首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vitamin B12 (B12)-mediated repression of the metE gene in Escherichia coli and Salmonella typhimurium requires the B12-dependent transmethylase, the metH gene product. It has been proposed that the MetH-B12 holoenzyme complex is involved directly in the repression mechanism. Using Escherichia coli strains lysogenized with a lambda phage carrying a metE-lacZ gene fusion, we examined B12-mediated repression of the metE-lacZ gene fusion. Although B12 supplementation results in a 10-fold repression of metE-lacZ expression, homocysteine addition to the growth medium overrides the B12-mediated repression. In addition, B12-mediated repression of the metE-lacZ fusion is dependent on a functional MetR protein. When a metB mutant was transformed with a high-copy-number plasmid carrying the metE gene, which would be expected to reduce intracellular levels of homocysteine, metE-lacZ expression was reduced and B12 supplementation had no further effect. In a metJ mutant, B12 represses metE-lacZ expression less than twofold. When the metJ mutant was transformed with a high-copy-number plasmid carrying the metH gene, which would be expected to reduce intracellular levels of homocysteine, B12 repression of the metE-lacZ fusion was partially restored. The results indicate that B12-mediated repression of the metE gene is primarily a loss of MetR-mediated activation due to depletion of the coactivator homocysteine, rather than a direct repression by the MetH-B12 holoenzyme.  相似文献   

2.
We isolated an Escherichia coli methionine auxotroph that displays a growth phenotype similar to that of known metF mutants but has elevated levels of 5,10-methylenetetrahydrofolate reductase, the metF gene product. Transduction analysis indicates that the mutant carries normal metE, metH, and metF genes; the phenotype is due to a single mutation, eliminating the possibility that the strain is a metE metH double mutant; and the new mutation is linked to the metE gene by P1 transduction. Plasmids carrying the Salmonella typhimurium metE gene and flanking regions complement the mutation, even when the plasmid-borne metE gene is inactivated. Enzyme assays show that the mutation results in a dramatic decrease in metE gene expression, a moderate decrease in metH gene expression, and a disruption of the metH-mediated vitamin B12 repression of the metE and metF genes. Our evidence suggests that the methionine auxotrophy caused by the new mutation is a result of insufficient production of both the vitamin B12-independent (metE) and vitamin B12-dependent (metH) transmethylase enzymes that are necessary for the synthesis of methionine from homocysteine. We propose that this mutation defines a positive regulatory gene, designated metR, whose product acts in trans to activate the metE and metH genes.  相似文献   

3.
4.
An Escherichia coli S-30 DNA directed protein synthesis system was used to study the effect of homocysteine on the in vitro expression of the metE, metH and metR genes. In the presence of purified MetR protein, which is known to regulate the expression of these genes, homocysteine activates metE expression and inhibits both metR and metH expression. These findings support the recent in vivo results of Urbanowski, M.L. and Stauffer, G.V. (1989), J. Bacteriol. 171, 3277-3281.  相似文献   

5.
Using an Escherichia coli lac deletion strain lysogenized with a lambda phage carrying a metH-lacZ gene fusion, we isolated trans-acting mutations that result in simultaneous 4- to 6-fold-elevated metH-lacZ expression, 5- to 22-fold-lowered metE-lacZ expression, and 9- to 20-fold-elevated metR-lacZ expression. The altered regulation of these genes occurs in the presence of high intracellular levels of homocysteine, a methionine pathway intermediate which normally inhibits metH and metR expression and stimulates metE expression. P1 transductions and complementation tests indicate that the mutations are in the metR gene. Our data suggest that the mutations result in an altered MetR activator protein that has lost the ability to use homocysteine as a modulator of gene expression.  相似文献   

6.
Fusions of the lac genes to the promoters of four structural genes in the methionine biosynthetic pathway, metA, metB, metE, and metF, were obtained by the use of the Mu d(Ap lac) bacteriophage. The levels of beta-galactosidase in these strains could be derepressed by growth under methionine-limiting conditions. Furthermore, growth in the presence of vitamin B12 repressed the synthesis of beta-galactosidase in strains containing a fusion of lacZ to the metE promoter, phi(metE'-lacZ+). Mutations affecting the regulation of met-lac fusions were generated by the insertion of Tn5. Tn5 insertions were obtained at the known regulatory loci metJ and metK. Interestingly, a significant amount of methionine adenosyltransferase activity remained in the metK mutant despite the fact that the mutation was generated by an insertion. Several Tn5-induced regulatory mutations were isolated by screening for high-level beta-galactosidase expression in a phi(metE'-lacZ+) strain in the presence of vitamin B12. Tn5 insertions mapping at the btuB (B12 uptake), metH (B12 dependent tetrahydropteroylglutamate methyltransferase), and metF (5,10-methylenetetrahydrofolate reductase) loci were obtained. The isolation of the metH mutant was consistent with previous suggestions that the metH gene product is required for the repression of metE by vitamin B12. The metF::Tn5 insertion was of particular interest since it suggested that a functional metf gene product was also needed for repression of metE by vitamin B12.  相似文献   

7.
Regulation of methionine synthesis in Escherichia coli   总被引:3,自引:1,他引:2  
  相似文献   

8.
9.
Salmonella typhimurium metE operator-constitutive mutations   总被引:6,自引:0,他引:6  
We used a metE-lacZ fusion phage (lambda Elac) to select for mutants with operator-constitutive mutations in the Salmonella typhimurium metE control region. All of the mutations identified were found to lie within a region containing tandemly-repeating 8-bp palindromes with the consensus sequence 5'-AGACGTCT-3', previously proposed to be the binding region for the metJ-encoded repressor. Lysogens carrying mutant lambda Elac phage exhibit high beta-galactosidase levels that are only partially repressible by methionine. Although repression of metE expression by vitamin B12 is not disrupted in metJ+ lysogens, vitamin B12 repression is disrupted in lysogens lacking an active MetJ repressor. These results suggest that there is an interaction between the metJ-encoded repressor and the vitamin B12 repression system mediated by the metH gene product.  相似文献   

10.
11.
12.
The Salmonella typhimurium metE and metR genes share a common control region, with overlapping, divergently transcribed promoters. A double gene fusion was constructed in which the metE promoter directs expression of the Escherichia coli lacZ gene and the metR promoter directs expression of the E. coli galK gene. By using an E. coli strain lysogenized with a lambda bacteriophage carrying the metE-lacZ metR-galK double fusion (lambda Elac.Rgal), two classes of cis-acting mutations were isolated that increase metR-galK expression. The first class of mutations causes a simultaneous decrease in metE-lacZ expression by disrupting the normal MetR-mediated activation of the metE promoter. The mutations are located within a region extending from 17 to 34 base pairs upstream of the -35 region of the metE promoter. Gel mobility shift assays and DNaseI protection experiments demonstrated that the MetR protein specifically binds to a 24-base-pair region encompassing these mutations. The second class of mutations increases metR-galK expression by directly altering the promoter consensus sequences of the metE and metR promoters.  相似文献   

13.
14.
New Methionine Structural Gene in Salmonella typhimurium   总被引:6,自引:4,他引:2       下载免费PDF全文
Eight metH mutants in Salmonella typhimurium with closely linked sites of mutation which could grow only on methionine were isolated from a metE mutant deficient in N(5)-methyltetrahydropteroyltriglutamate-homocysteine transmethylase; their deficiency in cobalamin-dependent N(5)-methyltetrahydrofolate-homocysteine transmethylase was supported by the results of enzyme studies of one of them. Cotransduction of metH and metA (homoserine O-transsuccinylase) mutants was obtained, thus revealing linkage between a second pair of the six known methionine structural genes. One metH mutant clearly differed from the rest in that it reverted at a higher frequency, was temperature sensitive, complemented all other metH mutants, and was located farthest from the metA gene.  相似文献   

15.
16.
The repression of MetE synthesis in Escherichia coli by vitamin B12 is known to require the MetH holoenzyme (B12-dependent methyltransferase) and the metF gene product. Experiments using trimethoprim, an inhibitor of dihydrofolate reductase, show that the MetF protein is not directly involved in the repression, but that N5-methyltetrahydrofolic acid (N5-methyl-H4-folate), the product of the MetF enzymatic reaction is required. Since the methyl group from N5-methyl-H4-folate is normally transferred to the MetH holoenzyme to form a methyl-B12 enzyme, the present results suggest that a methyl-B12 enzyme is involved in the vitamin B12 repression of metE expression. Other results argue against the possibility that a methyl-B12 enzyme functions in this repression solely by decreasing the cellular level of homocysteine, which is required for MetR activation of metE expression. Experiments with metJ mutants show that the MetJ protein mediates about 50% of the repression of metE expression by B12 but is totally responsible for the regulation of metF expression by vitamin B12.  相似文献   

17.
Operon fusions were isolated between Mu dX (lac CmR ApR) and btuB, the gene encoding the multivalent vitamin B12 outer membrane receptor. Using these fusions, vitamin B12-mediated repression of btuB in Escherichia coli was demonstrated. Mutations in metH, metE and ompR as well as exogenous methionine, membrane pertubants, high osmolar conditions and temperature had no major effect on the expression of the btuB gene.  相似文献   

18.
Cloning and expression of the metE gene in Escherichia coli   总被引:3,自引:0,他引:3  
A lambda-transducing phage was isolated that contains the metE gene. This gene codes for N5-methyl-H4-folate:homocysteine methyltransferase (EC 2.1.1.14), an enzyme that catalyzes the terminal reaction in methionine biosynthesis. A 9.1-kb EcoR1 fragment of this phage, containing the metE gene, was then cloned into pBR325. This plasmid, pJ19, was used to transform Escherichia coli strain 2276, a metE mutant, and restore the MetE+ phenotype. Although the transformed cells produced large amounts of the metE protein in vivo, in vitro studies using pJ19 as template showed low synthesis of the metE protein.  相似文献   

19.
The Escherichia coli K-12 metH gene, encoding the vitamin B12-dependent homocysteine transmethylase, is located between iclR and lysC in the 91-min region of the chromosome. The metH gene has been sequenced and reveals an open reading frame of 3600 bp encoding a polypeptide of 1200 amino acids (aa) with a calculated Mr of 132 628. The first 414 aa of the deduced polypeptide sequence are 92% identical to the 414 aa deduced from the partially sequenced Salmonella typhimurium LT2 metH gene. In-frame fusions of metH to lacZ were used to confirm the reading frame of the metH gene and to study its regulation. metH was repressed tenfold, presumably indirectly, by L-methionine and the metJ gene product, while vitamin B12 did not induce de novo synthesis of MetH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号