首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radiolanthanides 149Pm, 166Ho, and 177Lu have decay characteristics suitable for radioimmunotherapy (RIT) of cancer. N-Hydroxysulfosuccinimidyl DOTA (DOTA-OSSu) and methoxy-DOTA (MeO-DOTA) were conjugated to the anti-TAG-72 monoclonal antibody CC49 for radiolabeling with 149Pm, 166Ho, and 177Lu. While both DOTA conjugates could be labeled to high specific activity with 177Lu, MeO-DOTA afforded superior conjugate stability, radiolabeling, and radiochemical purity. Pilot biodistributions in nude mice bearing LS174T human colon carcinoma xenografts demonstrated that MeO-DOTA afforded higher tumor uptake and lower kidney retention of 177Lu than DOTA-OSSu. The in vitro stability of 149Pm-, 166Ho-, and 177Lu-MeO-DOTA-CC49 was evaluated using serum and hydroxyapatite assays. Serum stability of radiolanthanide-labeled MeO-DOTA-CC49 followed a trend based on the coordination energies of the radiometals, with 177Lu showing the highest stability after 96 to 168 h at 37 C. In contrast, MeO-DOTA-CC49 labeled with all three radiolanthanides was >92% stable to hydroxyapatite challenge for 168 h at 37 C. Comprehensive biodistributions of 149Pm-, 166Ho-, and 177Lu-MeO-DOTA-CC49 were obtained in LS174T-bearing nude mice. Maximum tumor uptakes were 100.0% ID/g for 149Pm at 96 h, 69.5% ID/g for 166Ho at 96 h, and 132.4% ID/g for 177Lu at 168 h. Normal organ uptakes were generally low, except in the liver, spleen, and kidney at early time points. By 96 to 168 h postinjection, nontarget organ uptake decreased to approximately 7% ID/g (kidney), 12% ID/g (spleen), and 20% ID/g (liver) for each radiolanthanide. When labeled with 149Pm, 166Ho, and 177Lu, MeO-DOTA-CC49 has potential for RIT of colorectal cancer and other carcinomas.  相似文献   

2.
Single-chain Fv constructs comprising a biotin mimetic peptide (BMP) and scFv of CC49 monoclonal antibody were produced to improve pretargeted radioimmunotherapy. BMP units that bind streptavidin were added to the carboxyl terminus of the CC49 V(H) region. An engineered scFvBMP monomer and a sc(Fv)(2)BMP dimer showed an excellent antigen recognition in vitro with a specific binding of 72+/-5 and 81+/-4%, respectively. Properties of 125I-sc(Fv)(2)BMP in mice bearing LS-174T xenografts were comparable to these of the parent 125I-sc(Fv)(2). Complexing of scFvBMPs with streptavidin increased tumor targeting and gave exceptionally high tumor-to-blood values of 63+/-7 for 125I-sc(Fv)(2)BMP-streptavidin compared with 37+/-4 for sc(Fv)(2)BMP at 72h after administration. High tumor and negligible normal tissue levels of these novel pretargeting constructs indicate a great potential for pretargeted radioimmunotherapy.  相似文献   

3.
Metal-free click chemistry has become an important tool for pretargeted approaches in the molecular imaging field. The application of bioorthogonal click chemistry between a pretargeted trans-cyclooctene (TCO) derivatized monoclonal antibody (mAb) and a 99mTc-modified 1,2,4,5-tetrazine for tumor imaging was examined in vitro and in vivo. The HYNIC tetrazine compound was synthesized and structurally characterized, confirming its identity. Radiolabeling studies demonstrated that the HYNIC tetrazine was labeled with 99mTc at an efficiency of >95% and was radiochemically stable. 99mTc–HYNIC tetrazine reacted with the TCO–CC49 mAb in vitro demonstrating its selective reactivity. In vivo biodistribution studies revealed non-specific liver and GI uptake due to the hydrophobic property of the compound, however pretargeted SPECT imaging studies demonstrated tumor visualization confirming the success of the cycloaddition reaction in vivo. These results demonstrated the potential of 99mTc–HYNIC–tetrazine for tumor imaging with pretargeted mAbs.  相似文献   

4.
A mathematical model simulation was performed to estimate the amount of radioactivity in plasma, normal tissues, and tumor tissue through three delivery approaches: one step radiolabeled monoclonal antibody (MAb) CC49 i.v. bolus injection, two step method with biotin conjugated CC49 i.v. bolus injection followed 72 hours later by i.v. bolus radiolabeled streptavidin injection, and gene therapy method to express biotin on the tumor cell surface followed by i.v. bolus radiolabeled streptavidin injection. The mathematical model was built based on a system of ordinary differential equations consisting of inputs and outputs of model components in plasma, normal tissues, and tumor tissue. Through computer modeling, we calculated concentrations of each component for plasma, tumor and normal tissues at various time points. Radioactivity ratios of tumor to plasma and tumor to normal tissues increased with time. The increase of tumor to normal tissue ratios was much faster for the gene therapy approach than for single step and two step approaches, e.g., a ratio of 24.26 vs. 2.06 and 6.24 at 72 hours after radioligand injection. Radioactivity ratios predicted by the model varied with the amount of radioactivity injected and the time interval between injections. The model could be used to evaluate different radioimmunotherapy strategies and to predict radioactivity biodistribution using other receptor-ligand systems.  相似文献   

5.
One pretargeting approach to cancer radioimmunotherapy utilizes an antibody-streptavidin conjugate that is first localized to the tumor. A "clearing agent" is then administered to remove the excess bioconjugate from blood, followed by injection of the radiolabeled biotin therapeutic. In this study, the role of streptavidin-biotin affinity in this pretargeting system was investigated for the first time in vivo, with a reduced affinity, site-directed streptavidin mutant and with radiolabeled bis-biotin reagents. The S45A streptavidin mutant (SA-S45A), which displays a faster off-rate for biotin, was utilized with a bivalent biotin carrier that retains high avidity for the streptavidin mutant. Mice were fed either a normal or biotin-deficient diet, yielding serum endogenous biotin concentrations of 31 nM and 5 nM, respectively. Lymphoma-bearing nude mice pretargeted with 1F5 Antibody-SA-Wild Type (WT) bioconjugates produced (125)I-bis-biotin tumor concentrations of 2.2%ID/g and 7.0%ID/g in mice fed normal diets vs biotin-deficient diets. (125)I-bis-biotin tumor concentrations of mice pretargeted with 1F5-SA-S45A were 12%ID/g and 10%ID/g for mice fed normal and biotin-deficient diets, respectively. However, poor clearance of the 1F5-SA-S45A with the biotinylated clearing agent led to high normal organ concentrations of (125)I-bis-biotin. A galactosylated human serum albumin (HSA) modified with bis-biotin was then tested, and normal organ (125)I-bis-biotin concentrations were significantly reduced. Tumor-to-organ ratios achieved for 1F5-SA-S45A with the HSA-bis-biotin clearing agent in mice with high serum biotin were similar to those achieved with 1F5-SA-WT in mice with low serum biotin. These results demonstrate that exchange of bound endogenous biotin with lower affinity streptavidin mutants is possible, and that corresponding use of bis-biotin carriers can nearly eliminate the differences in therapeutic radioactivity at the tumor site in animals on normal vs biotin-deficient diets. The results also interestingly demonstrate, however, that improved clearance agents capable of removing the lower affinity streptavidin-antibody conjugate are needed to achieve comparable specificity in tumor to blood or normal organ ratios.  相似文献   

6.
Pretargeted radionuclide therapy depends on the establishment of a high concentration of secondary binding sites at a tumor to which low-molecular weight radiolabeled effector molecules can be directed. This study describes the simple synthesis of an effector molecule and its subsequent characterization to determine the extent to which it complied with the ideal requirements of such a compound. (Epsilon)-DOTA-(alpha)-biotinamidolysine (DLB) was synthesized in high yield and purity using conventional SPPS methodology. High radiochemical purities were obtained when labeled with several potentially useful radionuclides. The radiolabeled analogue bound to streptavidin efficiently with a stoichiometry similar to that of native biotin and showed high stability in serum and upon challenge with acid conditions. Biodistribution studies in normal animals showed a rapid rate of clearance from the blood and low retention of radioactivity by normal tissues. This design of effector molecule therefore shows promise for further pretargeted radionuclide therapy studies.  相似文献   

7.

Purpose

Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice.

Methods

Parallel experiments evaluating the biodistribution, imaging, dosimetry, therapeutic efficacy, and toxicity were performed in female athymic nude mice bearing either Ramos (Burkitt lymphoma) or Granta (mantle cell lymphoma) xenografts, utilizing an anti-CD20 antibody-streptavidin conjugate (1F5-SA) and an 90Y- or 177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-biotin second step reagent.

Results

The two radionuclides displayed comparable biodistributions in tumors and normal organs; however, the absorbed radiation dose delivered to tumor was more than twice as high for 90Y (1.3 Gy/MBq) as for 177Lu (0.6 Gy/MBq). More importantly, therapy with 90Y-DOTA-biotin was dramatically more effective than with 177Lu-DOTA-biotin, with 100% of Ramos xenograft-bearing mice cured with 37 MBq 90Y, whereas 0% were cured using identical amounts of 177Lu-DOTA-biotin. Similar results were observed in mice bearing Granta xenografts, with 80% of the mice cured with 90Y-PRIT and 0% cured with 177Lu-PRIT. Toxicities were comparable with both isotopes.

Conclusion

90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in these human lymphoma xenograft models.  相似文献   

8.
Segments of the cystine noose-containing nonglycosylated central subdomain, residues 149-197, of the attachment (G) glycoprotein of human respiratory syncytial virus (HRSV) have been assessed for impact on the cytopathic effect (CPE) of respiratory syncytial virus (RSV). Nalpha-acetyl residues 149-197-amide (G149-197), G149-189, and G149-177 of the A2 strain of HRSV protected 50% of human epithelial HEp-2 cells from the CPE of the A2 strain at concentrations (IC(50)) between 5 and 80 microm. Cystine noose-containing peptides G171-197 and G173-197 did not inhibit the CPE even at concentrations above 150 microm. Systematic C- and N-terminal truncations from G149-189 and G149-177 and alanine substitutions within G154-177 demonstrated that residues 166-170 (EVFNF), within a sequence that is conserved in HRSV strains, were critical for inhibition. Concordantly, G154-177 of bovine RSV and of an antibody escape mutant of HRSV with residues 166-170 of QTLPY and EVSNP, respectively, were not inhibitory. Surprisingly, a variant of G154-177 with an E166A substitution had an IC(50) of 750 nm. NMR analysis demonstrated that G149-177 adopted a well-defined conformation in solution, clustered around F168 and F170. G154-170, particularly EVFNF, may be important in binding of RSV to host cells. These findings constitute a promising platform for the development of antiviral agents for RSV.  相似文献   

9.
Murine monoclonal antibodies to tumor-associated glycoprotein 72 (anti-TAG-72 mAb B72.3 and CC49) are among the most extensively studied mAb for immunotherapy of adenocarcinomas. They have been used clinically to localize primary and metastatic tumor sites; however, murine mAb generally induce potent human anti-(mouse antibody) responses. The immunogenicity of murine mAb can be minimized by genetic humanization of these antibodies, where non-human regions are replaced by the corresponding human sequences or complementary determining regions are grafted into the human framework regions. We have developed a humanized CC49 single-chain antibody construct (hu/muCC49 scFv) by replacing the murine CC49 variable light chain with the human subgroup IV germline variable light chain (Hum4 VL). The major advantages of scFv molecules are their excellent penetration into the tumor tissue, rapid clearance rate, and much lower exposure to normal organs, especially bone marrow, than occur with intact antibody. The biochemical properties of hu/muCC49 scFv were compared to those of the murine CC49 scFv (muCC49 scFv). The association constants (K a) for hu/muCC49 and muCC49 constructs were 1.1 × 106 M−1 and 1.4 × 106 M−1 respectively. Pharmacokinetic studies in mice showed similar rapid blood and whole-body clearance with a half-life of 6 min for both scFv. The biodistribution studies demonstrated equivalent tumor targeting to human colon carcinoma xenografts for muCC49 and hu/muCC49 scFv. These results indicate that the human variable light-chain subgroup IV can be used for the development of humanized or human immunoglobulin molecules potentially useful in both diagnostic and therapeutic applications with TAG-72-positive tumors. Received: 29 December 1999 / Accepted: 4 February 2000  相似文献   

10.
The establishment of new insect cell lines plays important roles in the researches of insect pathology, insect toxicology, insecticide screening and activity assay, etc. Using embryos of Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae) as materials, this study describes the establishment of three cell lines designated as QAU-Ho-E-3 (Ho-3), QAU-Ho-E-4 (Ho-4), and QAU-Ho-E-6 (Ho-6), respectively. Currently, the three cell lines have been passaged more than 50 times in the TNM-FH insect cell medium containing 10% fetal bovine serum (FBS). All of them showed adherent growth. The majority of Ho-3 cells are spindle-shaped, with a size of 24.35?±?5.29?×?11.56?±?1.67 μm. The Ho-4 cells were either spindle-shaped or oblong, with a size of 38.07?±?8.57?×?17.62?±?2.48 μm. The Ho-6 cells were primarily round in shape with a diameter of 14.54?±?1.96 μm. The Ho-3 and Ho-4 cell lines contained 20 chromosomes (i.e., diploid, 2n?=?20) at passages 14 and 45. The Ho-6 cell line contained 20 chromosomes (i.e., diploid, 2n?=?20) at passage 14 but 40 chromosomes (i.e., polyploidy, 4n?=?40) at passage 45. The results of random amplified polymorphic DNA (RAPD) analysis showed that the RAPD fingerprint of the three cell lines was consistent with that of H. oblita eggs, but clearly different from that of BTI-Tn5B1-4 and Sf-9 cells, demonstrating that the three cell lines Ho-3, Ho-4, and Ho-6 are H. oblita cell lines. The results of the growth curve test showed that the population doubling times of Ho-3, Ho-4, and Ho-6 were 101.1, 105.2, and 83.6 h, respectively. The viral infection assay indicated that these H. oblita cell lines were not permissive to infection by Autographa californica multiple nucleopolyhedrovirus (AcMNPV) or Bombyx mori nucleopolyhedrovirus (BmNPV).  相似文献   

11.
The structurally novel bifunctional ligands C-NETA and C-NE3TA, each possessing both acyclic and macrocyclic moieties, were prepared and evaluated as potential chelates for radioimmunotherapy (RIT) and targeted magnetic resonance imaging (MRI). Heptadentate C-NE3TA was fortuitously discovered during the preparation of C-NETA. An optimized synthetic method to C-NETA and C-NE3TA including purification of the polar and tailing reaction intermediates, tert-butyl C-NETA (2) and tert-butyl C-NE3TA (3) using semiprep HPLC was developed. The new Gd(III) complexes of C-NETA and C-NE3TA were prepared as contrast enhancement agents for use in targeted MRI. The T 1 relaxivity data indicate that Gd(C-NETA) and Gd(C-NE3TA) possess higher relaxivity than Gd(C-DOTA), a bifunctional version of a commercially available MRI contrast agent; Gd(DOTA). C-NETA and C-NE3TA were radiolabeled with (177)Lu, (90)Y, (203)Pb, (205/6)Bi, and (153)Gd; and in vitro stability of the radiolabeled corresponding complexes was assessed in human serum. The in vitro studies indicate that the evaluated radiolabeled complexes were stable in serum for 11 days with the exception being the (203)Pb complexes of C-NETA and C-NE3TA, which dissociated in serum. C-NETA and C-NE3TA radiolabeled (177)Lu, (90)Y, or (153)Gd complexes were further evaluated for in vivo stability in athymic mice and possess excellent or acceptable in vivo biodistribution profile. (205/6)Bi- C-NE3TA exhibited extremely rapid blood clearance and low radioactivity level at the normal organs, while (205/6)Bi- C-NETA displayed low radioactivity level in the blood and all of the organs except for the kidney where relatively high renal uptake of radioactivity is observed. C-NETA and C-NE3TA were further modified for conjugation to the monoclonal antibody Trastuzumab.  相似文献   

12.
《Reproductive biology》2022,22(2):100619
Cervical cancer (CC) is a common tumor in the female reproductive tract. Circular RNA hsa_circ_0011385 has been reported to be up-regulated in CC tissues. Nevertheless, the role and regulatory mechanism of hsa_circ_0011385 in CC are still being further verified. The levels of hsa_circ_0011385, microRNA (miR)? 149–5p, and peroxiredoxin 6 (PRDX6) mRNA in CC samples and cell lines were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Loss-of-function experiments were performed to survey the impacts of hsa_circ_0011385 inhibition on CC cell proliferation, colony formation, cycle progression, apoptosis, metastasis, invasion, and angiogenesis. Protein levels were detected by western blotting. The relationship between hsa_circ_0011385 or PRDX6 and miR-149–5p was verified by dual-luciferase reporter, RNA immunoprecipitation (RIP), and/or RNA pull-down assays. The tumorigenesis role of hsa_circ_0011385 in CC was confirmed by xenograft assay. We observed that hsa_circ_0011385 and PRDX6 were up-regulated while miR-149–5p was down-regulated in CC samples and cell lines. CC patients with high hsa_circ_0011385 expression possessed a shorter overall survival. Hsa_circ_0011385 knockdown reduced tumor growth in vivo and facilitated apoptosis, cell cycle arrest, impeded proliferation, metastasis, invasion, and angiogenesis of CC cells in vitro. Hsa_circ_0011385 could mediate PRDX6 expression through binding to miR-149–5p. MiR-149–5p silencing reversed hsa_circ_0011385 knockdown-mediated effects on CC cell angiogenesis and malignancy. PRDX6 overexpression overturned the inhibitory effects of miR-149–5p overexpression on angiogenesis and malignant behaviors of CC cells. In conclusion, hsa_circ_0011385 accelerated angiogenesis and malignant behaviors of CC cells by regulating the miR-149–5p/PRDX6 axis, manifesting that hsa_circ_0011385 might be a therapeutic target for CC.  相似文献   

13.
Zheng C  Feng J  Lu D  Wang P  Xing S  Coll JL  Yang D  Yan X 《PloS one》2011,6(6):e21146
Carcinoembryonic antigen (CEA, CEACAM5, and CD66e) has been found to be associated with various types of cancers, particularly colorectal carcinoma, and developed to be a molecular target for cancer diagnosis and therapy. In present study, we generated a novel anti-CEACAM5 monoclonal antibody, namely mAb CC4, by immunizing mice with living colorectal cancer LS174T cells. Immunohistochemical studies found that mAb CC4 specifically and strongly binds to tumor tissues, especially colorectal adenocarcinoma. In xenografted mice, mAb CC4 is specifically accumulated in tumor site and remarkably represses colorectal tumor growth. In vitro functional analysis showed that mAb CC4 significantly suppresses cell proliferation, migration and aggregation of colorectal cancer cells and also raises strong ADCC reaction. More interestingly, mAb CC4 is able to enhance NK cytotoxicity against MHC-I-deficient colorectal cancer cells by blocking intercellular interaction between epithelial CEACAM5 and NK inhibitory receptor CEACAM1. These data suggest that mAb CC4 has the potential to be developed as a novel tumor-targeting carrier and cancer therapeutic.  相似文献   

14.
225Ac (t(1/2) = 10 days) is an alternative alpha-emitter that has been proposed for radioimmunotherapy (RIT) due to its many favorable properties, such as half-life and mode of decay. The factor limiting use of (225)Ac in RIT is the lack of an acceptably stable chelate for in vivo applications. Herein is described the first reported bifunctional chelate for (225)Ac that has been evaluated for stability for in vivo applications. The detailed synthesis of a bifunctional chelating agent 2-(4-isothiocyanatobenzyl)-1,4,7,10,13, 16-hexaazacyclohexadecane- 1,4,7,10,13,16-hexaacetic acid (HEHA-NCS) is reported. This ligand was conjugated to three monoclonal antibodies, CC49, T101, and BL-3 with chelate-to-protein ratios between 1.4 and 2. The three conjugates were radiolabeled with (225)Ac, and serum stability study of the [(225)Ac]BL-3-HEHA conjugate was performed.  相似文献   

15.
《MABS-AUSTIN》2013,5(8):1269-1280
ABSTRACT

Antibody pretargeting is a promising strategy for improving molecular imaging, wherein the separation in time of antibody targeting and radiolabeling can lead to rapid attainment of high contrast, potentially increased sensitivity, and reduced patient radiation exposure. The inverse electron demand Diels-Alder ‘click’ reaction between trans-cyclooctene (TCO) conjugated antibodies and radiolabeled tetrazines presents an ideal platform for pretargeted imaging due to rapid reaction kinetics, bioorthogonality, and potential for optimization of both slow and fast clearing components. Herein, we evaluated a series of anti-human epidermal growth factor receptor 2 (HER2) pretargeting antibodies containing distinct molar ratios of site-specifically incorporated TCO. The effect of stoichiometry on tissue distribution was assessed for pretargeting TCO-modified antibodies (monitored by 125I) and subsequent accumulation of an 111In-labeled tetrazine in a therapeutically relevant HER2+tumor-bearing mouse model. Single photon emission computed tomography (SPECT) imaging was also employed to assess tumor imaging at various TCO-to-monoclonal antibody (mAb) ratios. Increasing TCO-to-mAb molar ratios correlated with increased in vivo click reaction efficiency evident by increased tumor distribution and systemic exposure of 111In-labeled tetrazines. The pharmacokinetics of TCO-modified antibodies did not vary with stoichiometry. Pretargeted SPECT imaging of HER2-expressing tumors using 111In-labeled tetrazine demonstrated robust click reaction with circulating antibody at ~2 hours and good tumor delineation for both the 2 and 6 TCO-to-mAb ratio variants at 24 hours, consistent with a limited cell-surface pool of pretargeted antibody and benefit from further distribution and internalization. To our knowledge, this represents the first reported systematic analysis of how pretargeted imaging is affected solely by variation in click reaction stoichiometry through site-specific conjugation chemistry.  相似文献   

16.
Interest in accurate measurement of biotin concentrations in plasma and urine has been stimulated by recent advances in the understanding of biotin-responsive inborn errors of metabolism and by several reports describing acquired biotin deficiency during parenteral alimentation. This paper presents a biotin assay utilizing radiolabeled avidin in a sequential, solid-phase method; the assay has increased sensitivity compared to previous methods (greater than or equal to 10 fmol/tube), correlates with expected trends in biotin concentrations in blood and urine in a rat model of biotin deficiency, and can utilize commercially available radiolabeled avidin.  相似文献   

17.
 A replication-deficient recombinant vaccinia virus, NYVAC, was developed by deleting 18 open reading frames in the vaccinia virus genome. Recombinant NYVAC, encoding the murine T cell co-stimulatory gene B7.1 (CD 80) (NYVAC-B7.1) and the murine interleukin-2 gene (NYVAC-IL-2), were prepared and the expression of B7.1 and the secretion of IL-2 were respectively confirmed in vitro. The use of these viruses to prepare a potent tumor cell vaccine was studied in a syngeneic murine CC-36 colon adenocarcinoma model. Mice were immunized on days 1 and 8 with 106 irradiated CC-36 cells that were infected with 107 plaque-forming units of either NYVAC-B7.1, NYVAC-IL-2 or a control virus, NYVAC-HR, which encodes a vaccinia virus host-range gene. These mice were then challenged with 108 viable CC-36 tumor cells on day 15. All mice (10/10) in a group that had received no vaccination and all mice (20/20) in a group that had received a control vaccine of CC-36/NYVAC-HR developed tumor 4-weeks after tumor cell challenge. Interestingly, only 16/20 mice in a group that had received CC-36/NYVAC-B7.1 showed the development of tumor after the same interval. The protection against tumor development and the reduction in tumor burden (as mean tumor diameter, 4 weeks after tumor challenge) were significant in this group when compared to groups that were either unvaccinated or vaccinated with CC-36/NYVAC-HR (mean tumor diameter = 6.51±3.2 mm compared to 26.5±0.9 mm or 26.2±1.8 mm respectively) (P = < 0.05). The protection against tumor in a group of mice that received CC-36/NYVAC-IL-2 vaccination was similar to that in the unvaccinated group or the group receiving a CC-36/NYVAC-HR control vaccination. However, in a survival experiment, mice that received either CC36/NYVAC-B7.1 or CC-36/NYVAC-IL-2 vaccination on the day of tumor transplantation survived significantly longer than mice that had not been vaccinated (median survival 60+ days, 60+ days or 23.5 days respectively) (P = <0.05). Interestingly, when a therapeutic tumor vaccination was performed on day 4 after tumor transplantation, mice that had been vaccinated with either CC36/NYVAC-B7.1 or CC-36/NYVAC-IL-2 did not show an improved survival when compared to mice in the control that had not been vaccinated (median survival 28 days compared to 26 days or 25 days respectively). However, mice that had received a therapeutic vaccination with CC-36 cells infected with both NYVAC-B7.1 and NYVAC-IL-2, 4 days after tumor transplantation, survived significantly longer than control mice that had not received any vaccination (median survival 29.5 days compared to 25 days respectively) (P<0.05). These results suggest that a replication-deficient recombinant NYVAC encoding the B7.1 gene and NYVAC encoding the IL-2 gene can be used to produce an effective vaccinia-virus-augmented tumor cell vaccine. Received: 2 March 1998 / Accepted 23 March 1998  相似文献   

18.
It is generally thought that effective treatments for prion diseases need to inhibit prion propagation, protect neuronal tissues and promote functional recovery of degenerated nerve tissues. In addition, such treatments should be effective even when given after clinical onset of the disease and administered via a peripheral route. In this study, the effect of peripheral administration of an anti‐PrP antibody on disease progression in prion‐infected mice was examined. mAb 31C6 was administered via the tail veins of prion‐infected mice at the time of clinical onset (120 days post‐inoculation with the Chandler prion strain) and the distribution of this mAb in the brain and its effect on mouse survival assessed. The antibody was distributed to the cerebellums and thalami of the infected mice and more than half these mice survived longer than mice that had been given a negative control mAb. The level of PrPSc in the mAb 31C6‐treated mice was lower than that in mice treated with the negative control mAb and progression of neuropathological lesions in the cerebellum, where the mAb 31C6 was well distributed, appeared to be mitigated. These results suggest that administration of an anti‐PrP mAb through a peripheral route is a candidate for the treatment of prion diseases.  相似文献   

19.
Amplification pretargeting can play an important role in molecular imaging by significantly increasing the accumulation of signal in target tissues. Multiple-step amplification pretargeting offers the potential to greatly improve target localization of effector molecules through the intermediate use of polymers conjugated with multiple copies of complementary oligomers. In this study, PAMAM dendrimer generation 3 (G3) was conjugated with multiple copies of a phosphorodiamidate morpholino (MORF) oligomer. Characterization of the conjugate by native-PAGE and SE-HPLC demonstrated that the conjugation was successful. The average numbers of MORF groups in the G3-MORF conjugate, both attached and accessible to the (99m)Tc labeled complementary MORF (cMORF), were determined. The antitumor antibody CC49 was conjugated with both MORF and cMORF (collectively (c)MORF) at an average of about one group per molecule. Nine of the 32 carboxyl groups of the dendrimer were modified with MORF, of which 90% were accessible in solution to (99m)Tc-cMORF. After purification, the G3-MORF was radiolabeled with tracer (99m)Tc-labeled cMORF (i.e., G3-MORF/(99m)Tc-cMORF) and added to the antibody CC49 previously conjugated with cMORF (i.e., CC49-cMORF/G3-MORF/(99m)Tc-cMORF), the complex demonstrated a single peak on SE-HPLC as evidence of complete hybridization between G3-MORF/(99m)Tc-cMORF and CC49-cMORF. The CC49-(c)MORF were bound to both Protein G and Protein L coated plates, and G3-MORF was added to hybridize with CC49-cMORF before the (99m)Tc-cMORF was added to test amplification pretargeting. In comparison to conventional pretargeting without the G3-MORF, the signal was amplified about 6 and 14 times, respectively, showing that the G3-MORF participated in amplifying the signal. Further amplification studies using the CC49-(c)MORF for LS174T tumor cells in tissue culture also demonstrated clear evidence of signal amplification.  相似文献   

20.
A method of removing radiolabeled monoclonal antibodies (mAbs) from blood using a device external to the body, termed extracorporeal affinity-adsorption (EAA), is being evaluated as a means of decreasing irradiation of noncancerous tissues in therapy protocols. The EAA device uses an avidin column to capture biotinylated-radiolabeled mAbs from circulated blood. In this investigation, three trifunctional reagents have been developed to minimize the potential deleterious effect on antigen binding brought about by the combination of radiolabeling and biotinylation of mAbs required in the EAA approach. The studies focused on radiolabeling with (111)In and (90)Y, so the chelates CHX-A' '-DTPA and DOTA, which form stable attachments to these radionuclides, were incorporated in the trifunctional reagents. The first trifunctional reagent prepared did not incorporate a group to block the biotin cleaving enzyme biotinidase, but the two subsequent reagents coupled aspartic acid to the biotin carboxylate for that purpose. All three reagents used 4,7,10-trioxa-1,13-tridecanediamine as water-soluble spacers between an aminoisophthalate core and the biotin or chelation group. The mAb conjugates were radioiodinated to evaluate cell binding as a function of substitution. Radioiodination was used so that a direct comparison with unmodified mAb could be made. Evaluation of the number of conjugates per antibody versus cell binding immunoreactivities indicated that minimizing the number of conjugates was best. Interestingly, a decrease of radioiodination yield as a function of the number of isothiocyanate containing conjugates per mAb was noted. The decreased yields were presumably due to the presence of thiourea functionality formed in the conjugation reaction. Radiolabeling with (111)In and (90)Y was facile at room temperature for conjugates containing the CHX-A' ', but elevated temperature (e.g., 45 degrees C) was required to obtain good yields with the DOTA chelate. Stability of (90)Y labeled mAb in serum, and when challenged with 10 mM EDTA, was high. However, challenging the (90)Y labeled mAb with 10 mM DTPA demonstrated high stability for the DOTA containing conjugate, but low stability for the CHX-A' ' containing conjugate. Thus, the choice between these two chelating moieties might be made on requirements for facile and gentle labeling versus very high in vivo stability. Application of the trifunctional biotinylation reagents to the blood clearance of labeled antibodies in EAA is under investigation. The new reagents may also be useful for other applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号