protons, which are dispersed by the amide 15N frequencies in an HSQC-type experiment. Two separate but interleaved experiments, with and without selective inversion of the H2O resonance, yield quantitative results. The method is demonstrated for a sample of the calcium-binding protein calcineurin B. Results indicate rapid amide exchange for the five calcineurin B residues that are analogous to the five rapidly exchanging residues in the central helix of the homologous protein calmodulin.  相似文献   

13.
Temperature coefficients have been measured for backbone amide 1H and 15N nuclei in the B1 domain of protein G (GB1), using temperatures in the range 283–313 K, and pH values from 2.0 to 9.0. Many nuclei display pH-dependent coefficients, which were fitted to one or two pKa values. 1H coefficients showed the expected behaviour, in that hydrogen-bonded amides have less negative values, but for those amides involved in strong hydrogen bonds in regular secondary structure there is a negative correlation between strength of hydrogen bond and size of temperature coefficient. The best correlation to temperature coefficient is with secondary shift, indicative of a very approximately uniform thermal expansion. The largest pH-dependent changes in coefficient are for amides in loops adjacent to sidechain hydrogen bonds rather than the amides involved directly in hydrogen bonds, indicating that the biggest determinant of the temperature coefficient is temperature-dependent loss of structure, not hydrogen bonding. Amide 15N coefficients have no clear relationship with structure.  相似文献   

14.
The effect of substituting Pro25, located in the α-helical region of the cystatin A structure, with Ser has been studied. The structures of wild type and P25S cystatin A were determined by multidimensional NMR spectroscopy under comparable conditions. These two structures were virtually identical, and the α-helix between Glu15-Lys30 exists with uninterrupted continuity, with a slight bend at residue 25. In order to characterize the possible substitution effects of Pro25 with Ser on the α-helix, the chemical shifts of the amide nitrogens and protons, the generalized order parameters obtained by the analyses of the 15N-1H relaxation data, the amide proton exchange rates, and the NOE networks among the α-helical and surrounding residues were carefully compared. None of these parameters indicated any significant static or dynamic structural differences between the α-helical regions of the wild-type and P25S cystatin A proteins. We therefore conclude that our previous structure of the wild-type cystatin A, in which the α-helix exhibited a sharp kink at Pro25, must be revised. The asymmetric distribution of hydrophobic interactions between the side-chain residues of the α-helix and the rolled β-sheet surface, as revealed by NOEs, may be responsible for the slight bend of the α-helix in both variants and for the destabilized hydrogen bonding of the α-helical residues that follow Pro25/Ser25, as evidenced by increased amide exchange rates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
pH dependence of hydrogen exchange from backbone peptide amides in apamin   总被引:1,自引:0,他引:1  
C E Dempsey 《Biochemistry》1986,25(13):3904-3911
The kinetics of hydrogen exchange of the 11 most protected backbone amides of bee venom apamin have been measured between pH 1 and pH 8.5 by using time-resolved and saturation-transfer NMR spectroscopy. The five amides most protected from base-catalyzed exchange, those of residues 5 and 12-15, show highly correlated exchange behavior in the base-catalyzed regime. It is proposed that the intramolecular hydrogen bonds stabilizing these amides define a stable cooperative unit of secondary structure in apamin (a C-terminal helix and an N-terminal beta-turn). This conformational unit is further stabilized (by 5-6 kJ mol-1) on titration of the Glu-7 side-chain carboxyl group. The relative contributions of specific intramolecular interactions to this conformational stabilization are estimated. The pHminima in the pH-dependent single amide exchange curves are compared with values predicted by correcting for sequence-dependent contributions to amide exchange rates [Molday, R. S., Englander, S. W., & Kallen, R. G. (1972) Biochemistry 11, 150-158]. The lack of correlation suggests that the "open" conformers from which amide exchange occurs are nonrandom. This conclusion is dependent on the assumption that acid-catalyzed exchange occurs via N-protonation so that residual conformational effects on exchange rates in the open conformers will affect acid- and base-catalyzed rates in approximately equal and opposite ways. A strong correlation between the measured pHminima and the amide proton chemical shifts is observed, however, and this may be most easily accommodated if acid-catalyzed exchange occurs by the imidic acid mechanism (via amide O-protonation).  相似文献   

16.
Summary The divalent metal ion binding site and binding constant of ribonuclease HI fromEscherichia coli were investigated by observing chemical shift changes using1H–15N heteronuclear NMR. Chemical shift changes were monitored during the titration of the enzyme with salts of the divalent cations. The enzyme was uniformly labeled by15N, which facilitated the monitoring of the chemical shift change of each cross peak between the backbone amide proton and the amide15N. The chemical shifts of several amide groups were affected upon the addition of a divalent metal ion: Mg2+, Ca2+, or Ba2+. These amide groups resided close to the active site, consistent with the previous X-ray crystallographic studies. From the titration analysis, a single divalent ion binding site was observed with a weak binding constant (KD=2–4 mM for the current divalent ions).  相似文献   

17.
Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, 1H–15N HSQC, is used to measure the 15N transverse relaxation rate (R2), the measured R2 rate is convoluted with the HX rate (kHX) and has higher apparent R2 values. Since the 15N R2 measurement is important for analyzing protein backbone dynamics, the HX effect on the R2 measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing 15N R 2 CPMG experiments on α-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R 2 CPMG can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D2O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R 2 CPMG values be obtained by methods described herein.  相似文献   

18.
Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: 13C′ longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms, 13C′/13C′-13Cα CSA/dipolar and 13C′/13C′–15N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the time scales of internal and molecular motions in the 2–16°C temperature range. There is a gradual deviation from this assumption from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization of the potential and other thermodynamics characteristics of protein backbone.  相似文献   

19.
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models.  相似文献   

20.
We report longitudinal 15N relaxation rates derived from two-dimensional (15N, 13C) chemical shift correlation experiments obtained under magic angle spinning for the potassium channel KcsA-Kv1.3 reconstituted in multilamellar vesicles. Thus, we demonstrate that solid-state NMR can be used to probe residue-specific backbone dynamics in a membrane-embedded protein. Enhanced backbone mobility was detected for two glycine residues within the selectivity filter that are highly conserved in potassium channels and that are of core relevance to the filter structure and ion selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号