首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Martin NM  Smith KL  Bloom SR  Small CJ 《Peptides》2006,27(2):333-339
Recent studies of transgenic mice and humans have provided compelling evidence for the importance of the hypothalamic melanocortin system in the regulation of energy balance. Energy homeostasis is a balance between food intake (energy input) and energy expenditure. The melanocortin system regulates feeding via effects of the endogenous agonist, alpha-melanocyte stimulating hormone (alpha-MSH) and the endogenous antagonist agouti-related protein (AGRP) on melanocortin 3 and 4 receptors (MC3-Rs and MC4-Rs). It has been demonstrated that the melanocortin system interacts with the hypothalamo-pituitary-thyroid (HPT) axis. Thyroid hormones influence metabolism and hence energy expenditure. Therefore, an interaction between the HPT axis and the melanocortin system would allow control of both sides of the energy balance equation, by the regulation of both energy input and energy expenditure. Here we will discuss the evidence demonstrating interactions between the melanocortin system and the HPT axis.  相似文献   

2.
CNS melanocortin system involvement in the regulation of food intake   总被引:4,自引:0,他引:4  
Accumulating evidence indicates that the central melanocortin (MC) system plays a key role in the regulation of food intake and energy balance. This evidence includes findings that either spontaneous genetic mutations or targeted gene deletions that impair melanocortin signaling cause disrupted food intake and body-weight control. In addition, expression of the mRNA that encodes the endogenous agonists and antagonists for CNS melanocortin receptors is regulated by changes in energy balance and body-adiposity signals. Finally, administration of both natural and synthetic ligands to MC receptors produces changes in food intake. The data collectively suggest a critical role for melanocortin signaling in the control of energy balance.  相似文献   

3.
Genetic and pharmacological studies have shown that the central melanocortin system plays a critical role in the regulation of energy homeostasis. Animals and humans with defects in the central melanocortin system display a characteristic melanocortin obesity phenotype typified by increased adiposity, hyperphagia, metabolic defects and increased linear growth. In addition to interacting with long-term regulators of energy homeostasis such as leptin, more recent data suggest that the central melanocortin system also responds to gut-released peptides involved in mediating satiety. In this review, we discuss the interactions between these systems, with particular emphasis on cholecystokinin (CCK), ghrelin and PYY(3-36).  相似文献   

4.
Increased expression of melanin concentrating hormone (MCH), an orexigenic neuropeptide produced by neurons in the lateral hypothalamic area (LHA), is implicated in the effect of energy restriction to increase food intake. Since melanocortins inhibit Mch gene expression, this effect of energy restriction to increase Mch signaling may involve reduced hypothalamic melanocortin signaling. Consistent with this hypothesis, we detected increased hypothalamic Mch mRNA levels in agouti (Ay) mice (by 102%; P < 0.05), a model of genetic obesity resulting from impaired melanocortin signaling, compared to wild-type controls. If reduced melanocortin signaling mediates the effect of energy restriction, hypothalamic Mch gene expression in Ay mice should not be increased further by energy restriction, since melanocortin signaling is impaired in these animals regardless of nutritional state. We therefore investigated the effects of energy restriction on hypothalamic Mch gene expression in both Ay mice and in wild-type mice with diet-induced obesity (DIO). Responses in these mice were compared to those induced by administration of 17beta-estradiol (E2) at a dose previously shown to reduce food intake and Mch expression in rats. In both Ay and DIO mice, energy restriction increased hypothalamic Mch mRNA levels (P < 0.05 for each) via a mechanism that was fully blocked by E2. However, E2 did not lower levels of Mch mRNA below basal values in Ay mice, whereas it did so in DIO mice. Thus, the effect of energy restriction to increase hypothalamic Mch gene expression involves an E2-sensitive mechanism that is not altered by impaired melanocortin signaling. By comparison, impaired melanocortin signaling increases hypothalamic Mch gene expression via a mechanism that is insensitive to E2. These findings suggest that while both energy restriction and reduced melanocortin signaling stimulate hypothalamic Mch gene expression, they do so via distinct mechanisms.  相似文献   

5.
Regulation of thermogenesis by the central melanocortin system   总被引:1,自引:0,他引:1  
Fan W  Voss-Andreae A  Cao WH  Morrison SF 《Peptides》2005,26(10):1800-1813
Adaptive thermogenesis represents one of the important homeostatic mechanisms by which the body maintains appropriate levels of stored energy and its core temperature. Dysregulation of adaptive thermogenesis promotes obesity. The central melanocortin system, in particular the melanocortin 4 receptor (MC4R) signaling pathway, influences the regulation of every aspect of energy balance, including thermogenesis, and plays a critical role in energy homeostasis in both rodent and man. This review will outline our current understanding of adaptive thermogenesis, focusing on the role of the central melanocortin pathway in the regulation of thermogenesis.  相似文献   

6.
Irani BG  Haskell-Luevano C 《Peptides》2005,26(10):1788-1799
The process of energy homeostasis is a highly regulated process involving interacting signals between a variety of anorexigenic and orexigenic peptides, proteins and signaling molecules. The melanocortin system is an important component of this complex regulatory network. Involvement of the melanocortin pathway in the control of food intake and body weight regulation has been studied extensively in the past two decades. Previous studies that involve central administration of melanocortin molecules and examination of molecules that effect food intake in melanocortin knockout (KO) mice (MC3R, MC4R, POMC, AGRP and NPY) have been examined. In this review, we have summarized feeding studies that have resulted in the recognition of the melanocortin system as a major contributor to the complex neuroendocrine system regulating energy homeostasis.  相似文献   

7.
Moran TH  Gao S 《Cell metabolism》2006,3(4):233-234
Examining a potential functional role for growth hormone secretagogue receptors in the hippocampus, Diano and colleagues (Diano et al., 2006), demonstrate novel actions of the orexigenic peptide ghrelin in hippocampal synaptic architecture, LTP, and learning and memory. These data suggest functional links between metabolic signaling and higher neural function.  相似文献   

8.
Melnick I  Pronchuk N  Cowley MA  Grove KL  Colmers WF 《Neuron》2007,56(6):1103-1115
Homeostatic regulation of energy balance in rodents changes dramatically during the first 3 postnatal weeks. Neuropeptide Y (NPY) and melanocortin neurons in the arcuate nucleus, a primary energy homeostatic center in adults, do not fully innervate the paraventricular nucleus (PVN) until the third postnatal week. We have identified two classes of PVN neurons responsive to these neuropeptides, tonically firing neurosecretory (NS) and burst-firing preautonomic (PA) cells. In neonates, NPY could inhibit GABAergic inputs to nearly all NS and PA neurons, while melanocortin regulation was minimal. However, there was a dramatic, age-dependent decrease in NPY responses specifically in the PA neurons, and a 3-fold increase in melanocortin responses in NS cells. These age-dependent changes were accompanied by changes in spontaneous GABAergic currents onto these neurons. This primarily NPYergic regulation in the neonates likely promotes the positive energy balance necessary for growth, while the developmental switch correlates with maturation of homeostatic regulation of energy balance.  相似文献   

9.
Boswell T  Takeuchi S 《Peptides》2005,26(10):1733-1743
The mammalian melanocortin system has been established as a crucial regulatory component in an extraordinarily diverse number of physiological functions. In contrast, comparatively little is known about the avian melanocortin system: interest in the physiological role of alpha-MSH in birds has been limited by the fact that birds lack the intermediate lobe of the pituitary, the main source of circulating alpha-MSH in most vertebrates. Recently, however, the main avian melanocortin system genes, including POMC, AGRP, and all the melanocortin receptors, have been cloned and their physiological roles are the beginning to be elucidated. This review outlines our improved understanding of the avian melanocortin system, particularly in relation to two of the most widely studied physiological functions of the melanocortin system in mammals, the regulation of pigmentation and energy homeostasis. The data reviewed here indicate that the melanocortin system has been strongly conserved during vertebrate evolution and that alpha-MSH is produced locally in birds to act as an autocrine/paracrine hormone.  相似文献   

10.
11.
12.
Zhou L  Williams T  Lachey JL  Kishi T  Cowley MA  Heisler LK 《Peptides》2005,26(10):1728-1732
Multiple lines of research provide compelling support for an important role for central serotonergic (5-hydroxytryptamine, 5-HT) and melanocortin pathways in the regulation of food intake and body weight. In this brief review, we outline data supporting a model in which serotonergic pathways affect energy balance, in part, by converging upon central melanocortin systems to stimulate the release of the endogenous melanocortin agonist, alpha-melanocyte stimulating hormone (alpha-MSH). Further, we review the neuroanatomical mapping of a downstream target of alpha-MSH, the melanocortin 4 receptor (MC4R), in the rodent brain. We propose that downstream activation of MC4R-expressing neurons substantially contributes to serotonin's effects on energy homeostasis.  相似文献   

13.
Schuhler S  Ebling FJ 《Peptides》2006,27(2):301-309
Siberian hamsters express photoperiod-regulated seasonal cycles of body weight and food intake, providing an opportunity to study the role of melanocortin systems in regulating long-term adaptive changes in energy metabolism. These hamsters accumulate intraperitoneal fat reserves when kept in long summer photoperiods, but show a profound long-term decrease in food intake and body weight when exposed to a short winter photoperiod. Icv administration of a MC3/4-R agonist (MTII) potently suppresses food intake in hamsters in both the obese and lean state, indicating the potential for melanocortin systems to regulate energy metabolism in the hypothalamus of the Siberian hamster. Icv treatment with the melanocortin antagonist SHU9119 increases food intake in both seasonal states. Moreover, hamsters bearing neurotoxic lesions, which destroy the majority of POMC expressing neurons in the arcuate nucleus are still able to show seasonal regulation of body weight. These studies in a seasonal model substantiate the view that endogenous melanocortin systems exert a tonic inhibition of food intake in mammals. The observations that this melanocortin tone occurs to a similar extent in both an anabolic state induced by a long day photoperiod, and in a catabolic state induced by a short day photoperiod, suggests that alterations in endogenous melanocortin tone are not the primary cause of the lipolysis, weight-loss and hypophagia which characterize the establishment of the short day-induced overwintering state.  相似文献   

14.
Agouti-related protein (AGRP) is a naturally occurring antagonist of melanocortin action. It is expressed mainly in the arcuate nucleus where it plays an important role in the hypothalamic control of feeding and energy homeostasis by antagonism of central melanocortin 4 receptors in mammals. Besides in the brain, the melanocortin 4 receptor is expressed in numerous peripheral tissues in the chicken. To examine whether or not the peripheral melanocortin 4 receptor signaling could be regulated by AGRP, we cloned and localized the expression of the AGRP gene in the chicken. The chicken AGRP gene was found to encode a 154 or 165 amino acid protein, depending on the usage of two alternative translation initiation sites. The coding sequence consisted of three exons, like that of mammalian species. The C-terminal cysteine-rich region of the predicted AGRP displayed high levels of identity to mammalian counterparts (78-84%) and all 10 cysteine residues conferring functional conformation of AGRP were conserved; however, other regions showed apparently no homology, suggesting that biological activities of AGRP are located in its C-terminal region. RT-PCR analysis detected the AGRP mRNA in all tissues examined: the brain, adrenal gland, heart, liver, spleen, gonads, kidney, uropygial gland, skeletal muscle and adipose tissues. Interestingly, the skin also expressed the AGRP mRNA, where Agouti, another melanocortin receptor antagonist regulating hair pigmentation, is expressed in rodents. Most of those AGRP-expressing tissues have been demonstrated to express melanocortin 4 receptors and/or other subtypes of melanocortin receptor whose mammalian counterparts can bind AGRP. These results imply the possibility that some peripheral melanocortin systems could be regulated by the functional interaction between melanocortins and AGRP at melanocortin receptors in the chicken.  相似文献   

15.
Agouti-related protein (AGRP) is a naturally occurring antagonist of the brain melanocortin receptors (MC3R and MC4R) and is physiologically implicated as participating in feeding behavior and energy homeostasis. The human AGRP decapeptide Yc[CRFFNAFC]Y has been previously reported as binding to the human MC3 and MC4 receptors and antagonizing the MC4 receptor. We have synthesized this decapeptide and pharmacologically characterized it at the murine melanocortin receptors and found it to possess MC4R antagonist activity (pA(2) = 6.8) and, unexpectedly, MC1R agonist activity (EC(50) = 2.89 microM). This study characterizes the first AGRP-based peptide agonist at the melanocortin receptors.  相似文献   

16.
Todorovic A  Haskell-Luevano C 《Peptides》2005,26(10):2026-2036
The melanocortin system (MC) is implicated in the regulation of a variety of physiological pathways including pigmentation, steroid function, energy homeostasis, food intake, obesity, cardiovascular, sexual function, and normal gland regulation. The melanocortin system consists of five receptors identified to date (MC1-5R), melanocortin agonists derived from the pro-opiomelanocortin prohormone (POMC) and two naturally existing antagonists. Melanocortin receptor ligand structure-activity studies have been performed since the 1960s, primarily focused on the pigmentation aspect of physiology. During the 1990s, the melanocortin-4 receptor was identified to play a significant physiological role in the regulation of both food intake and obesity. Subsequently, a concerted drug design effort has focused on the design and discovery of melanocortin receptor small molecules. Herein, we present an overview of melanocortin receptor heterocyclic small molecules.  相似文献   

17.
Energy stores are held relatively constant in many mammals. The circuitry necessary for maintaining energy homeostasis should (1) sense the amount of energy stored in adipose tissue, (2) sense and integrate the multiple opposing signals regarding nutritional state, and (3) provide output regulating energy intake and expenditure to maintain energy homeostasis. We demonstrate that individual neurons within the paraventricular nucleus of the hypothalamus (PVH) are capable of detection and integration of orexigenic (neuropeptide Y [NPY]) and anorexigenic (melanocortin) signals, that NPY and melanocortins are functional antagonists of each other within the PVH in the regulation of feeding behavior, and that melanocortin administration within the PVH regulates both feeding behavior and energy expenditure. These data provide a cellular basis for the adipostat within neurons in the PVH that appear to be jointly regulated by NPY- and melanocortin-responsive neurons.  相似文献   

18.
Arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons are essential regulators of food intake, energy expenditure, and glucose homeostasis. POMC neurons integrate several key metabolic signals that include neurotransmitters and hormones. The change in activity of POMC neurons is relayed to melanocortin receptors in distinct regions of the central nervous system. This review will summarize the role of leptin and serotonin receptors in regulating the activity of POMC neurons and provide a model in which different melanocortin pathways regulate energy and glucose homeostasis.  相似文献   

19.
The melanocortin system is an important regulator of energy balance, and melanocortin 4 receptor (MC4R) deficiency is the most common monogenic cause of obesity. We investigated whether the relationship between melanocortin system activity and energy expenditure (EE) is mediated by brown adipose tissue (BAT) activity. Therefore, female APOE*3-Leiden.CETP transgenic mice were fed a Western-type diet for 4 weeks and infused intracerebroventricularly with the melanocortin 3/4 receptor (MC3/4R) antagonist SHU9119 or vehicle for 2 weeks. SHU9119 increased food intake (+30%) and body fat (+50%) and decreased EE by reduction in fat oxidation (−42%). In addition, SHU9119 impaired the uptake of VLDL-TG by BAT. In line with this, SHU9119 decreased uncoupling protein-1 levels in BAT (−60%) and induced large intracellular lipid droplets, indicative of severely disturbed BAT activity. Finally, SHU9119-treated mice pair-fed to the vehicle-treated group still exhibited these effects, indicating that MC4R inhibition impairs BAT activity independent of food intake. These effects were not specific to the APOE*3-Leiden.CETP background as SHU9119 also inhibited BAT activity in wild-type mice. We conclude that inhibition of central MC3/4R signaling impairs BAT function, which is accompanied by reduced EE, thereby promoting adiposity. We anticipate that activation of MC4R is a promising strategy to combat obesity by increasing BAT activity.  相似文献   

20.
The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5′AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII’s effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号