首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of Dicer-substrate small interfering RNAs (DsiRNAs) has been pursued in recent years because these molecules exhibit a much more potent gene-silencing effect than 21-nucleotide (nt) siRNAs. In the present study, we designed eight different types of amino-modified DsiRNAs and a palmitic acid-conjugated DsiRNA expected to result in improved biological properties of siRNAs, including their stability against nuclease degradation, membrane permeability, and RNAi efficacy. The DsiRNAs were modified with an amine at the 5'- and/or 3'-end of the sense and/or antisense strand. Dicer enzyme cleaved most of the amino-modified DsiRNAs to lead to the release of 21-nt siRNA; some of them, however, were not or partly cleaved. All amino-modified DsiRNAs exhibited strong resistance against nuclease degradations. Among the amino-modified DsiRNAs, the DsiRNA modified with an amine restricted at the 3'-end of the sense strand showed the most enhanced gene-silencing effect and maintained its potent gene suppression after one week of cell transfection against Renilla luciferase activity. For further improvement, palmitic acid was conjugated to DsiRNA at the 3'-end of the sense strand (C16-DsiRNA) to facilitate the membrane permeability and potent gene-silencing activity. The C16-DsiRNA showed enhanced membrane permeability to HeLa cells. The C16-DsiRNA exhibited extremely high inhibition of Renilla luciferase activity.  相似文献   

2.
Zhu L  Mahato RI 《Bioconjugate chemistry》2010,21(11):2119-2127
Previously, we successfully conjugated galactosylated poly(ethylene glycol) (Gal-PEG) to oligonucleotides (ODNs) via an acid labile ester linker (Zhu et al., Bioconjugate Chem. 2008, 19, 290-8). In this study, sense strands of siRNA were conjugated to Gal-PEG and mannose 6-phosphate poly(ethylene glycol) (M6P-PEG) for targeted delivery of siRNAs to hepatocytes and hepatic stellate cells (HSCs), respectively. These siRNA conjugates were purified by ion exchange chromatography and verified by gel retardation assay. To evaluate their RNAi functions, the validated siRNA duplexes targeting firefly luciferase and transforming growth factor beta 1 (TGF-β1) mRNA were conjugated to Gal-PEG and M6P-PEG, and their gene silencing efficiencies were determined after transfection into HepG2 and HSC-T6 cells. The disulfide bond between PEG and siRNA was cleaved by dithiothreitol, leading to the release of intact siRNA. Both Gal-PEG-siRNA and M6P-PEG-siRNA conjugates could silence luciferase gene expression by about 40% without any transfection reagents, while the gene silencing effects reached more than 98% with the help of cationic liposomes at the same dose. Conjugation of TGF-β1 siRNA with Gal-PEG and M6P-PEG could silence endogenous TGF-β1 gene expression as well. In conclusion, these siRNA conjugates have the potential for targeted delivery of siRNAs to hepatocytes and hepatic stellate cells for efficient gene silencing in vivo.  相似文献   

3.
The therapeutic application of siRNA suffers from poor bioavailability caused by rapid degradation and elimination. The covalent attachment of PEG is a universal concept to increase molecular size and enhance the pharmacokinetic properties of biomacromolecules. We devised a facile approach for attachment of PEG molecules with a defined molecular weight, and successful purification of the resulting conjugates. We directly conjugated structurally defined PEG chains with twelve ethylene glycol units to the 3′-terminal hydroxyl group of both sense and antisense strands via an aminoalkyl linker. The conjugates were easily purified by HPLC and successful PEGylation and molecule integrity were confirmed by ESI-MS. The evaluation of in vitro gene knockdown of two different targets in MCF-7 breast cancer cells showed stable pharmacologic activity when combined with a standard transfection reagent. Sense strand PEGylation even increased the silencing potency of a CRCX4-siRNA which had modest activity in its wild-type form. The results indicate that PEG chains at the 3′-terminus of both strands of siRNA are well tolerated by the RNAi effector. The attachment of short, chemically defined PEG chains is a feasible approach to improve the pharmacokinetic properties of siRNA, and can be combined with other targeted and untargeted delivery vehicles.  相似文献   

4.
Polymer-drug conjugates (polymer therapeutics) are finding increasing use as novel anticancer agents. Here a series of poly(ethylene glycol) PEG-doxorubicin (Dox) conjugates were synthesized using polymers of linear or branched architecture (molecular weight 5000-20000 g/mol) and with different peptidyl linkers (GFLG, GLFG, GLG, GGRR, and RGLG). The resultant conjugates had a drug loading of 2.7-8.0 wt % Dox and contained <2.0% free drug (% total drug). All conjugates containing a GFLG linker showed approximately 30% release of Dox at 5 h irrespective of PEG molecular weight or architecture. The GLFG linker was degraded more quickly (approximately 57% Dox release at 5 h), and the other linkers more slowly (<16% release at 5 h), by lysosomal enzymes in vitro. In vitro there was no clear relationship between cytotoxicity toward B16F10 cells and the observed Dox release rate. All PEG conjugates were more than 10-fold less toxic (IC50 values > 2 microg/mL) than free Dox (IC50 value = 0.24 microg/mL). Biodistribution in mice bearing sc B16F10 tumors was assessed after administration of PEGs (5000, 10000, or 20000 g/mol) radioiodinated using the Bolton and Hunter reagent or PEG-Dox conjugates by HPLC. The 125I-labeled PEGs showed a clear relationship between Mw and blood clearance and tumor accumulation. The highest Mw PEG had the longest plasma residence time and consequently the greatest tumor targeting. The PEG-Dox conjugates showed a markedly prolonged plasma clearance and greater tumor targeting compared to free Dox, but there was no clear molecular weight-dependence on biodistribution. This was consistent with the observation that the PEG-Dox conjugates formed micelles in aqueous solution comprising 2-20 PEG-Dox molecules depending on polymer Mw and architecture. Although PEG-Dox showed greater tumor targeting than free Dox, PEG conjugation led to significantly lower anthracycline levels in heart. Preliminary experiments to assess antitumor activity against sc B16F10 in vivo showed the PEG5000linear (L)-GFLG-Dox and PEG10000branched (B)-GLFG-Dox (both 5 mg/kg Dox-equiv) to be the most active with T/C values of 146 and 143%, respectively. Free Dox did not show significant activity in this model (T/C = 121%). Dose escalation of PEG5000(L)-GFLG-Dox to 10 mg/kg Dox-equiv prolonged further animal survival (T/C = 161%). Using the Dox-sensitive model ip L1210 (where Dox displayed a T/C = 150% after single ip dose), the PEG5000(L)-GFLG-Dox displayed a maximum T/C of 141% (10 mg/kg Dox-equiv) using a once a day (x3) schedule. Further studies are warranted with PEG5000(L)-GFLG-Dox to determine its spectrum of antitumor activity and also the optimum dosing schedule before clinical testing.  相似文献   

5.
Peptides targeting the human neonatal Fc receptor (FcRn) were conjugated to poly(ethylene glycol) (PEG) polymers to study their effect on inhibition of the IgG:FcRn protein-protein interaction both in vitro and in mice. Both linear (5-40kDa) and branched (20, 40kDa) PEG aldehydes were conjugated to an amine-containing linker of a homodimeric anti-FcRn peptide using reductive alkylation chemistry. It was found that conjugation of PEG to the peptide compromised the in vitro activity, with larger and branched PEGs causing the most dramatic losses in activity. The conjugates were evaluated in transgenic mice for their ability to accelerate the catabolism of human IgG. Optimal pharmacodynamic properties were observed with PEG-peptide conjugates that contained 20-40kDa linear PEGs and a 20kDa branched PEG. The optimal PEG-peptide conjugates were more effective in vivo than the unconjugated peptide control on a mole:mole and mg/kg basis, and represent potential new longer-acting peptide therapeutics for the treatment of humorally-mediated autoimmune disease.  相似文献   

6.
New radiopharmaceuticals are possible using site-specific conjugation of small tumor binding proteins and poly(ethylene glycol) (PEG) scaffolds to provide modular multivalent, homo- or heterofunctional cancer-targeting molecules having preferred molecular size, valence, and functionality. Residence time in plasma can be optimized by modification of the size, number, and charge of the protein units. However, random PEG conjugation (PEGylation) of these small molecules via amine groups has led to variations of structural conformation and binding affinity. To optimize PEGylation, scFvs have been recombinantly produced in a vector that adds an unpaired cysteine (c) near the scFv carboxy terminus (scFv-c), thus providing a specific site for thiol conjugation. To evaluate the general applicability of this unpaired cysteine for PEGylation of scFv-c, conjugation efficiency was determined for four different scFvs and several PEG molecules having thiol reactive groups. The effect of the PEG molecular format on scFv-c PEG malignant cell binding was also addressed. ScFvs produced as scFv-c and purified by anti E-TAG affinity chromatography were conjugated using PEG molecules with maleimide (Mal) or o-pyridyl disulfide (OPSS). Conjugations were performed at pH 7.0, with 2 molar excess TCEP/scFv and PEG-(Mal) or PEG-OPSS, using 5:1 (PEG/scFv). PEG-Mal conjugation efficiency was also evaluated with 1:5 (PEG/scFv). PEGylation efficiency was determined for each reaction by quantitation of the products on SDS-PAGE. ScFv-c conjugation with unifunctional maleimide PEGs resulted in PEG conjugates incorporating 30-80% of the scFv-c, but usually above 50%. Efficiency of scFv-c conjugation to both functional groups of the bifunctional PEG-(Mal)2 varied between the PEG and scFv-c molecules studied. A maximum of 45% of scFv-c protein was conjugated as PEG- (scFv-c)2 using the smallest PEG-(Mal)2 (2 kDa). No significant increase in scFv-c conjugation was observed by the use of greater than a 5 molar excess of PEG/scFv-c. Under the same conjugation conditions, PEG as OPSS yielded less than 10% PEG-scFv-c. PEG-(scFv)2 conjugates had increased binding in ELISA using malignant cell membranes, when compared with unmodified scFv-c. PEGylated-scFv binding was comparable with unmodified scFv-c. In summary, scFv-c can be PEGylated in a site-specific manner using uni- or bivalent PEG-Mal, either linear or branched. ScFv-c was most efficiently conjugated to smaller PEG-Mal molecules, with the smallest, 2 kDa PEG-Mal, usually PEGylating 60-90% of the scFv-c. ScFv-c conjugation to form PEG-(scFv-c)2 reached greatest efficiency at 45%, and its purified form demonstrated greater binding than the corresponding scFv-c.  相似文献   

7.
Targeted delivery can potentially improve the pharmacological effects of antisense and siRNA oligonucleotides. Here, we describe a novel bioconjugation approach to the delivery of splice-shifting antisense oligonucleotides (SSOs). The SSOs are linked to albumin via reversible S-S bonds. The albumin is also conjugated with poly(ethylene glycol) (PEG) chains that terminate in an RGD ligand that selectively binds the alphavbeta3 integrin. As a test system, we utilized human melanoma cells that express the alphavbeta3 integrin and that also contain a luciferase reporter gene that can be induced by delivery of SSOs to the cell nucleus. The RGD-PEG-SSO-albumin conjugates were endocytosed by the cells in an RGD-dependent manner; using confocal fluorescence microscopy, evidence was obtained that the SSOs accumulate in the nucleus. The conjugates were able to robustly induce luciferase expression at concentrations in the 25-200 nM range. At these levels, little short-term or long-term toxicity was observed. Thus, the RGD-PEG-albumin conjugates may provide an effective tool for targeted delivery of oligonucleotides to certain cells and tissues.  相似文献   

8.
The relative difference in polymeric architectures of dendrimer and linear bis(poly(ethylene glycol)) (PEG) polymer in conjugation with paclitaxel has been described. Paclitaxel, a poorly soluble anticancer drug, was covalently conjugated with PAMAM G4 hydroxyl-terminated dendrimer and bis(PEG) polymer for the potential enhancement of drug solubility and cytotoxicity. Both conjugates were characterized by 1NMR, HPLC, and MALDI/TOF. In addition, molecular conformations of dendrimer, bis(PEG), paclitaxel, and its polymeric conjugates were studied by molecular modeling. Hydrolysis of the ester bond in the conjugate was analyzed by HPLC using esterase hydrolyzing enzyme. In vitro cytotoxicity of dendrimer, bis(PEG), paclitaxel, and polymeric conjugates containing paclitaxel was evaluated using A2780 human ovarian carcinoma cells. Cytotoxicity increased by 10-fold with PAMAM dendrimer-succinic acid-paclitaxel conjugate when compared with free nonconjugated drug. Data obtained indicate that the nanosized dendritic polymer conjugates can be used with good success as anticancer drug carriers.  相似文献   

9.
Small interfering RNAs (siRNAs) induce sequence-specific gene silencing in mammalian cells and guide mRNA degradation in the process of RNA interference (RNAi). By targeting endogenous lamin A/C mRNA in human HeLa or mouse SW3T3 cells, we investigated the positional variation of siRNA-mediated gene silencing. We find cell-type-dependent global effects and cell-type-independent positional effects. HeLa cells were about 2-fold more responsive to siRNAs than SW3T3 cells but displayed a very similar pattern of positional variation of lamin A/C silencing. In HeLa cells, 26 of 44 tested standard 21-nucleotide (nt) siRNA duplexes reduced the protein expression by at least 90%, and only 2 duplexes reduced the lamin A/C proteins to <50%. Fluorescent chromophores did not perturb gene silencing when conjugated to the 5'-end or 3'-end of the sense siRNA strand and the 5'-end of the antisense siRNA strand, but conjugation to the 3'-end of the antisense siRNA abolished gene silencing. RNase-protecting phosphorothioate and 2'-fluoropyrimidine RNA backbone modifications of siRNAs did not significantly affect silencing efficiency, although cytotoxic effects were observed when every second phosphate of an siRNA duplex was replaced by phosphorothioate. Synthetic RNA hairpin loops were subsequently evaluated for lamin A/C silencing as a function of stem length and loop composition. As long as the 5'-end of the guide strand coincided with the 5'-end of the hairpin RNA, 19-29 base pair (bp) hairpins effectively silenced lamin A/C, but when the hairpin started with the 5'-end of the sense strand, only 21-29 bp hairpins were highly active.  相似文献   

10.
A thermostable, single polypeptide chain enzyme, esterase 2 from Alicyclobacillus acidocaldarius, was covalently conjugated in a site specific manner with an oligodeoxynucleotide. The conjugate served as a reporter enzyme for electrochemical detection of DNA hybridization. Capture oligodeoxynucleotides were assembled on gold electrode via thiol-gold interaction. The esterase 2-oligodeoxynucleotide conjugates were brought to electrode surface by DNA hybridization. The p-aminophenol formed by esterase 2 catalyzed hydrolysis of p-aminophenylbutyrate was amperometrically determined. Esterase 2 reporters allows to detect approximately 1.5 x 10(-18)mol oligodeoxynucleotides/0.6 mm2 electrode, or 3 pM oligodeoxynucleotide in a volume of 0.5 microL. Chemically targeted, single site covalent attachment of esterase 2 to an oligodeoxynucleotide significantly increases the selectivity of the mismatch detection as compared to widely used, rather unspecific, streptavidin/biotin conjugated proteins. Artificial single nucleotide mismatches in a 510-nucleotide ssDNA could be reliably determined using esterase 2-oligodeoxynucleotide conjugates as a reporter.  相似文献   

11.
For therapeutic applications of small interfering RNA (siRNA), serum stability, enhanced cellular uptake, and facile endosome escape are key issues for designing carriers. In this study, green fluorescent protein (GFP) siRNA was conjugated to a six‐arm polyethylene glycol (PEG) derivative via a reducible disulfide linkage (6PEG‐siRNA). The 6PEG‐siRNA conjugate was also functionalized with a cell penetrating peptide, Hph1 to enhance its cellular uptake property (6PEG‐siRNA‐Hph1). The 6PEG‐siRNA‐Hph1 conjugate was electrostatically complexed with cationic self‐crosslinked fusogenic KALA peptide (cl‐KALA) to form multifunctional polyelectrolyte complex micelles for gene silencing. The resultant siRNA complex formulation with multiple PEG chains showed superior physical stability and resistance to enzymatic degradation. The 6PEG‐siRNA‐Hph1/cl‐KALA complexes exhibited enhanced GFP gene silencing efficiency for MDA‐MB‐435 cells in the serum containing condition. The current reducible and multifunctional polyelectrolyte complex micelles are expected to have high potential for efficient delivery of therapeutic siRNA. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
A guinea pig liver transglutaminase (G-TGase)-mediated procedure for the site-specific modification of chimeric proteins was recently reported. Here, an alternative method with advantages over the recent approach is described. This protocol utilizes a microbial transglutaminase (M-TGase) instead of the G-TGase as the catalyst. M-TGase, which has rather broad structural requirements as compared to the G-TGase, tends to catalyze an acyl transfer reaction between the gamma-carboxamide group of a intact protein-bound glutamine residue and various primary amines. To demonstrate the applicability of the M-TGase-catalyzed protein modification in a drug delivery system, we have utilized recombinant human interleukin 2 (rhIL-2) as the target protein and two synthetic alkylamine derivatives of poly(ethyleneglycol) (PEG12; MW 12 kDa) and galactose-terminated triantennary glycosides ((Gal)(3))) as the modifiers. For the M-TGase-catalyzed reaction with PEG12 and (Gal)(3), 1 mol of alkylamine was incorporated per mole of rhIL-2, respectively. Peptide mapping of (Gal)(3)-modified rhIL-2 ((Gal)(3)-rhIL-2) by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS) suggested that the Gln74 residue in rhIL-2 was site specifically modified with (Gal)(3). The PEG12-rhIL-2 and (Gal)(3)-rhIL-2 conjugates retained full bioactivity relative to the unmodified rhIL-2. In pharmacokinetic studies, PEG12-rhIL-2 was eliminated more slowly from the circulation than rhIL-2, whereas (Gal)(3)-rhIL-2 accumulated in the liver via hepatic asialoglycoprotein receptor binding. The results of this study expand the applicability of the TGase-catalyzed methodology for the preparation of protein conjugates for clinical use.  相似文献   

13.
The present studies demonstrate that the intracellular fluorochromes calcein and hydroethidine can be used for quantification of effector-target conjugates involving cloned human natural killer (NK) or interleukin-2 (IL-2) activated human lymphokine activated killer (LAK) cells by dual color flow cytometry without potential artifacts that might result from extensive modification of effector and/or target cell membranes. Cloned NK cells and LAK cells form conjugates with cultured cell lines regardless of susceptibility to lysis. The strength of the interactions in these conjugates was investigated using a variable speed vortexer. Even relatively gentle vortexing disrupted most conjugates involving fresh human peripheral blood lymphocytes (PBL) but only about one-fourth of conjugates between K-562 cells and human PBL that had been cultured with or without IL-2 by this treatment. The rate of conjugate formation for LAK cells was determined to be about 3 times faster than for cloned NK cells, and both rates are considerably faster than the reported rate of formation of cytotoxic T lymphocyte (CTL) target conjugates. The differences in the rate of conjugate formation are apparently not related to target cell specificity, since LAK cells form conjugates with susceptible and resistant cell lines at comparable rates. When effector-target conjugates are incubated at 37 degrees C in the absence of calcium--thereby precluding lysis--the percentage of conjugated LAK or cloned NK cells decreases logarithmically with time. These results suggest that an initial equilibrium between free and conjugated lymphocytes gradually shifts in favor of unconjugated cells.  相似文献   

14.
 Methoxypoly(ethylene glycol) (PEG) modification of Escherichia coliβ-glucuronidase (βG) was examined as a method to improve the stability and pharmacokinetics of antibody-βG conjugates for the targeted activation of glucuronide prodrugs at tumor cells. Introduction of 3 PEG molecules did not affect βG activity whereas higher degrees of PEG modification produced progressively greater loss of enzymatic activity. The enzyme was found to be stable in serum regardless of PEG modification. PEG-modified βG was coupled via a thioether bond to mAb RH1, an IgG2a antibody that binds to the surface of AS-30D hepatoma cells, to produce conjugates with 3 (RH1-βG-3PEG), 5.2 (RH1-βG-5PEG) or 9.8 (RH1-βG-10PEG) PEG molecules per βG with retention of 75%, 45% and 40% of the combined antigen-binding and enzymatic activity of the unmodified conjugate RH1-βG. In contrast to the rapid serum clearance of RH1-βG observed in mice, the PEG-modified conjugates displayed extended serum half-lives. RH1-βG-3PEG and RH1-βG-5PEG also exhibited reduced spleen uptake and greater tumor accumulation than RH1-βG. BHAMG, the glucuronide prodrug of p-hydroxyaniline mustard (pHAM), was relatively nontoxic in vivo. Injection of 6 mg/kg or 12 mg/kg pHAM i.v. depressed white blood cell numbers by 46% and 71% whereas 80 mg/kg BHAMG reduced these levels by 22%. Although the tumor/blood ratio of RH1-βG-5PEG was adversely affected by slow clearance from serum, combined therapy of small solid hepatoma tumors with this conjugate, followed 4 and 5 days later with i.v. injections of BHAMG, cured all of seven mice with severe combined immunodeficiency. Combined treatment with a control antibody-βG conjugate and BHAMG delayed tumor growth and cured two of six mice while treatment with pHAM or BHAMG alone was ineffective. Received: 27 February 1997 / Accepted: 6 May 1997  相似文献   

15.
The utility of single-chain Fv proteins as therapeutic agents would be substantially broadened if the circulating lives of these minimal antigen-binding polypeptides were both prolonged and adjustable. Poly(ethylene glycol) (PEG) bioconjugate derivatives of the model single-chain Fv, CC49/218 sFv, were constructed using six different linker chemistries that selectively conjugate either primary amines or carboxylic acid groups. Activated PEG polymers with molecular weights of 2000, 5000, 10 000, 12 000, and 20 000 were included in the sFv bioconjugate evaluation. Additionally, the influence of PEG conjugate geometry in branched PEG strands (U-PEG) and the effect of multimeric PEG-sFv bioconjugates on circulating life and affinity were examined. Although random and extensive PEG polymer conjugations have been achievable in highly active derivatives of the prototypical PEG-enzymes, PEGylation of CC49/218 sFv required stringent adjustment of reaction conditions in order to preserve antigen-binding affinity as measured in either mucin-specific or whole cell immunoassays. Purified bioconjugates with PEG:sFv ratios of 1:1 through 2:1 were identified as promising candidates which exhibit sFv affinity (K(d)) values within 2-fold of the unmodified sFv protein. Interestingly, PEG conjugation to carboxylic acid moieties, using a PEG-hydrazide chemistry, achieved significant activity retention in bioconjugates at a higher PEG:sFv ratio (5:1) than with any of the amine-reactive activated PEG polymers. Prolonged circulating life in mice was demonstrated for each of the PEG conjugates. An increase in PEG polymer length was found to be more effective for serum half-life extension than a corresponding increase in total PEG mass. For example, CC49/218 sFv conjugated to either one strand of PEG-20000, or four strands of PEG-5000, displayed about 20- or 14-fold increased serum half-life, respectively, relative to the unmodified sFv. The demonstrated suitability of established random conjugation chemistries for PEGylation of sFv proteins, in conjunction with innovative site-specific conjugation methods, indicates that production of a panoply of sFv proteins with both engineered affinity and tailored circulating life may now be achievable.  相似文献   

16.
Covalent conjugation of poly(ethylene glycol) or "PEGylation" has proven an effective strategy to improve pharmaceutical protein efficacy by hindering recognition by proteases, inhibitors, and antibodies and by retarding renal clearance. Because it determines the strength and range of intermolecular steric forces and the hydrodynamic properties of the conjugates, the configuration of protein-conjugated PEG chains is the key factor determining how PEGylation alters protein in vivo circulation time. Mono-PEGylated proteins are typically described as having a protective PEG shroud wrapped around the protein, but recent dynamic light scattering studies suggested that conjugates adopt a dumbbell configuration, with a relatively unperturbed PEG random coil adjacent to the globular protein. We used small-angle neutron scattering (SANS) to distinguish between the dumbbell model and the shroud model for chicken-egg lysozyme and human growth hormone covalently conjugated to a single 20 kDa PEG chain. The SANS contrast variation technique was used to isolate the PEG portion of the conjugate. Scattering intensity profiles were well described by the dumbbell model and inconsistent with the shroud model.  相似文献   

17.
Small interfering RNA molecules (siRNA) hold great promise to specifically target cytoprotective factors to enhance cancer therapy. Like antisense RNA strategies, however, the use of siRNA is limited because of in vivo instability. As a first step to overcome delivery issues, a series of graft copolymers of polyethylene glycol and polyethylenimine (PEI-g-PEG) were synthesized and investigated as nontoxic carriers for delivery of siRNA targeting the signaling peptide of secretory clusterin (sCLU), a prosurvival factor that protects cells from ionizing radiation (IR) injury, as well as chemotherapeutic agents. Three copolymers with different PEG grafting densities were tested for their abilities to bind and form nanocomplexes with siRNA. A copolymer composed of 10 PEG grafts (2 kDa each) per PEI polymer (2k10 copolymer) gave the highest binding affinity to siRNA by ethidium bromide exclusion assays, and had the smallest nanocomplex size (115 +/- 13 nm diameter). In human breast cancer MCF-7 cells, 2k10-siRNA-sCLU nanocomplexes suppressed both basal as well as IR-induced sCLU protein expression, which led to an over 3-fold increase in IR-induced lethality over 2k10-siRNA scrambled controls. In summary, this study demonstrates the proof-of-principle in using nanoparticle-mediated delivery of specific siRNAs to enhance the lethality of IR exposure in vitro, opening the door for siRNA-mediated knockdown of specific cytoprotective factors, such as DNA repair, anti-apoptotic, free radical scavenging, and many other proteins.  相似文献   

18.
Radioiodinated ubiquitin was introduced into HeLa cells by erythrocyte-mediated microinjection. Subsequent electrophoretic analyses revealed that the injected ubiquitin molecules were rapidly conjugated to HeLa proteins. At equilibrium, 10% of the injected ubiquitin was conjugated to histones and 40% was distributed among conjugates of higher molecular weight. Although the remaining ubiquitin molecules appeared to be unconjugated, the free pool of ubiquitin decreased by one-third and additional conjugates were present when electrophoresis was performed at low temperature under nonreducing conditions. Molecular weights of these labile conjugates suggest that they are ubiquitin adducts in thiolester linkage to activating enzymes. Despite the fairly rapid degradation of injected ubiquitin (t1/2 approximately 10-20 h), the size distribution of ubiquitin conjugates within interphase HeLa cells remained constant for at least 24 h after injection. The intracellular locations of ubiquitin and ubiquitin conjugates were determined by autoradiography, by differential sedimentation of subcellular fractions in sucrose, and by extraction of injected cells with buffer containing Triton X-100. Free ubiquitin was found mostly in the cytosolic or Triton X-100-soluble fractions. As expected, histone conjugates were located predominately in the nuclear fraction and exclusively in the Triton X-100-insoluble fraction. Although high molecular weight conjugates were enriched in the Triton X-100-insoluble fraction, their size distribution was similar to that of soluble conjugates. When injected HeLa cells were exposed to cycloheximide to inhibit protein synthesis, the size distribution of ubiquitin conjugates was similar to that found in untreated cells. Moreover, high molecular weight conjugates decreased less than 20% after inhibition of protein synthesis. These results indicate that most ubiquitin conjugates are not newly synthesized proteins which have been marked for destruction.  相似文献   

19.
A panel of four murine monoclonal antibodies apparently directed against three distinct epitopes of carcinoembryonic antigen (CEA) was conjugated via oxidized carbohydrate groups to 4-desacetylvinblastine-3-carboxyhydrazide. The resulting antibody-vinca conjugates were evaluated for antitumor activity against 2-9-day-established LS174T human colorectal carcinoma xenografts. The antibodies (immunoglobulin G, IgG) employed in this study were 11.285.14 (IgG1), 14.95.55 (IgG2a), CEM231 (IgG1), ZCE025 (IgG1). Additive immunofluorescence studies indicated that CEM231 and ZCE025 recognized the same or a closely related epitope(s) on CEA which was distinct from the two epitopes bound by 11.285.14 and 14.95.55. The in vivo antitumor efficacy studies demonstrated that chemoimmunoconjugates prepared from 14.95.55 and ZCE025 were more active than the conjugates constructed from the 11.285.14 and CEM231 antibodies. The 14.95.55 and ZCE025 immunoconjugates were also more efficacious than free drug or drug conjugated to irrelevant murine IgG. The presence of increased carbohydrate content on the light chain of ZCE025 may have been responsible for the ability to construct ZCE025-vinca conjugates with about twice the drug content (approximately 10 mol of vinca/mol of IgG) than was achieved with the other antibodies. The highly conjugated form of ZCE025 demonstrated similar efficacy but was much less toxic than a ZCE025 conjugate containing 5 mol of vinca/mol of IgG. These data indicated that significant differences existed in the ability of monoclonal antibodies to target a cytotoxic agent for effective antitumor activity even when the immunoconjugates recognized the same antigen or even the same or closely related antigen epitope(s). Furthermore, these differences could not have been identified without extensive in vivo evaluation for antitumor efficacy.  相似文献   

20.
A method of the covalent immobilization of proteins on the surface of liposomes, containing 10% (by mol) of N-glutaryl phosphatidylethanolamine, is described. Carboxylic groups of liposomal N-glutaryl phosphatidylethanolamine were activated in the presence of water-soluble carbodiimide and N-hydroxysulfosuccinimide and reacted subsequently with protein amino groups. The liposome-protein conjugates formed contained up to 5 x 10(-4) mol protein/mol lipid. Lectins (RCA1 and WGA) upon immobilization on liposomes retained saccharide specificity and the ability to agglutinate red blood cells. The immobilization of mouse monoclonal IgG in a ratio of 3.5 x 10(-4) mol IgG/mol lipid was achieved. The liposome activation in the absence of N-hydroxysulfosuccinimide resulted in a 2-fold decrease of protein coupling yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号