首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Purification of mitochondria and mitochondrial protein complexes from green tissues is often severely impaired by the presence of chloroplasts and their proteins. Here we present a method which allows analysis of respiratory protein complexes from potato leaves. The procedure includes the preparation of an organellar fraction specifically enriched in mitochondria and the separation of organellar protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). For the first time mitochondrial and chloroplast protein complexes have been resolved simultaneously in a native gel. BN-PAGE allowed the separation of eleven bands, including the mitochondrial NADH-dehydrogenase, the bc1 complex and the mitochondrial F1-ATP synthase as well as the chloroplast F1-ATP synthase, the cytochrome b6f complex, the two photosystems and the light harvesting complex. The resolution of the protein complexes in the first dimension was good enough to allow identification of all subunits of individual complexes in the second dimension under denaturing conditions. Thus, BN-PAGE offers an opportunity to analyze mitochondrial and chloroplast protein complexes from a single preparation from very small amounts of tissue. The implications of our findings, for studies on protein expression and turnover in different tissues and developmental stages, are discussed.  相似文献   

2.
采用蓝绿温和胶电泳系统可以非常有效地分离叶绿体蛋白质复合物,包括PSⅠ, PSⅡ, ATP合酶,细胞色素b6f复合物,捕光色素复合物和1,5-二磷酸核酮糖羧化酶.还结合SDS-聚丙烯酰胺凝胶电泳将叶绿体多亚基复合物的50多种蛋白质分开,利用免疫印迹对蛋白质复合物进行了初步鉴定,同时还应用蓝色温和胶电泳分析基质、基粒类囊体复合物的组成.  相似文献   

3.
4.
"Blue Native" polyacrylamide gel electrophoresis (BN-PAGE), originally described by Sch?gger and von Jagow in 1991, is an elegant method to study protein complexes from mitochondrial membranes. BN-PAGE, commonly used in molecular biology to study composition of protein complexes and protein-protein interactions, enables separation of respiratory chain complexes keeping their properties and enzymatic activities unchanged. BN-PAGE, supplemented by other methods, e.g. in gel activity assay, SDS-PAGE (as a first or second dimension) can be successfully adapted for diagnosis of mitochondrial diseases connected with abnormalities of the respiratory chain. Therefore, to make a correct diagnosis of the deficiency of respiratory chain complexes, other methods, as histochemical colorimetric reactions allowing evaluation of the OXPHOS catalytic activity in individual cells and spectrophotometric technique should be used simultaneously with BN-PAGE.  相似文献   

5.
The proton-ATP synthase of thylakoid membranes from chloroplasts (CFoF1) is composed of two parts with different structural and functional properties: the membrane-integral, proton-conducting complex CFo and the hydrophilic part, CF1 which catalyze the formation of adenosine-5'-triphosphate (ATP). To date it is difficult to isolate functional CFoF1 from thylakoids in high purity and yield. Blue native polyacrylamide gel electrophoresis (BN-PAGE) was therefore successfully employed to isolate CFoF1 in a one-step procedure from thylakoid membranes. Using a cathode buffer with low Coomassie Blue G-250 (CBG) concentration (0.002%), CFoF1 remains intact and can be obtained in high purity from solubilized, prepurified ATP synthase. Using BN-PAGE and a cathode buffer with 0.02% CBG, the ATP synthase bifurcates, and we were able to isolate both parts, CFo and CF1, separately. CFoF1, CFo, and CF1, respectively, were electroeluted nearly quantitatively electroeluted from the gel. BN-PAGE is a generally applicable method for the isolation and characterization of multisubunit membrane protein complexes in their native structure. However, the combination of neutral detergents and the negatively charged dye CBG seems to mimic properties of mild ionic detergents. This effect can lead to dissociation of labile subunits and subcomplexes, especially when delipidated membrane protein complexes are applied to BN-PAGE. By variation of the initial electrophoresis conditions, i.e., dye concentration in the cathode buffer, amount of lipid and detergent, BN-PAGE can be used for the isolation of either intact complexes or of subcomplexes.  相似文献   

6.
In this study, a new 3D native electrophoretic protocol is proposed for an exhaustive separation and identification of membrane proteins. It is based on native liquid phase isoelectrofocusing (N-LP-IEF) of protein complexes in the first dimension, followed by blue native polyacrylamide gel electrophoresis (BN-PAGE) in the second dimension, where both the pI and the molecular masses of protein complexes (2D N-LP-IEF-BN) were used to separate them in their native form. Finally, each single component can be resolved using denaturing electrophoresis (3D N-LP-IEF-BN-SDS-PAGE). The thylakoid membrane of spinach which contains four big protein complexes was chosen as a model for setting up analytical methods suitable for any membrane proteins. The pI-based MicroRotofor has a number of advantages over BN-PAGE: it does not require the addition of any chemicals, and separation of complexes is based on the protein's real physicochemical properties which inevitably change when dye is added. Results were more easily reproduced than with BN, and the pI of each native complex was also determined. Although some fractions still contained comigrating complexes after MicroRotofor, these were subsequently separated by BN for further analysis. Thus, highly hydrophobic complexes, such as ATP-synthetas and Cyt b6/f, were separated in native form as were various complexes of LHCII trimers, which have different pI but similar molecular masses. SDS-PAGE revealed almost all the subunits from the four photosynthetic complexes, indicating that by using 3D N-LP-IEF-BN-SDS-PAGE it is possible to achieve a greater degree of component identification than with 2D BN-SDS-PAGE.  相似文献   

7.
Blue-native polyacrylamide gel electrophoresis (BN-PAGE) is a powerful procedure for the separation and characterization of the protein complexes from mitochondria. Membrane proteins are solubilized in the presence of aminocaproic acid and n-dodecylmaltoside and Coomassie-dyes are utilized before electrophoresis to introduce a charge shift on proteins. Here, we report a modification of the procedure for the analysis of chloroplast protein complexes. The two photosystems, the light-harvesting complexes, the ATP synthase, the cytochrome b 6 f complex and the ribulose-bisphosphate carboxylase/oxygenase are well resolved. Analysis of the protein complexes on a second gel dimension under denaturing conditions allows separation of more than 50 different proteins which are part of chloroplast multi-subunit enzymes. The resolution capacity of the blue-native gels is very high if compared to 'native green gel systems' published previously. N-terminal amino acid sequences of single subunits can be directly determined by cyclic Edman degradation as demonstrated for eight proteins. Analysis of chloroplast protein complexes by blue-native gel electrophoresis will allow the generation of 'protein maps' from different species, tissues and developmental stages or from mutant organelles. Further applications of blue-native gel electrophoresis are discussed.  相似文献   

8.
Human embryonic stem cells (hESCs) have great potential for use in developmental biology studies, functional genomics applications, drug screening, and regenerative medicine. A detailed understanding of the molecular mechanisms that are responsible for maintaining the undifferentiated and pluripotent nature of hESCs is essential for their effective therapeutic application. It has become evident that many complex cellular processes are carried out by assemblies of protein molecules (protein complexes). Blue native polyacrylamide gel electrophoresis (BN-PAGE) has been used to separate protein complexes from whole cell lysates. Using BN-PAGE, we resolved cytoplasmic and membrane-associated complexes from hESCs and characterised their composition, stoichiometry, and dynamics by denaturing SDS-PAGE. The reliability of the fractionation was examined by western blot analysis of membrane and cytosolic markers. MALDI TOF/TOF mass spectrometry identified 119 cytosolic and 69 membrane proteins from the BN-PAGE proteome maps. Potential protein complexes were validated by computational prediction of possible protein-protein interactions using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. Based on BN-PAGE gels and validation by databases, 82 heteromultimeric and 47 homomultimeric protein complexes have been found in hESCs. Resolving some of the protein complexes provided insight into the function of previously uncharacterised complexes in hESCs.  相似文献   

9.
In higher plants the light energy is captured by the photosynthetic pigments that are bound to photosystem I and II and their light-harvesting complex (LHC) subunits. In this study, we examined the photodynamic changes within chlorophyll-protein complexes in the thylakoid membrane of Arabidopsis thaliana leaves adapted to low light and subsequently exposed to light stress. Chlorophyll-protein complexes were isolated using sucrose density gradient centrifugation and blue-native polyacrylamid gel electrophoresis (BN-PAGE). Proteome analysis was performed using SDS-PAGE, HPLC and high resolution mass spectrometry. We identified several rarely expressed and stress-induced chlorophyll-binding proteins, showed changes in localization of early light-induced protein family and LHC protein family members between different photosynthetic complexes and assembled/disassembled subcomplexes under light stress conditions and discuss their role in a variety of light stress-related processes.  相似文献   

10.
With the characterization of the total genomes of Arabidopsis thaliana and Oryza sativa , several putative plasma membrane components have been identified. However, a lack of knowledge at the protein level, especially for hydrophobic proteins, have hampered analyses of physiological changes. To address whether protein complexes may be present in the native membrane, we subjected plasma membranes isolated from Spinacia oleracea leaves to blue-native polyacrylamide gel electrophoresis (BN-PAGE). BN-PAGE is well established in the separation of functional membrane protein complexes from mitochondria and chloroplasts, but a resolved protein complex pattern from PM of eukaryotic cells has previously not been reported. Using this method, protein complexes from Spinacia oleracea PM could be efficiently solubilized and separated, including the highly hydrophobic aquaporin (apparent molecular mass 230 kDa), a putative tetramer of H+-ATPase, and several less abundant complexes with apparent masses around or above 750 kDa. After denaturation and separation of the complexes into their subunits in a second dimension (SDS-PAGE), several of the complexes were identified as hydrophobic membrane proteins. Large amounts of protein (up to 1 mg) can be resolved in each lane, which suggests that the method could be used to study also low-abundance protein complexes, e.g. under different physiological conditions.  相似文献   

11.
Blue Native electrophoresis to study mitochondrial and other protein complexes   总被引:23,自引:0,他引:23  
The biogenesis and maintenance of mitochondria relies on a sizable number of proteins. Many of these proteins are organized into complexes, which are located in the mitochondrial inner membrane. Blue Native polyacrylamide gel electrophoresis (BN-PAGE) is a method for the isolation of intact protein complexes. Although it was initially used to study mitochondrial respiratory chain enzymes, it can also be applied to other protein complexes. The use of BN-PAGE has increased exponentially over the past few years and new applications have been developed. Here we review how to set up the basic system and outline modifications that can be applied to address specific research questions. Increasing the upper mass limit of complexes that can be separated by BN-PAGE can be achieved by using agarose instead of acrylamide. BN-PAGE can also be used to study assembly of mitochondrial protein complexes. Other applications include in-gel measurements of enzyme activity by histochemical staining and preparative native electrophoresis to isolate a protein complex. Finally, new ways of identifying protein spots in Blue Native gels using mass spectrometry are briefly discussed.  相似文献   

12.
Klodmann J  Lewejohann D  Braun HP 《Proteomics》2011,11(9):1834-1839
SDS normally is strictly avoided during Blue native (BN) PAGE because it leads to disassembly of protein complexes and unfolding of proteins. Here, we report a modified BN-PAGE procedure, which is based on low-SDS treatment of biological samples prior to native gel electrophoresis. Using mitochondrial OXPHOS complexes from Arabidopsis as a model system, low SDS concentrations are shown to partially dissect protein complexes in a very defined and reproducible way. If combined with 2-D BN/SDS-PAGE, generated subcomplexes and their subunits can be systematically investigated, allowing insights into the internal architecture of protein complexes. Furthermore, a 3-D BN/low-SDS BN/SDS-PAGE system is introduced to facilitate structural analysis of individual protein complexes without their previous purification.  相似文献   

13.
The import of protein into chloroplasts is mediated by translocon components located in the chloroplast outer (the Toc proteins) and inner (the Tic proteins) envelope membranes. To identify intermediate steps during active import, we used sucrose density gradient centrifugation and blue-native polyacrylamide gel electrophoresis (BN-PAGE) to identify complexes of translocon components associated with precursor proteins under active import conditions instead of arrested binding conditions. Importing precursor proteins in solubilized chloroplast membranes formed a two-peak distribution in the sucrose density gradient. The heavier peak was in a similar position as the previously reported Tic/Toc supercomplex and was too large to be analyzed by BN-PAGE. The BN-PAGE analyses of the lighter peak revealed that precursors accumulated in at least two complexes. The first complex migrated at a position close to the ferritin dimer (approximately 880 kDa) and contained only the Toc components. Kinetic analyses suggested that this Toc complex represented an earlier step in the import process than the Tic/Toc supercomplex. The second complex in the lighter peak migrated at the position of the ferritin trimer (approximately 1320 kDa). It contained, in addition to the Toc components, Tic110, Hsp93, and an hsp70 homolog, but not Tic40. Two different precursor proteins were shown to associate with the same complexes. Processed mature proteins first appeared in the membranes at the same fractions as the Tic/Toc supercomplex, suggesting that processing of transit peptides occurs while precursors are still associated with the supercomplex.  相似文献   

14.
Thylakoids from enzymatically separated bundle sheath and mesophyll tissue chloroplasts were examined for their chlorophyll-proteins by tube sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). Differences were found in distribution of chlorophyll among peaks. The chlorophyll-protein a peak (CPa), considered to be the photosystem II (PSII) reaction centre by many authors, was seen to be absent in bundle sheath thylakoid samples. The slab SDS-PAGE revealed the absence of the polypeptides present in PSII preparations of chloroplast subfractions having only PSII activity. This finding confirms Anderson's hypothesis of the structure of grana and stroma thylakoids.  相似文献   

15.
Pure mitochondria of the photosynthetic alga Chlamydomonas reinhardtii were analyzed using blue native-polyacrylamide gel electrophoresis (BN-PAGE). The major oxidative phosphorylation complexes were resolved: F(1)F(0)-ATP synthase, NADH-ubiquinone oxidoreductase, ubiquinol-cytochrome c reductase, and cytochrome c oxidase. The oligomeric states of these complexes were determined. The F(1)F(0)-ATP synthase runs exclusively as a dimer, in contrast to the C. reinhardtii chloroplast enzyme, which is present as a monomer and subcomplexes. The sequence of a 60-kD protein, associated with the mitochondrial ATP synthase and with no known counterpart in any other organism, is reported. This protein may be related to the strong dimeric character of the algal F(1)F(0)-ATP synthase. The oxidative phosphorylation complexes resolved by BN-PAGE were separated into their subunits by second dimension sodium dodecyl sulfate-PAGE. A number of polypeptides were identified mainly on the basis of their N-terminal sequence. Core I and II subunits of complex III were characterized, and their proteolytic activities were predicted. Also, the heterodimeric nature of COXIIA and COXIIB subunits in cytochrome c oxidase was demonstrated. Other mitochondrial proteins like the chaperone HSP60, the alternative oxidase, the aconitase, and the ADP/ATP carrier were identified. BN-PAGE was also used to approach the analysis of the major chloroplast protein complexes of C. reinhardtii.  相似文献   

16.
Blue native polyacrylamide gel electrophoresis (BN-PAGE) is an essential tool for investigating mitochondrial respiratory chain complexes. However, with current BN-PAGE protocols for Caenorhabditis elegans (C. elegans), large worm amounts and high quantities of mitochondrial protein are required to yield clear results. Here, we present an efficient approach to isolate mitochondrial complex I (NADH:ubiquinone oxidoreductase) from C. elegans, grown on agar plates. We demonstrate that considerably lower amounts of mitochondrial protein are sufficient to isolate complex I and to display clear in-gel activity results. Moreover, we present the first complex I assembly profile for C. elegans, obtained by two-dimensional BN/SDS-PAGE.  相似文献   

17.
The objective of the present study was to analyze serum protein complexes and detect serum esterase activities using nongradient blue native polyacrylamide gel electrophoresis (BN-PAGE). For analysis of potential protein complexes, serum from rat was used. Results demonstrate that a total of 8 gel bands could be clearly distinguished after Coomassie blue staining, and serum albumin could be isolated nearly as a pure protein. Moreover, proteins in these bands were identified by electrospray mass spectrometry and low-energy collision induced dissociation (CID)-MS/MS peptide sequencing and the existence of serum dihydrolipoamide dehydrogenase (DLDH) was confirmed. For studies of in-gel detection of esterase activities, serum from rat, mouse, and human was used. In-gel staining of esterase activity was achieved by the use of either α-naphthylacetate or β-naphthylacetate in the presence of Fast blue BB salt. There were three bands exhibiting esterase activities in the serum of both rat and mouse. In contrast, there was only one band showing esterase activity staining in the human serum. When serum samples were treated with varying concentrations of urea, esterase activity staining was abolished for all the bands except the one containing esterase 1 (Es1) protein that is known to be a single polypeptide enzyme, indicating that majority of these esterases were protein complexes or multimeric proteins. We also identified the human serum esterase as butyrylcholinesterase following isolation and partial purification using ammonium sulfate fractioning and ion exchange column chromatographies. Where applicable, demonstrations of the gel-based method for measuring serum esterase activities under physiological or pathophysiological conditions were illustrated. Results of the present study demonstrate that nongradient BN-PAGE can serve as a feasible analytical tool for proteomic and enzymatic analysis of serum proteins.  相似文献   

18.
To avoid the specific problems concerning intrinsic membrane proteins in proteome analysis, an alternative strategy is described that is complementary to previous investigations using 2-D polyacrylamide gel electrophoresis (PAGE) techniques. The strategy involves (a) obtaining purified preparations of the membranes from Chlorobium tepidum by washing with 2 M NaBr, which removed membrane-associated soluble proteins and membrane-associated organelles; (b) separation of membrane protein complexes using 1-D Blue-native polyacrylamide gel electrophoresis (BN-PAGE) after solubilization with n-dodecyl-beta-d-maltoside (DDM); (c) combination of the BN with Tricine-SDS-PAGE; (d) high-throughput mass spectrometric analysis after gel band excision, in-gel digestion, and MALDI target spotting; and (e) protein identification from mixtures of tryptic peptides by peptide mass fingerprinting. Using this approach, we identified 143 different proteins, 70 of which have not been previously reported using 2-D PAGE techniques. Membrane proteins with up to 14 transmembrane helices were found, and this procedure proved to be efficient with proteins within a wide pI range (4.4-11.6). About 54% of the identified membrane proteins belong to various functional categories like energy metabolism, transport, signal transduction, and protein translocation, while for the others, a function is not yet known, indicating the potential of the method for the elucidation of the membrane proteomes in general.  相似文献   

19.
Mitochondrial dysfunction and degeneration are associated with many neurodegenerative disorders. A dysfunctional mitochondrial electron transport chain (ETC) impairs ATP production and accelerates the generation of free radicals. To evaluate mitochondrial function, reliable methods are needed. Conventional spectrophotometric assays may not eliminate interference from nonspecific enzyme activities and do not measure quantities of specific ETC complexes. Blue native polyacrylamide gel electrophoresis (BN-PAGE) has been used to resolve mitochondrial ETC complexes. Combined with histochemical staining, it has also been applied to measure ETC enzyme activities in muscles. The current study is to determine (1) whether BN-PAGE can be used to detect ETC complexes from different regions of the central nervous system (CNS) and (2) the quantitative range of BN-PAGE in measuring the amounts and activities of different ETC complexes. By systematically varying the protein amount and the time of histochemical reactions, we have found linear ranges comparable to spectrophotometric assays for measuring enzyme activities of several ETC complexes. In addition, we found linear ranges for measuring protein quantities in several ETC complexes. These results demonstrate that BN-PAGE can be used to measure the amount and activity of the ETC enzymes from the nerve tissues and, thus, can be applied to evaluate the functional changes of mitochondria in neurodegenerative disorders.  相似文献   

20.
Summary. Pseudomonas sp. strain phDV1, being a phenol degrading bacterium, has been found to utilize phenol as sole carbon source via the meta pathway. Blue native polyacrylamide gel electrophoresis (BN-PAGE) is widely used for the analysis of oligomeric state and molecular mass non-dissociated protein complexes. In this study, a number of proteomic techniques were used to investigate the oligomeric state enzymes involved in the aromatic degradation pathway. In particular, the Pseudomonas sp. strain phDV1 proteome was monitored under two different growth substrate conditions, using glucose or phenol as sole carbon source. The protein complexes map was compared by BN-PAGE after fractionation by sucrose density centrifugation of the cell extracts. Multiple differences were detected. Further, analysis and identification of the subunit composition of these complexes was carried out using MALDI-TOF MS, allowing the identification of 49 proteins. Additionally, functional information regarding protein–protein interactions was assembled, by coupling 2-D BN-PAGE with MALDI-TOF MS. Application of this functional proteomics method resulted in an higher number of the identified proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号