首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Within euarthropods, the morphological and molecular mechanisms of early nervous system development have been analysed in insects and several representatives of chelicerates and myriapods, while data on crustaceans are fragmentary. Neural stem cells (neuroblasts) generate the nervous system in insects and in higher crustaceans (malacostracans); in the remaining euarthropod groups, the chelicerates (e.g. spiders) and myriapods (e.g. millipedes), neuroblasts are missing. In the latter taxa, groups of neural precursors segregate from the neuroectoderm and directly differentiate into neurons and glial cells. In all euarthropod groups, achaete–scute homologues are required for neuroblast/neural precursor group formation. In the insects Drosophila melanogaster and Tribolium castaneum achaete–scute homologues are initially expressed in clusters of cells (proneural clusters) in the neuroepithelium but expression becomes restricted to the future neuroblast. Subsequently genes such as snail and prospero are expressed in the neuroblasts which are required for asymmetric division and differentiation. In contrast to insects, malacostracan neuroblasts do not segregate into the embryo but remain in the outer neuroepithelium, similar to vertebrate neural stem cells. It has been suggested that neuroblasts are present in another crustacean group, the branchiopods, and that they also remain in the neuroepithelium. This raises the questions how the molecular mechanisms of neuroblast selection have been modified during crustacean and insect evolution and if the segregation or the maintenance of neuroblasts in the neuroepithelium represents the ancestral state. Here we take advantage of the recently published Daphnia pulex (branchiopod) genome and identify genes in Daphnia magna that are known to be required for the selection and asymmetric division of neuroblasts in the fruit fly D. melanogaster. We unambiguously identify neuroblasts in D. magna by molecular marker gene expression and division pattern. We show for the first time that branchiopod neuroblasts divide in the same pattern as insect and malacostracan neuroblasts. Furthermore, in contrast to D. melanogaster, neuroblasts are not selected from proneural clusters in the branchiopod. Snail rather than ASH is the first gene to be expressed in the nascent neuroblasts suggesting that ASH is not required for the selection of neuroblasts as in D. melanogaster. The prolonged expression of ASH in D. magna furthermore suggests that it is involved in the maintenance of the neuroblasts in the neuroepithelium. Based on these and additional data from various representatives of arthropods we conclude that the selection of neural precursors from proneural clusters as well as the segregation of neural precursors represents the ancestral state of neurogenesis in arthropods. We discuss that the derived characters of malacostracans and branchiopods – the absence of neuroblast segregation and proneural clusters – might be used to support or reject the possible groupings of paraphyletic crustaceans.  相似文献   

2.
In a recent comparative study on neurogenesis in the diplopod Glomeris marginata we have shown that the millipede and the spider share several features that cannot be found in homologous form in insects and crustaceans. The most distinctive difference is that groups of neural precursors are singled out from the neuroectoderm of the spider and the diplopod, rather than individual cells (i.e. neuroblasts) as in insects or crustacean. This observation constitutes the first morphological indication for a close myriapod/chelicerate relationship that has otherwise only been suggested by molecular phylogenetic analysis. To see whether the pattern of neurogenesis described for the diplopod is representative for myriapods, we analysed neurogenesis in the basal chilopod Lithobius forficatus. We show here that groups of cells invaginate from the chilopod neuroectoderm at strikingly similar positions as the invaginating cell groups of the diplopod and the spider. Furthermore, the expression patterns of the proneural and neurogenic genes reveal more similarities to the chelicerate and the diplopod than to insects. Thus, chelicerates and myriapods share the developmental mechanism for neurogenesis, either because they are true sister groups, or because this reflects the ancestral state of neurogenesis in arthropods.Edited by P. Simpson  相似文献   

3.
Although corals are nominally diploblastic, the early development of Acropora millepora involves a process that clearly resembles gastrulation in higher metazoans. This similarity at the morphological level led us to search for the Acropora equivalents of genes whose key roles in gastrulation are conserved across the higher Metazoa. We here report the characterisation of one such gene, snail, which in both Drosophila and the mouse is expressed in cells undergoing an epithelial-mesenchyme transition and/or morphogenetic movements. In addition to an N-terminal SNAG domain, the Acropora snail protein contains four zinc fingers with sequences diagnostic for members of the snail protein subfamily. In situ hybridisation reveals expression in epithelial tissue in the central portion of one side of the flattened pre-gastrulation embryo, which continues to express snail as it is engulfed by its opposite layer. Comparison to snail expression during gastrulation in bilaterians such as Drosophila reveals striking similarities and suggests mechanistic, and possibly evolutionary, links between the processes of mesoderm formation in bilaterians and endoderm formation in the Cnidaria.Edited by P. Simpson  相似文献   

4.
The relatively simple central nervous system (CNS) of the Drosophila embryo provides a useful model system for investigating the mechanisms that generate and pattern complex nervous systems. Central to the generation of different types of neurons by precursor neuroblasts is the initial specification of neuroblast identity and the Drosophila segment polarity genes, genes that specify regions within a segment or repeating unit of the Drosophila embryo, have emerged recently as significant players in this process. During neurogenesis the segment polarity genes are expressed in the neuroectodermal cells from which neuroblasts delaminate and they continue to be expressed in neuroblasts and their progeny. Loss-of-function mutations in these genes lead to a failure in the formation of neuroblasts and/or specification of neuroblast identity. Results from several recent studies suggest that regulatory interactions between segment polarity genes during neurogenesis lead to an increase in the number of neuroblasts and specification of different identities to neuroblasts within a population of cells. BioEssays 21:472–485, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

5.
Notch signaling mediates multiple developmental decisions in Drosophila. In this study, we have examined the role of Notch signaling in Drosophila larval optic lobe development. Loss of function in Notch or its ligand Delta leads to loss of the lamina and a smaller medulla. The neuroepithelial cells in the optic lobe in Notch or Delta mutant brains do not expand but instead differentiate prematurely into medulla neuroblasts, which lead to premature neurogenesis in the medulla. Clonal analyses of loss-of-function alleles for the pathway components, including N, Dl, Su(H), and E(spl)-C, indicate that the Delta/Notch/Su(H) pathway is required for both maintaining the neuroepithelial stem cells and inhibiting medulla neuroblast formation while E(spl)-C is only required for some aspects of the inhibition of medulla neuroblast formation. Conversely, Notch pathway overactivation promotes neuroepithelial cell expansion while suppressing medulla neuroblast formation and neurogenesis; numb loss of function mimics Notch overactivation, suggesting that Numb may inhibit Notch signaling activity in the optic lobe neuroepithelial cells. Thus, our results show that Notch signaling plays a dual role in optic lobe development, by maintaining the neuroepithelial stem cells and promoting their expansion while inhibiting their differentiation into medulla neuroblasts. These roles of Notch signaling are strikingly similar to those of the JAK/STAT pathway in optic lobe development, raising the possibility that these pathways may collaborate to control neuroepithelial stem cell maintenance and expansion, and their differentiation into the progenitor cells.  相似文献   

6.
To uncover similarities and differences in neurogenesis in arthropod groups, we have studied the ventral neuroectoderm of the spider Cupiennius salei (Chelicerata, Aranea, Ctenidae). We found that invaginating cell groups arose sequentially, at stereotyped positions in each hemisegment and in separate waves, comparable with the generation of neuroblasts in DROSOPHILA: However, we found no evidence for proliferating stem cells that would be comparable with the neuroblasts. Instead, the whole group of invaginating cells was directly recruited to the nervous system. The invagination process is comparable with Drosophila, with the cells attaining a bottle-shaped form with the nuclei moving inwards, while actin-rich cell processes remain initially connected to the surface of the epithelium. This general pattern is also found in another spider, Pholcus phalangioides, and appears thus to be conserved at least among the Araneae. We have identified two basic helix-loop-helix encoding genes -- CsASH1 and CsASH2 -- that share sequence similarities with proneural genes from other species. Functional analysis of the genes by double-stranded RNA interference revealed that CsASH1 was required for the formation of the invagination sites and the process of invagination itself, whereas CsASH2 seemed to be required for the differentiation of the cells into neurones. Our results suggest that the basic processes of neurogenesis, as well as proneural gene function is conserved among arthropods, apart of the lack of neuroblast-like stem cells in spiders.  相似文献   

7.
While there is a detailed understanding of neurogenesis in insects and partially also in crustaceans, little is known about neurogenesis in chelicerates. In the spider Cupiennius salei Keyserling, 1877 (Chelicerata, Arachnida, Araneae) invaginating cell groups arise sequentially and in a stereotyped pattern comparable to the formation of neuroblasts in Drosophila melanogaster Meigen, 1830 (Insecta, Diptera, Cyclorrhapha, Drosophilidae). In addition, functional analysis revealed that in the spider homologues of the D. melanogaster proneural and neurogenic genes control the recruitment and singling out of neural precursors like in D. melanogaster. Although groups of cells, rather than individual cells, are singled out from the spider neuroectoderm which can thus not be homologized with the insect neuroblasts, similar genes seem to confer neural identity to the neural precursor cells of the spider. We show here that the pan-neural genes snail and the neural identity gene Krüppel are expressed in neural precursors in a heterogenous spatio-temporal pattern that is comparable to the pattern in D. melanogaster. Our data suggest that the early genetic network involved in recruitment and specification of neural precursors is conserved among insects and chelicerates.  相似文献   

8.
Early neurogenesis in the spider is characterised by a stereotyped pattern of sequential recruitment of neural cells from the neuroectoderm, comparable with neuroblast formation in Drosophila: However, in contrast to Drosophila, where single cells delaminate from the neuroectoderm, groups of cells adopt the neural fate and invaginate into the spider embryo. This raises the question of whether Delta/Notch signalling is involved in this process, as this system normally leads to a singling out of individual cells through lateral inhibition. I have therefore cloned homologues of Delta and Notch from the spider Cupiennius salei and studied their expression and function. The genes are indeed expressed during the formation of neural cells in the ventral neuroectoderm. Loss of function of either gene leads to an upregulation of the proneural genes and an altered morphology of the neuroectoderm that is comparable with Delta and Notch mutant phenotypes in Drosophila: Thus, although Delta/Notch signalling appears to be used in the same way as in Drosophila, the lateral inhibition process produces clusters of invaginating cells, rather than single cells. Intriguingly, neuroectodermal cells that are not invaginating seem to become neural cells at a later stage, while the epidermal cells are derived from lateral regions that overgrow the neuroectoderm. In this respect, the neuroectodermal region of the spider is more similar to the neural plate of vertebrates, than to the neuroectoderm of Drosophila:  相似文献   

9.
A considerable amount of information is available about the structure and function of the central nervous system in adult crustaceans. However, little effort has been directed toward understanding embryonic and larval neurogenesis in these animals. In the present study we recorded neurogenesis in the brain of laboratory-reared larvae of the spider crab Hyas araneus. Proliferating cells were detected immunocytochemically after in vivo labeling with 5-bromo-2′-deoxyuridine. This method has already been used to study the proliferation of neuroblasts in the ventral nerve cord of spider crab larvae. In the brain, a set of mitotically highly active neuroblasts was found in newly hatched zoea 1 larvae. These neuroblasts are individually identifiable due to their position and therefore a schematic map of the cerebral neuroblasts could be established. The number of active neuroblasts is high from hatching throughout the molt to the zoea 2. This proliferative action then decreases dramatically and has ceased at the time of first metamorphosis toward the megalopa larva. However, many ganglion mother cells born by unequal division of neuroblasts then go through their final division throughout the subsequent megalopa stage. In the brain, all mitotic activity has ceased at the time of second metamorphosis with the exception of a cluster of labeled nuclei within the olfactory lobe cells. In this cluster, the generation of neurons persists beyond the second metamorphosis into the crab 1 stage. Meanwhile, the neuropil volume of the olfactory lobes increases 10-fold from hatching to the crab 1. These results are discussed with regard to reports on neuronal proliferation during adult life in insects and rodents. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The Drosophila embryonic central nervous system develops from sets of progenitor neuroblasts which segregate from the neuroectoderm during early embryogenesis. Cells within this region can follow either the neural or epidermal developmental pathway, a decision guided by two opposing classes of genes. The proneural genes, including the members of the achaete-scute complex (AS-C), promote neurogenesis, while the neurogenic genes prevent neurogenesis and facilitate epidermal development. To understand the role that proneural gene expression and regulation play in the choice between neurogenesis and epidermogenesis, we examined the temporal and spatial expression pattern of the achaete (ac) regulatory protein in normal and neurogenic mutant embryos. The ac protein is first expressed in a repeating pattern of four ectodermal cell clusters per hemisegment. Even though 5-7 cells initially express ac in each cluster, only one, the neuroblast, continues to express ac. The repression of ac in the remaining cells of the cluster requires zygotic neurogenic gene function. In embryos lacking any one of five genes, the restriction of ac expression to single cells does not occur; instead, all cells of each cluster continue to express ac, enlarge, delaminate and become neuroblasts. It appears that one key function of the neurogenic genes is to silence proneural gene expression within the nonsegregating cells of the initial ectodermal clusters, thereby permitting epidermal development.  相似文献   

11.
12.
Previously we have described the distribution of theRdl GABA receptor subunit in theDrosophila CNS. Knowing thatRdl can coassemble with LCCH3 (aDrosophila GABA receptor-like subunit showing sequence similarity to vertebrate subunit GABAA receptors) in baculovirus infected insect cells, we compared the localization of these two receptor subunits in order to identify any potential overlap in their spatial or temporal distribution. The two subunits show very different patterns of localization. Early in development LCCH3 is found in the majority of developing neuroblasts and later is localized to the cell bodies of the embryonic nerve cord and brain, and the neuronal cell bodies surrounding the adult brain. In contrast,Rdl receptor subunits appear confined to the neuropil in all developmental stages. These results have two important implications. Firstly, they suggest that although these two subunits can coassemble in heterologous expression systems, they may not be found in the same tissues in the nervous system. Secondly, production of LCCH3 before neuronal differentiation leads us to speculate on the role of that LCCH3 containing receptors in the developing nervous system.  相似文献   

13.
The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.  相似文献   

14.
Tribolium castaneum is a well-characterised model insect, whose short germ-band mode of embryonic development is characteristic of many insect species and differs from the exhaustively studied Drosophila. Mechanisms of early neurogenesis, however, show significant conservation with Drosophila, as a characteristic pattern of neuroblasts arises from neuroectoderm proneural clusters in response to the bHLH activator Ash, a homologue of Achaete–Scute. Here we study the expression and function of two other bHLH proteins, the bHLH-O repressors E(spl)1 and E(spl)3. Their Drosophila homologues are expressed in response to Notch signalling and antagonize the activity of Achaete–Scute proteins, thus restricting the number of nascent neuroblasts. E(spl)1 and 3 are the only E(spl) homologues in Tribolium and both show expression in the cephalic and ventral neuroectoderm during embryonic neurogenesis, as well as a dynamic pattern of expression in other tissues. Their expression starts early, soon after Ash expression and is dependent on both Ash and Notch activities. They act redundantly, since a double E(spl) knockdown (but not single knockdowns) results in neurogenesis defects similar to those caused by Notch loss-of-function. A number of other activities have been evolutionarily conserved, most notably their ability to interact with proneural proteins Scute and Daughterless.  相似文献   

15.
The neural stem cells that give rise to the neural lineages of the brain can generate their progeny directly or through transit amplifying intermediate neural progenitor cells (INPs). The INP-producing neural stem cells in Drosophila are called type II neuroblasts, and their neural progeny innervate the central complex, a prominent integrative brain center. Here we use genetic lineage tracing and clonal analysis to show that the INPs of these type II neuroblast lineages give rise to glial cells as well as neurons during postembryonic brain development. Our data indicate that two main types of INP lineages are generated, namely mixed neuronal/glial lineages and neuronal lineages. Genetic loss-of-function and gain-of-function experiments show that the gcm gene is necessary and sufficient for gliogenesis in these lineages. The INP-derived glial cells, like the INP-derived neuronal cells, make major contributions to the central complex. In postembryonic development, these INP-derived glial cells surround the entire developing central complex neuropile, and once the major compartments of the central complex are formed, they also delimit each of these compartments. During this process, the number of these glial cells in the central complex is increased markedly through local proliferation based on glial cell mitosis. Taken together, these findings uncover a novel and complex form of neurogliogenesis in Drosophila involving transit amplifying intermediate progenitors. Moreover, they indicate that type II neuroblasts are remarkably multipotent neural stem cells that can generate both the neuronal and the glial progeny that make major contributions to one and the same complex brain structure.  相似文献   

16.
Asymmetric cell division is a mechanism for generating cell diversity as well as maintaining stem cell homeostasis in both Drosophila and mammals. In Drosophila, larval neuroblasts are stem cell-like progenitors that divide asymmetrically to generate neurons of the adult brain. Mitotic neuroblasts localize atypical protein kinase C (aPKC) to their apical cortex. Cortical aPKC excludes cortical localization of Miranda and its cargo proteins Prospero and Brain tumor, resulting in their partitioning into the differentiating, smaller ganglion mother cell (GMC) where they are required for neuronal differentiation. In addition to aPKC, the kinases Aurora-A and Polo also regulate neuroblast self-renewal, but the phosphatases involved in neuroblast self-renewal have not been identified. Here we report that aPKC is in a protein complex in vivo with Twins, a Drosophila B-type protein phosphatase 2A (PP2A) subunit, and that Twins and the catalytic subunit of PP2A, called Microtubule star (Mts), are detected in larval neuroblasts. Both Twins and Mts are required to exclude aPKC from the basal neuroblast cortex: twins mutant brains, twins mutant single neuroblast mutant clones, or mts dominant negative single neuroblast clones all show ectopic basal cortical localization of aPKC. Consistent with ectopic basal aPKC is the appearance of supernumerary neuroblasts in twins mutant brains or twins mutant clones. We conclude that Twins/PP2A is required to maintain aPKC at the apical cortex of mitotic neuroblasts, keeping it out of the differentiating GMC, and thereby maintaining neuroblast homeostasis.  相似文献   

17.
18.
The Anlage of the Drosophila visual system, called eye field, comprises a domain in the dorso-medial neurectoderm of the embryonic head and is defined by the expression of the early eye gene sine oculis (so). Beside the eye and optic lobe, the eye field gives rise to several neuroblasts that contribute their lineages to the central brain. Since so expression is only very short lived, the later development of these neuroblasts has so far been elusive. Using the P-element replacement technique [Genetics, 151 (1999) 1093] we generated a so-Gal4 line driving the reporter gene LacZ that perdures in the eye field derived cells throughout embryogenesis and into the larval period. This allowed us to reconstruct the morphogenetic movements of the eye field derived lineages, as well as the projection pattern of their neurons. The eye field produces a dorsal (Pc1/2) and a ventral (Pp3) group of three to four neuroblasts each. In addition, the target neurons of the larval eye, the optic lobe pioneers (OLPs) are derived from the eye field. The embryonically born (primary) neurons of the Pp3 lineages spread out at the inner surface of the optic lobe. Together with the OLPs, their axons project to the dorsal neuropile of the protocerebrum. Pp3 neuroblasts reassume expression of so-Gal4 in the larval period and produce secondary neurons whose axonal projection coincides with the pattern formed by the primary Pp3 neurons. Several other small clusters of neurons that originate from outside the eye field, but have axonal connections to the dorsal protocerebrum, also express so and are labeled by so-Gal4 driven LacZ. We discuss the dynamic pattern of the so-positive lineages as a tool to reconstruct the morphogenesis of the larval brain.  相似文献   

19.
20.
Summary We have examined the embryo of the centipedeEthmostigmus rubripes to determine the degree of evolutionary conservatism in the developmental processes of segmentation, neurogenesis and axon formation between the insects and the myriapods. A conspicuous feature of centipede embryogenesis is the early separation of the left and right sides of the ganglionic primordia by extra-embryonic ectoderm. An antibody to the protein encoded by theDrosophila segmentation geneengrailed binds to cells in the posterior margin of the limb buds in the centipede embryo, in common with insect and crustacean embryos. However, whereas in insects and crustaceans this protein is also expressed in a subset of cells in the neuroectoderm, the anti-engrailed antibody did not bind to cells in the ganglionic primordia of the centipede embryo. Use of the BrdU labelling technique to mark mitotically active cells revealed that neuroblasts, the ubiquitous neuron stem cell type in insects, are not present in the centipede. The earliest central axon pathways in the centipede embryo do not arise from segmentally repeated neurons, as is the case in insects, but rather by the posteriorly directed growth of axons originating from neurons located in the brain. Axonogenesis by segmental neurons begins later in development; the pattern of neurons involved is not obviously homologous to the conservative set of central pioneering neurons found in insects. Our observations point to considerable differences between the insects and the myriapods in mechanisms for neurogenesis and the formation of central axon pathways, suggesting that these developmental processes have not been strongly conserved during arthropod evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号