首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To further identify amino acid domains involved in the ligand binding specificity of alpha(IIb)beta(3), chimeras of the conserved calcium binding domains of alpha(IIb) and the alpha subunit of the fibronectin receptor alpha(5)beta(1) were constructed. Chimeras that replaced all four calcium binding domains, replaced all but the second calcium binding domain of alpha(IIb) with those of alpha(5), or deleted all four calcium binding domains were synthesized but not expressed on the cell surface. Additional chimeras exchanged subsets or all of the variant amino acids in the second calcium binding domain, a region implicated in ligand binding. Cell surface expression of each second calcium binding domain mutant complexed with beta(3) was observed. Each second calcium binding domain mutant was able to 1) bind to immobilized fibrinogen, 2) form fibrinogen-dependent aggregates after treatment with dithiothreitol, and 3) bind the activation-dependent antibody PAC1 after LIBS 6 treatment. Soluble fibrinogen binding studies suggested that there were only small changes in either the K(d) or B(max) of any mutant. We conclude that chimeras of alpha(IIb) containing the second calcium binding domain sequences of alpha(5) are capable of complexing with beta(3), that the complexes are expressed on the cell surface, and that mutant complexes are capable of binding both immobilized and soluble fibrinogen, suggesting that the second calcium binding domain does not determine ligand binding specificity.  相似文献   

2.
We have probed the acetylcholine receptor (AcChR) molecule with six anti-AcChR monoclonal antibodies (mAbs) whose binding to the AcChR is inhibited or blocked by alpha-bungarotoxin (alpha BgTx). mAbs bound with a maximum stoichiometry of either one mAb (387D, 247G) or two mAbs (383C, 572C, 370C, 249E) per AcChR monomer, and the extent to which they inhibited alpha BgTx binding directly correlated with their stoichiometry of binding. The effect of mAbs on the alpha BgTx and cholinergic ligand binding properties of the AcChR molecule defined three major categories of mAbs: those that block alpha BgTx and carbamylcholine (agonist) binding, but do not block d-tubocurarine (antagonist) binding (383C, 572C, 370C and 249E); mAb 387D, which blocks agonist binding and partially blocks alpha BgTx and d-tubocurarine binding; and mAb 247G, which does not affect agonist binding, blocks at most 50% of the alpha BgTx binding sites, and decreases the affinity of the high affinity component of d-tubocurarine binding (Mihovilovic, M., and Richman, D. P. (1984) J. Biol. Chem. 259, 15051-15059). Except for mAb 247G, these mAbs strongly competed with each other for binding to the AcChR. In contrast, mAb 247G blocks about 50% of the binding of all the other mAbs. The results demonstrate the ability of mAbs to stabilize different conformational states of the AcChR and to probe cholinergic epitopes of functional importance. They also indicate the nonequivalence of the two alpha-toxin binding regions of the AcChR molecule and suggest that it is possible to identify epitopes within the alpha BgTx binding region that when bound produce differential effects on the binding of the agonist (carbamylcholine) and the antagonist (d-tubocurarine).  相似文献   

3.
Histidyl-proline diketopiperazine [cyclo(His-Pro)] binding was compared in livers from male and female rats. Cyclo(His-Pro) binding of female rat liver was very much lower than that of male rat liver. Scatchard analysis showed that the sex difference in cyclo(His-Pro) binding was due to different binding capacity. Cyclo(His-Pro) binding of castrated male rat liver was significantly decreased. Testosterone replacement raised the binding to the control level, and an excess of testosterone increased the specific binding beyond the control level. The testosterone-induced changes in cyclo(His-Pro) binding were also due to variation in the binding capacity. These findings indicate that testosterone is an important factor in the regulation of cyclo(His-Pro) binding in the rat liver.  相似文献   

4.
Lipophilic ions are widely used as probes for measuring membrane potentials. Since binding of the probes to the membrane interferes with the accurate estimation of the membrane potential, it is necessary to clarify the characteristics of probe binding to membranes. The present paper deals with the binding of lipophilic cations to liposomes. The results can be summarized as follows: (1) The binding of triphenylmethylphosphonium, its homologues and tetraphenylphosphonium to liposomes of dipalmitoylphosphatidylcholine followed the Langmuir adsorption isotherm. (2) Spin-labeled lipophilic cations were synthesized and the binding to liposomes of egg phosphatidylcholine was examined. The binding also followed the Langmuir adsorption isotherm. The dissociation constant (the concentration giving half-maximal binding), K, was independent of the temperature, indicating that the binding is entropy-driven. (3) The binding was influenced by the fluidity of the membrane. Except in the case of triphenylmethylphosphonium (TPMP+), K and A (maximum amounts of binding) increased above the transition temperature. In other words, above the phase transition temperature the binding affinity is decreased, while maximum amounts of binding are increased for all phosphoniums used except TPMP+.  相似文献   

5.
Ca(2+) binds to calmodulin (CaM) and triggers the interaction of CaM with its target proteins; CaM binding proteins (CaMBPs) can also regulate the metal binding to CaM. In the present paper, La(3+) binding to CaM was studied in the presence of the CaM binding peptides, Mastoparan (Mas) and Mas X, using ultrafiltration and titration of fluorescence. Ca(2+) binding was used as an analog to understand La(3+) binding in intact CaM and isolated N/C-terminal CaM domain of metal-CaM binary system and metal-CaM-CaMBPs ternary system. Mas/Mas X increased binding affinity of La(3+) to CaM by 0.5 approximately 3 orders magnitude. The metal ions binding affinity to the C-terminal or the N-terminal CaM domain suggested that in the first phase of binding process both Ca(2+) and La(3+) bind to C-terminal of CaM in the presence of Mas/Mas X. In the presence of CaM binding peptides, La(3+) binding preference was substantially altered from the metal-CaM binary system where La(3+) slightly preferred binding to the N-terminal sites of CaM. Our results will be helpful in understanding La(3+) interactions with CaM in the biological systems.  相似文献   

6.
The kinetics of neural cell adhesion molecule (NCAM) binding to heparin were studied in a heparin-Sepharose-based solid-phase binding assay. The observed binding is time dependent and saturable. A binding constant of 5.2 +/- 1.4 X 10(-8) M is observed for binding of newborn rat NCAM to heparin. This is approximately 25 times lower than the binding constant determined for newborn rat NCAM homophilic binding. Both Scatchard and Hill plot analyses suggest the presence of only one binding site. Fab' fragments of antibodies to rat NCAM significantly inhibit binding, a result indicating that a specific site on NCAM is involved in binding to heparin. The binding is inhibited by heparin (IC50, approximately 5 micrograms/ml), whereas chondroitin sulfate is a less potent inhibitor (IC50, approximately 15 micrograms/ml).  相似文献   

7.
Because hypersecretion of gallbladder (GB) mucus occurs in gallstone formation and because binding of Ca(2+) to biliary lipids only accounts for 50% of the total Ca(2+) in GB bile, we investigated the binding of Ca(2+) to human biliary mucin. Biliary mucin was purified from GB bile and binding to Ca(2+) studied. Scatchard plot analysis suggested two binding sites. Removal of sialic acid by neuraminidase resulted in 10% reduction of Ca(2+) binding, whereas, sulfatase treatment reduced Ca(2+) binding by 30%. Using a hypotonic NaCl solution, Ca(2+) binding to mucin increased curvilinearly with mucin concentration. However, binding decreased with increasing ionic strength of the NaCl solution. We conclude that binding of Ca(2+) to mucin is effected mainly through sulfate. Binding to Ca(2+) can be displaced by Na(+). Ca(2+) binding to mucins is enhanced in the setting of low Na(+) concentrations. This phenomenon has pathophysiologic implications for the formation of thick mucus in cystic fibrosis epithelia.  相似文献   

8.
9.
10.
In frozen-thawed repeatedly washed rat cortical synaptic membranes, Ca2+ (1-5 mM) decreased the binding of [3H]muscimol whereas it increased the binding of [3H]gamma-aminobutyric acid (GABA). However, the binding of [3H]GABA was decreased by the same extent as the binding of [3H]muscimol when the membranes were incubated with baclofen (a selective ligand for the GABAB binding site) and Ca2+. Scatchard analysis of [3H]muscimol binding revealed that Ca2+ reduced the density of GABA binding sites without affecting the dissociation constant. Ca2+ was more potent than Ba2+, Mg2+ was ineffective, and the Ca2+ antagonist La3+ stimulated [3H]muscimol binding. The inhibition of [3H]muscimol binding by Ca2+ was not influenced by calmodulin (50 micrograms/ml), trifluoperazine (10(-5) M), verapamil (10(-6) M), quinacrine (10(-4) M), cordycepin (0.1 mM), leupeptin (20 microM), or soybean trypsin inhibitor (0.1 mg/ml). Moreover, the effect of Ca2+ was additive to that of GABA-modulin. These results indicate that Ca2+ decreases the number of GABAA binding sites while unveiling GABAB binding sites.  相似文献   

11.
The binding of the Fab fragment of monoclonal antibody NC10 to influenza virus N9 neuraminidase, isolated from tern and whale, was measured using an optical biosensor. Both neuraminidases, homotetramers of 190 kDa, were immobilized to avoid multivalent binding, and the binding of the monovalent NC10 Fab to immobilized neuraminidase was analyzed using the 1:1 Langmuir binding model. A contribution of mass transport to the kinetic constants was demonstrated at higher surface densities and low flow rates, and was minimized at low ligand densities and relatively high flow rates (up to 100 microl/min). Application of a global fitting algorithm to a 1:1 binding model incorporating a correction term for mass transport indicated that mass transport was minimized under appropriate experimental conditions; analysis of binding data with a mass transport component, using this model, yielded kinetic constants similar to those obtained with the 1:1 Langmuir binding model applied to binding data where mass transport had been minimized experimentally. The binding constant for binding of NC10 Fab to N9 neuraminidase from tern influenza virus (K(A) = 6.3 +/- 1.3 x 10(7) M(-1)) was about 15-fold higher than that for the NC10 Fab binding to N9 neuraminidase from whale influenza virus (K(A) = 4.3 +/- 0.7 x 10(6) M(-1)). This difference in binding affinity was mainly attributable to a 12-fold faster dissociation rate constant of the whale neuraminidase-NC10 Fab complex and may be due to either (i) the long-range structural effects caused by mutation of two residues distant from the binding epitope or (ii) differences in carbohydrate residues, attached to Asn(200), which form part of the binding epitope on both neuraminidases to which NC10 Fab binds.  相似文献   

12.
Implicit within the concept of membrane-buffer partition coefficients of solutes is a nonspecific solvation mechanism of solute binding. However, (2)H NMR studies of the binding of (2)H(6)-ethanol and [1-(2)H(2)] n-hexanol to phosphatidylcholine vesicles have been interpreted as evidence for two distinct alcohol binding modes. One binding mode was reported to be at the membrane surface. The second mode was reported to be within the bilayer interior. An examination of the (2)H NMR binding studies, together with direct radiolabel binding assays, shows that other interpretations of the data are more plausible. The results are entirely consistent with partitioning (nonspecific binding) as the sole mode of alcohol binding to liposomes, in accord with our previous thermodynamic interpretation of alcohol action in phosphatidylcholine liposomes.  相似文献   

13.
In vitro platelet glycoprotein Ib (GPIb) binding of the human von Willebrand factor (VWF) increases markedly by exogenous modulators such as ristocetin or botrocetin, and the binding does not occur in normal circulation. GPIb binding sites have been assigned in the VWF A1 domain, which consists of a disulfide loop Cys1272(509)-Cys1458(695) where amino acid residues are numbered from the starting methionine as +1. The previous numbering from the N-terminal Ser of the mature processed VWF is indicated in parentheses. In contrast, several gain-of-function mutations have been found in two regions comprised of the disulfide loop and its N- and C-terminal flanking regions. In this study, Cys1222(459)-Tyr1271(508), Gln1238(475)-Tyr1271(508), Glu1260(497)-Tyr1271(508), and Asp1459(696)-Asp1472(709) were sequentially deleted of full-length multimeric recombinant VWF. Deletions at either side resulted in normal GPIb binding, indicating that the flanking regions are not GPIb binding sites. However, the addition of a mutation at Arg1308(545) on each deletion mutant resulted in spontaneous GPIb binding without requiring modulators, suggesting that both regions are important for the inhibition of GPIb binding. Spontaneous binding was completely inhibited by monoclonal antibodies that recognize the GPIb binding sites. Interestingly, mutant proteins with N-terminal but not C-terminal deletions lost binding to monoclonal antibodies B328, B710, and 23C7, which selectively inhibit ristocetin-induced GPI binding. Their epitopes were found at His1268(505) or Asp1269(506). The crystallographic structure of the A1 domain suggests that GPIb binding is influenced by the molecular interface between the two regions and that the antibody binding to the interface inhibits binding.  相似文献   

14.
1. Two low molecular weight (approximately 14,000 Da) proteins exhibiting lipid binding activity were purified from liver cytosol and identified as non-specific lipid binding protein (ns-LTP) and fatty acid binding protein (L-FABP). 2. Ligand binding assays indicated that ns-LTP exhibited greater binding activity for cholesterol and little binding of fatty acids. Conversely, L-FABP had higher relative binding activity for fatty acids but did not bind cholesterol. 3. Amino acid composition and pI data supported the identification of the chicken liver lipid binding proteins as L-FABP and ns-LTP. 4. Polyclonal antisera was prepared against each of the liver lipid binding proteins and monospecificity verified using Western blot analysis.  相似文献   

15.
D E Graves  T R Krugh 《Biochemistry》1983,22(16):3941-3947
Phase partition techniques have been used to measure the binding of the antitumor drugs adriamycin (NSC-123127) and daunorubicin (NSC-82151) to various DNAs. These methods provide reliable equilibrium binding data at the low levels of drug binding that may be expected in vivo. Both adriamycin and daunorubicin exhibit positive cooperativity (and/or allosterism) in their equilibrium binding to DNA as indicated by the positive slope in the initial region of the binding isotherms (Scatchard plots) under conditions simulating physiological ionic strengths. The cooperative binding (i.e., the appearance of initial positive curvature in the binding isotherms) is dependent upon the ionic strength, which suggests a role for DNA flexibility in the cooperative binding process. An analysis of the slope of the initial portion of the binding isotherms for the interaction of adriamycin with synthetic deoxypolynucleotides shows that the degree of cooperative binding decreases in the order poly(dGdT) X poly(dAdC) greater than or equal to poly(dAdT) X poly(dAdT) greater than poly(dGdC) X poly(dGdC). Marky and Breslauer [Marky, L.A., & Breslauer, K. J. (1982) Biopolymers 21, 2185-2194] found that the average base stacking enthalpies of these synthetic poly-nucleotides were in the same order, which also suggests that the properties of the DNA influence the cooperative binding (and/or allosteric effects). Adriamycin binds with a higher degree of cooperativity than daunorubicin (0.1 M NaCl); although this correlates with the effectiveness of the drugs as antitumor agents, the exact relationship between the observation of cooperative binding and pharmacological activity is yet to be determined.  相似文献   

16.
Thermodynamics of binding of divalent metal ions including Ca(2+) , Mg(2+) , Ba(2+) , and Cd(2+) to Ca-free horseradish peroxidase (HRP) enzyme was investigated using UV/VIS spectrophotometry and molecular-mechanic (MM) calculations. According to the obtained binding and thermodynamic parameters, trend of the relative binding affinities of these divalent metal cations was found to be: Ca(2+) >Cd(2+) >Mg(2+) >Ba(2+) . Binding analysis based on Scatchard and Hill models showed positive cooperativity effect between the two distal and proximal binding sites. Furthermore, kinetics of binding and reconstitution process was examined (using relaxation-time method) for binding of Ca(2+) (as the typical metal ion) to Ca-free HRP, which was found a second-order type having a two-step mechanism involving fast formation of Ca-free HRP/1?Ca(2+) as the kinetic intermediate in step 1. Finally, by means of MM calculations, the comparative stability energies were evaluated for binding of M(2+) metal cations to Ca-free HRP. Based on MM calculations, preferential binding of Ca(2+) ion was occurred on distal and proximal binding sites of Ca-free HRP associated with higher stability energies (E(total) ). Indeed, among the divalent metal ions, Ca(2+) with the highest binding affinity (maximum value of K(bin) and minimum value of ΔG$\rm{{_{bin}^{0}}}$), maximum value of exothermic binding enthalpy, and stability energies stabilizes the HRP structure along with an optimized catalytic activity.  相似文献   

17.
Pre-steady state nucleotide binding to the chloroplast F1-ATPase (CF1) was measured in a stopped-flow apparatus by monitoring the change of fluorescence intensity of TNP-ADP upon binding. The analysis of the time courses led to the proposal of a mechanism of nucleotide binding with the following characteristics. (a) It involves three sites binding nucleotides in a concerted manner. (b) Each binding site is able to undergo a conformational change from a loose binding state into a state refraining from any direct release of the bound nucleotide into the medium. Only the reverse reaction via the loose binding state enables release out of the tight binding state. (c) Due to very strong negative cooperativity, a maximum of two of the three sites can be found in the state of tight binding. (d) Cooperativity between the three sites leads to a slower nucleotide binding of the second nucleotide compared to the first nucleotide. Furthermore, the conformational change from the loose binding state to the tight binding state is slowed down if one of the other sites already is in the tight binding state. Three-sites mechanisms in which rotation leads to an exchange of the properties of the binding sites failed to simulate the observed time courses of nucleotide binding. However, as the experimental set up was designed to prevent catalysis taking place, our results entirely agree with the current finding that rotation requires catalytic turnover of the enzyme.  相似文献   

18.
Poland D 《Biopolymers》2001,58(5):477-490
We illustrate a new method for the determination of the complete binding polynomial for nucleic acids based on experimental titration data with respect to ligand concentration. From the binding polynomial, one can then calculate the distribution function for the number of ligands bound at any ligand concentration. The method is based on the use of a finite set of moments of the binding distribution function, which are obtained from the titration curve. Using the maximum-entropy method, the moments are then used to construct good approximations to the binding distribution function. Given the distribution functions at different ligand concentrations, one can calculate all of the coefficients in the binding polynomial no matter how many binding sites a molecule has. Knowledge of the complete binding polynomial in turn yields the thermodynamics of binding. This method gives all of the information that can be obtained from binding isotherms without the assumption of any specific molecular model for the nature of the binding. Examples are given for the binding of Mn(2+) and Mg(2+) to t-RNA and for the binding of Mg(2+) and I(6) to poly-C using literature data.  相似文献   

19.
Low- and high-affinity binding sites for cyclic GMP were found to be associated with the cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from human tonsillar lymphocytes, but neither of them was identical with the cyclic AMP binding site. The enzyme activated by cyclic GMP phosphorylated the same site of calf thymus H2b histone as the cyclic AMP activated enzyme; however, more complex kinetics of activation were found with cyclic GMP. Two classes of cyclic GMP binding site were demonstrated by kinetic analysis of cyclic [3H]GMP binding in the enzyme preparations eluted by 0.1 M potassium phosphate (pH 7.0) from DEAE cellulose. The high-affinity cyclic GMP binding site (Kd about 4 . 10(-8) M) belonged to some complex form of the protein kinase, as evidenced by the mutual inhibition of cyclic AMP binding and high affinity cyclic GMP binding. However, the high-affinity cyclic GMP binding site disappeared on Sephadex G-100 gel chromatography of the enzyme preparation, whereas the cyclic AMP binding activity was recovered quantitively as separate fractions. The low-affinity cyclic GMP binding site (Kd 2--5 . 10(-6) M) was demonstrated by the inhibitory effect of 10(-5) M cyclic GMP on cyclic AMP binding in each cyclic AMP binding fraction obtained by gel chromatography. However, cyclic AMP did not inhibit the binding of cyclic GMP to the low-affinity binding site.  相似文献   

20.
Binding of spermidine to transfer ribonucleic acid   总被引:1,自引:0,他引:1  
M E McMahon  V A Erdmann 《Biochemistry》1982,21(21):5280-5288
The binding of spermidine to yeast tRNAPhe and Escherichia coli tRNAGlu2 at low and high ionic strength was studied by equilibrium dialysis. Once corrected for the expected Donnan effect, the binding at low ionic strength obeys the simple relationship of equivalent binding sites, and cooperative binding of spermidine to tRNA could not be detected. At low ionic strength (0.013 M Na+ ion), tRNAPhe (yeast) has 13.9 +/- 2.3 strong spermidine binding sites per molecule with Kd = 1.39 X 10(-6) M and a few weak spermidine binding sites which were inaccessible to experimentation; tRNAGlu2 (E. coli) has 14.8 +/- 1.6 strong spermidine binding sites and 4.0 +/- 0.1 weak spermidine binding sites with Kd = 1.4 X 10(-6) M and Kd = 1.23 X 10(-4) M, respectively. At high ionic strength (0.12 M monovalent cation) and 0.01 M Mg2+, tRNAPhe (yeast) has approximately 13 strong spermidine binding sites with an apparent Kd = 3.4 X 10(-3) M while the dimeric complex tRNAPhe X tRNAGlu2 has 10.4 +/- 1.2 strong spermidine binding sites per monomer with an apparent Kd = 2.0 X 10(-3) M. In the presence of increasing Na+ ion or K+ ion concentration, spermidine binding data do not fit a model for competitive binding to tRNA by monovalent cations. Rather, analysis of binding data by the Debye-Hückel approximation results in a good fit of experimental data, indicating that monovalent cations form a counterion atmosphere about tRNA, thus decreasing electrostatic interactions. On the basis of equilibrium binding analyses, it is proposed that the binding of spermidine to tRNA occurs predominantly by electrostatic forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号