首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Highlights? External signals regulate 3′ end mRNA processing through p38 MAPK activation ? The mechanism is controlled by a competitive mRNP formation in the 3′UTR ? The mechanism is activated by acute phase stress and inflammation ? The prototypic thrombin links the mechanism to blood coagulation and tumor spread  相似文献   

3.
Determination of 3' end processing in retroelements   总被引:3,自引:0,他引:3  
  相似文献   

4.
We used nuclear extracts from Drosophila Kc cells to characterize 3' end processing of Drosophila histone pre-mRNAs. Drosophila SLBP plays a critical role in recruiting the U 7 snRNP to the pre-mRNA and is essential for processing all five Drosophila histone pre-mRNAs. The Drosophila processing machinery strongly prefers cleavage after a fourth nucleotide following the stem-loop and favors an adenosine over pyrimidines in this position. Increasing the distance between the stem-loop and the HDE does not result in a corresponding shift of the cleavage site, suggesting that in Drosophila processing the U 7 snRNP does not function as a molecular ruler. Instead, SLBP directs the cleavage site close to the stem-loop. The upstream cleavage product generated in Drosophila nuclear extracts contains a 3' OH, and the downstream cleavage product is degraded by a nuclease dependent on the U 7 snRNP, suggesting that the cleavage factor has been conserved between Drosophila and mammalian processing. A 2'O-methyl oligonucleotide complementary to the first 17 nt of the Drosophila U 7 snRNA was not able to deplete the U 7 snRNP from Drosophila nuclear extracts, suggesting that the 5' end of the Drosophila U 7 snRNA is inaccessible. This oligonucleotide selectively inhibited processing of only two Drosophila pre-mRNAs and had no effect on processing of the other three pre-mRNAs. Together, these studies demonstrate that although Drosophila and mammalian histone pre-mRNA processing share common features, there are also significant differences, likely reflecting divergence in the mechanism of 3' end processing between vertebrates and invertebrates.  相似文献   

5.
6.
The replication-dependent histone mRNAs in metazoa are not polyadenylated, in contrast to the bulk of mRNA. Instead, they contain an RNA stem-loop (SL) structure close to the 3' end of the mature RNA, and this 3' end is generated by cleavage using a machinery involving the U7 snRNP and protein factors such as the stem-loop binding protein (SLBP). This machinery of 3' end processing is related to that of polyadenylation as protein components are shared between the systems. It is commonly believed that histone 3' end processing is restricted to metazoa and green algae. In contrast, polyadenylation is ubiquitous in Eukarya. However, using computational approaches, we have now identified components of histone 3' end processing in a number of protozoa. Thus, the histone mRNA stem-loop structure as well as the SLBP protein are present in many different protozoa, including Dictyostelium, alveolates, Trypanosoma, and Trichomonas. These results show that the histone 3' end processing machinery is more ancient than previously anticipated and can be traced to the root of the eukaryotic phylogenetic tree. We also identified histone mRNAs from both metazoa and protozoa that are polyadenylated but also contain the signals characteristic of histone 3' end processing. These results provide further evidence that some histone genes are regulated at the level of 3' end processing to produce either polyadenylated RNAs or RNAs with the 3' end characteristic of replication-dependent histone mRNAs.  相似文献   

7.
Synthetic pre-mRNAs containing the processing signals encoded by Drosophila melanogaster histone genes undergo efficient and faithful endonucleolytic cleavage in nuclear extracts prepared from Drosophila cultured cells and 0- to 13-h-old embryos. Biochemical requirements for the in vitro cleavage are similar to those previously described for the 3' end processing of mammalian histone pre-mRNAs. Drosophila 3' end processing does not require ATP and occurs in the presence of EDTA. However, in contrast to mammalian processing, Drosophila processing generates the final product ending four nucleotides after the stem-loop. Cleavage of the Drosophila substrates is abolished by depleting the extract of the Drosophila stem-loop binding protein (dSLBP), indicating that both dSLBP and the stem-loop structure in histone pre-mRNA are essential components of the processing machinery. Recombinant dSLBP expressed in insect cells by using the baculovirus system efficiently complements the depleted extract. Only the RNA-binding domain plus the 17 amino acids at the C terminus of dSLBP are required for processing. The full-length dSLBP expressed in insect cells is quantitatively phosphorylated on four residues in the C-terminal region. Dephosphorylation of the recombinant dSLBP reduces processing activity. Human and Drosophila SLBPs are not interchangeable and strongly inhibit processing in the heterologous extracts. The RNA-binding domain of the dSLBP does not substitute for the RNA-binding domain of the human SLBP in histone pre-mRNA processing in mammalian extracts. In addition to the stem-loop structure and dSLBP, 3' processing in Drosophila nuclear extracts depends on the presence of a short stretch of purines located ca. 20 nucleotides downstream from the stem, and an Sm-reactive factor, most likely the Drosophila counterpart of vertebrate U7 snRNP.  相似文献   

8.
He X  Moore C 《Molecular cell》2005,19(5):619-629
Recent studies have found that the phosphatase Glc7 associates with the yeast cleavage/polyadenylation factor (CPF), but the role of Glc7 in 3' end processing has not been investigated. Here, we report that depletion of Glc7 causes shortened poly(A) tails in vivo and accumulation of phosphorylated Pta1, a CPF subunit. Removal of Glc7 also gives extract defective for poly(A) addition but normal for cleavage at the poly(A) site. Polyadenylation is rescued by addition of Glc7 or Pta1, but not by phosphorylated Pta1. Moreover, Ypi1, a Glc7-specific inhibitor, or the Cka1 kinase blocks poly(A) addition in wild-type (wt) extract. Pta1 interacts physically and genetically with Glc7, suggesting that Pta1 may also regulate Glc7 or recruit it to CPF. A weakened association of Fip1 with phosphorylated CPF may explain the specific effect on polyadenylation. These results support a model in which poly(A) synthesis is controlled by cycles of phosphorylation and dephosphorylation that require the action of Glc7.  相似文献   

9.
10.
11.
snRNP mediators of 3' end processing: functional fossils?   总被引:10,自引:0,他引:10  
  相似文献   

12.
13.
14.
The Drosophila larval tracheal system consists of a highly branched tubular organ that becomes interconnected by migration-fusion events during embryonic development. Fusion cells at the tip of each branch guide migration, adhere, and then undergo extensive remodeling as the tracheal lumen extends between the two branches. The Drosophila dead end gene is expressed in fusion cells, and encodes an Arf-like3 GTPase. Analyses of dead end RNAi and mutant embryos reveal that the lumen fails to connect between the two branches. Expression of a constitutively active form of Dead end in S2 cells reveals that it influences the state of actin polymerization, and is present on particles that traffic along actin/microtubule-containing processes. Imaging experiments in vivo reveal that Dead end-containing vesicles are associated with recycling endosomes and the exocyst, and control exocyst localization in fusion cells. These results indicate that the Dead end GTPase plays an important role in trafficking membrane components involved in tracheal fusion cell morphogenesis and lumenal development.  相似文献   

15.
D H Price  C S Parker 《Cell》1984,38(2):423-429
  相似文献   

16.
17.
18.
Transcription termination and 3' processing: the end is in site!   总被引:19,自引:0,他引:19  
M L Birnstiel  M Busslinger  K Strub 《Cell》1985,41(2):349-359
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号