首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic parameters were estimated with restricted maximum likelihood for individual test-day milk, fat, and protein yields and somatic cell scores with a random regression cubic spline model. Test-day records of Holstein cows that calved from 1994 through early 1999 were obtained from Dairy Records Management Systems in Raleigh, North Carolina, for the analysis. Estimates of heritability for individual test-days and estimates of genetic and phenotypic correlations between test-days were obtained from estimates of variances and covariances from the cubic spline analysis. Estimates were calculated of genetic parameters for the averages of the test days within each of the ten 30-day test intervals. The model included herd test-day, age at first calving, and bovine somatropin treatment as fixed factors. Cubic splines were fitted for the overall lactation curve and for random additive genetic and permanent environmental effects, with five predetermined knots or four intervals between days 0, 50, 135, 220, and 305. Estimates of heritability for lactation one ranged from 0.10 to 0.15, 0.06 to 0.10, 0.09 to 0.15, and 0.02 to 0.06 for test-day one to test-day 10 for milk, fat, and protein yields and somatic cell scores, respectively. Estimates of heritability were greater in lactations two and three. Estimates of heritability increased over the course of the lactation. Estimates of genetic and phenotypic correlations were smaller for test-days further apart.  相似文献   

2.
3.
Genetic parameters for test-day milk flow (TDMF) of 2175 first lactations of Holstein cows were estimated using multiple-trait and repeatability models. The models included the direct additive genetic effect as a random effect and contemporary group (defined as the year and month of test) and age of cow at calving (linear and quadratic effect) as fixed effects. For the repeatability model, in addition to the effects cited, the permanent environmental effect of the animal was also included as a random effect. Variance components were estimated using the restricted maximum likelihood method in single- and multiple-trait and repeatability analyses. The heritability estimates for TDMF ranged from 0.23 (TDMF 6) to 0.32 (TDMF 2 and TDMF 4) in single-trait analysis and from 0.28 (TDMF 7 and TDMF 10) to 0.37 (TDMF 4) in multiple-trait analysis. In general, higher heritabilities were observed at the beginning of lactation until the fourth month. Heritability estimated with the repeatability model was 0.27 and the coefficient of repeatability for first lactation TDMF was 0.66. The genetic correlations were positive and ranged from 0.72 (TDMF 1 and 10) to 0.97 (TDMF 4 and 5). The results indicate that milk flow should respond satisfactorily to selection, promoting rapid genetic gains because the estimated heritabilities were moderate to high. Higher genetic gains might be obtained if selection was performed in the TDMF 4. Both the repeatability model and the multiple-trait model are adequate for the genetic evaluation of animals in terms of milk flow, but the latter provides more accurate estimates of breeding values.  相似文献   

4.
Pregnancy and calving are elements indispensable for dairy production, but the daily milk yield of cows decline as pregnancy progresses, especially during the late stages. Therefore, the effect of stage of pregnancy on daily milk yield must be clarified to accurately estimate the breeding values and lifetime productivity of cows. To improve the genetic evaluation model for daily milk yield and determine the effect of the timing of pregnancy on productivity, we used a test-day model to assess the effects of stage of pregnancy on variance component estimates, daily milk yields and 305-day milk yield during the first three lactations of Holstein cows. Data were 10 646 333 test-day records for the first lactation; 8 222 661 records for the second; and 5 513 039 records for the third. The data were analyzed within each lactation by using three single-trait random regression animal models: one model that did not account for the stage of pregnancy effect and two models that did. The effect of stage of pregnancy on test-day milk yield was included in the model by applying a regression on days pregnant or fitting a separate lactation curve for each days open (days from calving to pregnancy) class (eight levels). Stage of pregnancy did not affect the heritability estimates of daily milk yield, although the additive genetic and permanent environmental variances in late lactation were decreased by accounting for the stage of pregnancy effect. The effects of days pregnant on daily milk yield during late lactation were larger in the second and third lactations than in the first lactation. The rates of reduction of the 305-day milk yield of cows that conceived fewer than 90 days after the second or third calving were significantly (P<0.05) greater than that after the first calving. Therefore, we conclude that differences between the negative effects of early pregnancy in the first, compared with later, lactations should be included when determining the optimal number of days open to maximize lifetime productivity in dairy cows.  相似文献   

5.
To simulate the consequences of management in dairy herds, the use of individual-based herd models is very useful and has become common. Reproduction is a key driver of milk production and herd dynamics, whose influence has been magnified by the decrease in reproductive performance over the last decades. Moreover, feeding management influences milk yield (MY) and body reserves, which in turn influence reproductive performance. Therefore, our objective was to build an up-to-date animal reproduction model sensitive to both MY and body condition score (BCS). A dynamic and stochastic individual reproduction model was built mainly from data of a single recent long-term experiment. This model covers the whole reproductive process and is composed of a succession of discrete stochastic events, mainly calving, ovulations, conception and embryonic loss. Each reproductive step is sensitive to MY or BCS levels or changes. The model takes into account recent evolutions of reproductive performance, particularly concerning calving-to-first ovulation interval, cyclicity (normal cycle length, prevalence of prolonged luteal phase), oestrus expression and pregnancy (conception, early and late embryonic loss). A sensitivity analysis of the model to MY and BCS at calving was performed. The simulated performance was compared with observed data from the database used to build the model and from the bibliography to validate the model. Despite comprising a whole series of reproductive steps, the model made it possible to simulate realistic global reproduction outputs. It was able to well simulate the overall reproductive performance observed in farms in terms of both success rate (recalving rate) and reproduction delays (calving interval). This model has the purpose to be integrated in herd simulation models to usefully test the impact of management strategies on herd reproductive performance, and thus on calving patterns and culling rates.  相似文献   

6.
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.  相似文献   

7.
Covariance components for test day milk yield using 263 390 first lactation records of 32 448 Holstein cows were estimated using random regression animal models by restricted maximum likelihood. Three functions were used to adjust the lactation curve: the five-parameter logarithmic Ali and Schaeffer function (AS), the three-parameter exponential Wilmink function in its standard form (W) and in a modified form (W*), by reducing the range of covariate, and the combination of Legendre polynomial and W (LEG+W). Heterogeneous residual variance (RV) for different classes (4 and 29) of days in milk was considered in adjusting the functions. Estimates of RV were quite similar, rating from 4.15 to 5.29 kg2. Heritability estimates for AS (0.29 to 0.42), LEG+W (0.28 to 0.42) and W* (0.33 to 0.40) were similar, but heritability estimates used W (0.25 to 0.65) were highest than those estimated by the other functions, particularly at the end of lactation. Genetic correlations between milk yield on consecutive test days were close to unity, but decreased as the interval between test days increased. The AS function with homogeneous RV model had the best fit among those evaluated.  相似文献   

8.
Milk yield records (305d, 2X, actual milk yield) of 123,639 registered first lactation Holstein cows were used to compare linear regression (y = β(0) + β(1)X + e), quadratic regression, (y = β(0) + β(1)X + β(2)X(2) + e) cubic regression (y = β(0) + β(1)X + β(2)X(2) + β(3)X(3) +e) and fixed factor models, with cubic-spline interpolation models, for estimating the effects of inbreeding on milk yield. Ten animal models, all with herd-year-season of calving as fixed effect, were compared using the Akaike corrected-Information Criterion (AICc). The cubic-spline interpolation model with seven knots had the lowest AICc, whereas for all those labeled as "traditional", AICc was higher than the best model. Results from fitting inbreeding using a cubic-spline with seven knots were compared to results from fitting inbreeding as a linear covariate or as a fixed factor with seven levels. Estimates of inbreeding effects were not significantly different between the cubic-spline model and the fixed factor model, but were significantly different from the linear regression model. Milk yield decreased significantly at inbreeding levels greater than 9%. Variance component estimates were similar for the three models. Ranking of the top 100 sires with daughter records remained unaffected by the model used.  相似文献   

9.
Random regression models are widely used in the field of animal breeding for the genetic evaluation of daily milk yields from different test days. These models are capable of handling different environmental effects on the respective test day, and they describe the characteristics of the course of the lactation period by using suitable covariates with fixed and random regression coefficients. As the numerically expensive estimation of parameters is already part of advanced computer software, modifications of random regression models will considerably grow in importance for statistical evaluations of nutrition and behaviour experiments with animals. Random regression models belong to the large class of linear mixed models. Thus, when choosing a model, or more precisely, when selecting a suitable covariance structure of the random effects, the information criteria of Akaike and Schwarz can be used. In this study, the fitting of random regression models for a statistical analysis of a feeding experiment with dairy cows is illustrated under application of the program package SAS. For each of the feeding groups, lactation curves modelled by covariates with fixed regression coefficients are estimated simultaneously. With the help of the fixed regression coefficients, differences between the groups are estimated and then tested for significance. The covariance structure of the random and subject-specific effects and the serial correlation matrix are selected by using information criteria and by estimating correlations between repeated measurements. For the verification of the selected model and the alternative models, mean values and standard deviations estimated with ordinary least square residuals are used.  相似文献   

10.
Abstract

Random regression models are widely used in the field of animal breeding for the genetic evaluation of daily milk yields from different test days. These models are capable of handling different environmental effects on the respective test day, and they describe the characteristics of the course of the lactation period by using suitable covariates with fixed and random regression coefficients. As the numerically expensive estimation of parameters is already part of advanced computer software, modifications of random regression models will considerably grow in importance for statistical evaluations of nutrition and behaviour experiments with animals. Random regression models belong to the large class of linear mixed models. Thus, when choosing a model, or more precisely, when selecting a suitable covariance structure of the random effects, the information criteria of Akaike and Schwarz can be used. In this study, the fitting of random regression models for a statistical analysis of a feeding experiment with dairy cows is illustrated under application of the program package SAS. For each of the feeding groups, lactation curves modelled by covariates with fixed regression coefficients are estimated simultaneously. With the help of the fixed regression coefficients, differences between the groups are estimated and then tested for significance. The covariance structure of the random and subject-specific effects and the serial correlation matrix are selected by using information criteria and by estimating correlations between repeated measurements. For the verification of the selected model and the alternative models, mean values and standard deviations estimated with ordinary least square residuals are used.  相似文献   

11.
In tropical environments, dairy cattle production is constrained by several factors, including climate. The seasonal loss of milk due to heat stress is a recurring challenge for many dairy producers. The objective of this study was to detect heat stress thresholds, milk yield loss and individual animal variations using random regression models for dairy cattle from test-day milk records. Data were obtained from the Kenya Livestock Breeders Organization for the years 2000–2017 and merged with weather data. The weather parameters were grid-interpolated solar and meteorological data obtained from the National Aeronautics and Space Administration/Prediction Of Worldwide Energy Resources (NASA/POWER). After editing, the records comprised 49 993, 45 251 and 36 136 test-day records for first, second, and third lactations, respectively, for the four main dairy breeds: Friesian (68.0%), Ayrshire (21.1%), Jersey (7.6%) and Guernsey (3.3%). Variance components were estimated using Restricted Maximum Likelihood in ASReml software. Random regression models with third-order Legendre polynomials were fitted to the average and individual lactation curves and the reaction norms. An extended factor analytic variance structure for the random cow effects was used to estimate (co)variances between days in milk and thermal load. The daily average temperature (TA) and temperature humidity index (THI) were identified as the most suitable thermal load indicators for assessing milk yield losses. Considering a one day lag, the estimated heat stress thresholds were about 22 °C and 69 index units for TA and THI, respectively. Almost no differences were observed for estimated residual variances between the thermal load indicators, indicating there was no better model fit by TA or THI. The heat stress thresholds and milk loss patterns are important for management of dairy production systems in the tropics with climatic conditions similar to this study. Data recording should be improved as a tool to monitor the expected impacts of climate change and mitigation measures.  相似文献   

12.
The aim of the study was to infer (co)variance components for daily milk yield, fat and protein contents, and somatic cell score (SCS) in Burlina cattle (a local breed in northeast Italy). Data consisted of 13576 monthly test-day records of 666 cows (parities 1 to 8) collected in 10 herds between 1999 and 2009. Repeatability animal models were implemented using Bayesian methods. Flat priors were assumed for systematic effects of herd test date, days in milk, and parity, as well as for permanent environmental, genetic, and residual effects. On average, Burlina cows produced 17.0 kg of milk per day, with 3.66 and 3.33% of fat and protein, respectively, and 358000 cells per mL of milk. Marginal posterior medians (highest posterior density of 95%) of heritability were 0.18 (0.09–0.28), 0.28 (0.21–0.36), 0.35 (0.25–0.49), and 0.05 (0.01–0.11) for milk yield, fat content, protein content, and SCS, respectively. Marginal posterior medians of genetic correlations between the traits were low and a 95% Bayesian confidence region included zero, with the exception of the genetic correlation between fat and protein contents. Despite the low number of animals in the population, results suggest that genetic variance for production and quality traits exists in Burlina cattle.  相似文献   

13.
A study with high-yielding dairy cows was re-analysed in order to test the suitability of lucerne silage separately for primi- and multiparous cows as an alternative to grass silage in maize-based total mixed rations (TMR). Lactation curves were fitted using random regression test-day models for energy corrected milk (ECM) and dry matter intake (DMI) as well as for number and duration of feeder visits (NFV and DFV, respectively). Existing models for ECM and DMI were extended by animal-specific random effects, which were formulated in their dependency on days in milk. For NFV and DFV random regression models were applied for the very first time. The chosen approach of statistical analysis permitted comparisons of the lactation curves as well as of least square means for sub-periods to answer nutritional questions. Whilst primiparous cows had generally lower DMI and ECM as compared to multiparous cows, only in primiparous cows a negative effect of lucerne TMR on ECM was observed, especially in early lactation. Nutritional factors should be rejected because of very similar ECM between the various TMR in multiparous cows. Traits of feeding behaviour indicated that particle size could contribute to the decreased ECM. Even more impact on the lower ECM should be addressed to domination behaviour of multiparous cows. The resulting restlessness of primiparous cows caused a reduced intake per minute spent at the feeder. Further studies should focus on optimising the proportion and chopping length of lucerne in the diet and to improve flock management to maximise feed intake of primiparous cows. Generally, statistical analysis of lactation data became a very complex issue. It seems inevitable that nutritionists and statisticians team up to address this problem.  相似文献   

14.
Records of Holstein cows from the Dairy Records Processing Center at Raleigh, NC were edited to obtain three data sets: 65,720 first, 50,694 second, and 65,445 later lactations. Correlations among yield traits and somatic cell score were estimated with three different models: 1) bovine somatotropin (bST) administration ignored, 2) bST administration as a fixed effect and 3) administration of bST as part of the contemporary group (herd-year-month-bST). Heritability estimates ranged from 0.13 to 0.17 for milk, 0.12 to 0.20 for fat, 0.14 to 0.16 for protein yields, and 0.08 to 0.09 for somatic cell score. Estimates were less for later than first lactations. Estimates of genetic correlations among yields ranged from 0.35 to 0.85 with no important differences between estimates with the 3 models. Estimates for lactation 2 agreed with estimates for lactation 1. Estimates of genetic correlations for later lactations were generally greater than for lactations 1 and 2 except between milk and protein yields. Estimates of genetic correlations between yields and somatic cell score were mostly negative or small (-0.45 to 0.11). Estimates of environmental correlations among yield traits were similar with all models (0.77 to 0.97). Estimates of environmental correlations between yields and somatic cell score were negative (-0.22 to -0.14). Estimates of phenotypic correlations among yield traits ranged from 0.70 to 0.95. Estimates of phenotypic correlations between yields and somatic cell score were small and negative. For all three data sets and all traits, no important differences in estimates of genetic parameters were found for the two models that adjusted for bST and the model that did not.  相似文献   

15.
We investigated the relationships between conception rates (CRs) at first service in Japanese Holstein heifers (i.e. animals that had not yet had their first calf) and cows and their test-day (TD) milk yields. Data included records of artificial insemination (AI) for heifers and cows that had calved for the first time between 2000 and 2008 and their TD milk yields at 6 through 305 days in milk (DIM) from first through third lactations. CR was defined as a binary trait for which first AI was a failure or success. A threshold-linear animal model was applied to estimate genetic correlations between CRs of heifers or cows and TD milk yield at various lactation stages. Two-trait genetic analyses were performed for every combination of CR and TD milk yield by using the Bayesian method with Gibbs sampling. The posterior means of the heritabilities of CR were 0.031 for heifers, 0.034 for first-lactation cows and 0.028 for second-lactation cows. Heritabilities for TD milk yield increased from 0.324 to 0.433 with increasing DIM but decreased slightly after 210 DIM during first lactation. These heritabilities from the second and third lactations were higher during late stages of lactation than during early stages. Posterior means of the genetic correlations between heifer CR and all TD yields were positive (range, 0.082 to 0.287), but those between CR of cows and milk yields during first or second lactation were negative (range, −0.121 to −0.250). Therefore, during every stage of lactation, selection in the direction of increasing milk yield may reduce CR in cows. The genetic relationships between CR and lactation curve shape were quite weak, because the genetic correlations between CR and TD milk yield were constant during the lactation period.  相似文献   

16.
Regression on the basis function of B-splines has been advocated as an alternative to orthogonal polynomials in random regression analyses. Basic theory of splines in mixed model analyses is reviewed, and estimates from analyses of weights of Australian Angus cattle from birth to 820 days of age are presented. Data comprised 84 533 records on 20 731 animals in 43 herds, with a high proportion of animals with 4 or more weights recorded. Changes in weights with age were modelled through B-splines of age at recording. A total of thirteen analyses, considering different combinations of linear, quadratic and cubic B-splines and up to six knots, were carried out. Results showed good agreement for all ages with many records, but fluctuated where data were sparse. On the whole, analyses using B-splines appeared more robust against "end-of-range" problems and yielded more consistent and accurate estimates of the first eigenfunctions than previous, polynomial analyses. A model fitting quadratic B-splines, with knots at 0, 200, 400, 600 and 821 days and a total of 91 covariance components, appeared to be a good compromise between detailedness of the model, number of parameters to be estimated, plausibility of results, and fit, measured as residual mean square error.  相似文献   

17.
This study evaluated the effect of exclusive machine milking on oxytocin (OT) and cortisol (CORT) release, and on milk yield and residual milk in Gir (group Gir), Holstein (group Hol) and crossbred animals (group GirHol). Six animals from each group were submitted to experimental milkings. As expected, milk yield was significantly higher in the Hol group than in the groups GirHol and Gir, and group GirHol produced more milk than the Gir group. In contrast, all groups exhibited significant but similar levels of OT, although OT increased more rapidly during milking for the groups Hol and GirHol than for the Gir group. In addition, CORT levels measured during and after milking were significantly influenced by the group. The Gir group showed higher levels of CORT than the groups GirHol and Hol. The lower performances of the Gir breed can not be explained by a less efficient milk ejection reflex because all cows studied released enough OT and had an effective milk ejection.  相似文献   

18.
With the objective of evaluating measures of milk yield persistency, 27,000 test-day milk yield records from 3362 first lactations of Brazilian Gyr cows that calved between 1990 and 2007 were analyzed with a random regression model. Random, additive genetic and permanent environmental effects were modeled using Legendre polynomials of order 4 and 5, respectively. Residual variance was modeled using five classes. The average lactation curve was modeled using a fourth-order Legendre polynomial. Heritability estimates for measures of persistency ranged from 0.10 to 0.25. Genetic correlations between measures of persistency and 305-day milk yield (Y305) ranged from -0.52 to 0.03. At high selection intensities for persistency measures and Y305, few animals were selected in common. As the selection intensity for the two traits decreased, a higher percentage of animals were selected in common. The average predicted breeding values for Y305 according to year of birth of the cows had a substantial annual genetic gain. In contrast, no improvement in the average persistency breeding value was observed. We conclude that selection for total milk yield during lactation does not identify bulls or cows that are genetically superior in terms of milk yield persistency. A measure of persistency represented by the sum of deviations of estimated breeding value for days 31 to 280 in relation to estimated breeding value for day 30 should be preferred in genetic evaluations of this trait in the Gyr breed, since this measure showed a medium heritability and a genetic correlation with 305-day milk yield close to zero. In addition, this measure is more adequate at the time of peak lactation, which occurs between days 25 and 30 after calving in this breed.  相似文献   

19.
The progenies of international bulls in diverse climatic conditions and management levels may lead to different expressions of their genetic potential resulting in a re-ranking of these bulls. Therefore, evaluate the presence of genotype by environment interaction (G × E) within and across countries is important to guide the decision-making on alternative selection strategies. Thus, a two-step reaction norm (RN) approach was used to investigate the presence of G × E in Portuguese and Brazilian Holstein cattle. In step 1, we performed a within-country genetic evaluation using an autoregressive model to obtain precorrected phenotypes and environmental gradients (herd test-day solutions, HTD levels). In step 2, the precorrected phenotypes were considered as two distinct traits in a bi-trait RN model to estimate variance components across HTD levels, genetic correlation between HTD levels in Portugal and Brazil, and RN of the estimated breeding values. Additionally, the genetic correlation between countries using a bi-trait random regression (RR) sire model was obtained. In step 1, genetic additive variance for milk yield (MY) in Portugal was 14.1% higher than in Brazil. For somatic cell score (SCS), the genetic additive variance in Portugal was 12.7% lower than in Brazil. Although similar heritability estimates for SCS were observed in both countries, MY heritabilities were 0.31 for Portugal and 0.23 for Brazil. Genetic correlations (SD) between both countries obtained using RR sire model were 0.78 (0.051) for MY and 0.75 (0.062) for SCS. In step 2, MY genetic correlations among HTD levels within countries were higher than 0.94 for Portugal and 0.98 for Brazil. Somatic cell score genetic correlations among HTD levels ranged from 0.70 to 0.99 for Portugal and from 0.84 to 0.99 for Brazil. The average (SD) of genetic correlation estimates between Portuguese and Brazilian HTD levels were 0.74 (0.009) for MY and 0.57 (0.060) for SCS. These results suggest the presence of G × E for MY and SCS of Holstein cattle between both countries. Although there was no indication of G × E between Brazilian herd environments, the low genetic correlation for SCS indicates potential re-ranking of bulls between extreme environmental gradient in Portugal. Overall, the results of this study evidence the importance of national and international genetic evaluation systems to assist dairy farmers in the selection of the best genotypes to obtain the expected returns from investments in imported semen and to realize genetic progress in dairy populations under local environmental conditions.  相似文献   

20.
The transition between two lactations remains one of the most critical periods during the productive life of dairy cows. In this study, we aimed to develop a model that predicts the milk yield of dairy cows from test day milk yield data collected in the previous lactation. In the past, data routinely collected in the context of herd improvement programmes on dairy farms have been used to provide insights in the health status of animals or for genetic evaluations. Typically, only data from the current lactation is used, comparing expected (i.e., unperturbed) with realised milk yields. This approach cannot be used to monitor the transition period due to the lack of unperturbed milk yields at the start of a lactation. For multiparous cows, an opportunity lies in the use of data from the previous lactation to predict the expected production of the next one. We developed a methodology to predict the first test day milk yield after calving using information from the previous lactation. To this end, three random forest models (nextMILKFULL, nextMILKPH, and nextMILKP) were trained with three different feature sets to forecast the milk yield on the first test day of the next lactation. To evaluate the added value of using a machine-learning approach against simple models based on contemporary animals or production in the previous lactation, we compared the nextMILK models with four benchmark models. The nextMILK models had an RMSE ranging from 6.08 to 6.24 kg of milk. In conclusion, the nextMILK models had a better prediction performance compared to the benchmark models. Application-wise, the proposed methodology could be part of a monitoring tool tailored towards the transition period. Future research should focus on validation of the developed methodology within such tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号