首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both terminators and promoters regulate gene expression. In Saccharomyces cerevisiae, the TPS1 terminator (TPS1t), coupled to a gene encoding a fluorescent protein, produced more transgenic mRNA and protein than did similar constructs containing other terminators, such as CYC1t, TDH3t, and PGK1t. This suggests that TPS1t can be used as a general terminator in the development of metabolically engineered yeast in high-yield systems.  相似文献   

2.
3.
4.
The complex terminator region of the Escherichia coli rrnB gene was analyzed by subcloning the terminators T1 and T2 and the inverted repeats IR1 and IR2 individually, or in various combinations, in a normal or inverted orientation into a terminator probe vector. The in vivo terminating efficiency was assayed by measuring the galactokinase activity encoded by the downstream galK gene. Termination efficiencies of all fragments were compared in two constructs, differing in the presence or absence of readthrough translation over the investigated terminator signal. The following main conclusions were drawn. (a) T1 and T2 are both efficient terminators in isolated forms. (b) IR1 and IR2 have some terminating effect (much lower than the proper terminators), especially in the inverted orientation. Their presence modifies the effect of the proper terminators in a quite unpredictable way, especially if these regions are translated. (c) The terminators are not symmetrical; in the inverted orientation T1 is practically inactive and T2 termination is reduced. (d) Translation radically decreases the efficiency of the terminators. (e) Several sequences in the rrnB gene, upstream of the terminator region (one in the 16S RNA and one in the 5S RNA coding region), are very efficient in vivo terminators in the inverted orientation.  相似文献   

5.
6.
7.
8.
9.
Transcriptional terminators in the caa-cal operon and cai gene   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

10.
A functional DNA replication terminator of Bacillus subtilis contains two overlapping binding sites, A and B, for the replication terminator protein (RTP). A degenerate 17-mer oligonucleotide corresponding to the consensus B site has been used to detect four new terminators in the B. subtilis chromosome, in addition to the previously identified and closely spaced IRI and IRII. All the new terminators lie in the terminus region of the chromosome, on both sides of IRI and IRII, with their positions spanning <1O% of its length. Their DNA sequences are characterized by clearly identifiable A- and B-binding sites. They bind RTP in a manner indistinguishable from IRI, although precise affinities have not been compared. Each new terminator is functional in causing fork arrest when present in a plasmid replicating in B. subtilis . Three of the four were tested for polarity in fork-arrest activity and exhibited the polarity expected. The total of six terminators now identified in B. subtilis have been named TerI-TerVI . TerI and TerII correspond to the previously identified IRI and IRII, respectively. The chromosomal orientations of all but one of the terminators ( TerIV ) have been established and they conform to an arrangement similar to that in Escherichia coli in which two opposed groups of polar terminators provide a replication-fork trap ensuring that the approaching forks meet within a restricted region of the chromosome. The development of a strikingly similar arrangement of terminators in the two organisms, despite the lack of any detectable similarity in their respective DNA terminators and terminator proteins, emphasizes the importance of the replication-fork trap in each case.  相似文献   

11.
12.
Two dimers of the replication terminator protein (RTP) of Bacillus subtilis bind to a chromosomal DNA terminator site to effect polar replication fork arrest. Cooperative binding of the dimers to overlapping half-sites within the terminator is essential for arrest. It was suggested previously that polarity of fork arrest is the result of the RTP dimer at the blocking (proximal) side within the complex binding very tightly and the permissive-side RTP dimer binding relatively weakly. In order to investigate this "differential binding affinity" model, we have constructed a series of mutant terminators that contain half-sites of widely different RTP binding affinities in various combinations. Although there appeared to be a correlation between binding affinity at the proximal half-site and fork arrest efficiency in vivo for some terminators, several deviated significantly from this correlation. Some terminators exhibited greatly reduced binding cooperativity (and therefore have reduced affinity at each half-site) but were highly efficient in fork arrest, whereas one terminator had normal affinity over the proximal half-site, yet had low fork arrest efficiency. The results show clearly that there is no direct correlation between the RTP binding affinity (either within the full complex or at the proximal half-site within the full complex) and the efficiency of replication fork arrest in vivo. Thus, the differential binding affinity over the proximal and distal half-sites cannot be solely responsible for functional polarity of fork arrest. Furthermore, efficient fork arrest relies on features in addition to the tight binding of RTP to terminator DNA.  相似文献   

13.
14.
15.
16.
17.
18.
19.
λ噬菌体nutL序列突变对N蛋白生物功能的影响   总被引:1,自引:0,他引:1  
λ噬菌体 N 蛋白不仅是抗转录终止的正调控因子,也是在翻译水平上阻遏自身基因表达的负调控蛋白.nut R N A 位点(包括 box A 和 box B)参与了这两种生物效应.对位于左向操纵子(p L)的 nut L 序列进行了突变后,证明 nut L 缺失及 box B 第 6 位核苷酸突变使 N 丧失了正、负调控功能,提示 nut L 在 N 介导的调控反应中是必需的.nut L 序列中 box A 单碱基突变使 N 丧失了正调控功能,部分保留了负调控功能.这种负调控作用导至极性效应,使 lac Z基因转录水平明显下降.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号