首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In addition to its activities as a growth factor, recent studies suggest an immunoregulatory role for transforming growth factor-beta (TGF-beta). In this context we have demonstrated that TGF-beta is a potent chemotactic factor in vitro for human T lymphocytes at a concentration of 40 fM and for monocytes at a concentration of 0.4 fM but that it has no chemotactic activity for neutrophils. Furthermore, using an assay of lymphocyte subset chemotaxis we have been able to show that TGF-beta can induce migration of both CD4+ and CD8+ T lymphocytes in vitro. This study provides further evidence that TGF-beta acts as a cytokine, being able to attract T lymphocytes and monocytes to sites of inflammation. Its role in the pathogenesis of inflammatory reactions is likely to be complex.  相似文献   

2.
Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the Gq/11 protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP3) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/Gq/11 protein and inositol-1,4,5-trisphosphate-induced Ca2+ mobilization in human ASMCs.  相似文献   

3.
Knockout of transforming growth factor (TGF)-1 or components of its signaling pathway leads to embryonic death in mice due to impaired yolk sac vascular development before significant smooth muscle cell (SMC) maturation occurs. Thus the role of TGF-1 in SMC development remains unclear. Embryonic stem cell (ESC)-derived embryoid bodies (EBs) recapitulate many of the events of early embryonic development and represent a more physiological context in which to study SMC development than most other in vitro systems. The present studies showed induction of the SMC-selective genes smooth muscle -actin (SMA), SM22, myocardin, smoothelin-B, and smooth muscle myosin heavy chain (SMMHC) within a mouse ESC-EB model system. Significantly, SM2, the SMMHC isoform associated with fully differentiated SMCs, was expressed. Importantly, the results showed that aggregates of SMMHC-expressing cells exhibited visible contractile activity, suggesting that all regulatory pathways essential for development of contractile SMCs were functional in this in vitro model system. Inhibition of endogenous TGF- with an adenovirus expressing a soluble truncated TGF- type II receptor attenuated the increase in SMC-selective gene expression in the ESC-EBs, as did an antibody specific for TGF-1. Of interest, the results of small interfering (si)RNA experiments provided evidence for differential TGF--Smad signaling for an early vs. late SMC marker gene in that SMA promoter activity was dependent on both Smad2 and Smad3 whereas SMMHC activity was Smad2 dependent. These results are the first to provide direct evidence that TGF-1 signaling through Smad2 and Smad3 plays an important role in the development of SMCs from totipotential ESCs. embryoid body; Smad  相似文献   

4.
Summary Transforming growth factor-beta (TGF-β), an ubiquitous regulatory peptide, has diverse effects on the differentiation and behavior of vascular smooth muscle cells (VSMC). However, the molecular mechanism through which TGF-α exerts its effects remains obscure. We investigated the phosphoinositide/protein kinase C [PKC] signaling pathway in the action of TGF-β on cultured embryonic avian VSMC of differing lineage: a) thoracic aorta, derived from the neural crest; and b) abdominal aorta, derived from mesenchyme. The second messenger responsible for activation of PKC is sn-1,2-diacylglycerol [DAG]; TGF-β increased the mass amounts of DAG in the membranes of neural crest-derived VSMC concurrent with translocation of PKC from the soluble to the membrane fraction, but TGF-β had no effect on the DAG or PKC of mesenchyme-derived VSMC. TGF-β potentiated the growth of platelet-derived growth factor (PDGF)-treated, neural crest-derived VSMC; but abolished PDGF-induced growth of mesenchymal cells. It is concluded that molecular and functional responses of VSMC to TGF-β are heterogeneous and are functions of the embryonic lineage of the VSMC.  相似文献   

5.
Activation of vascular smooth muscle cells (VSMCs) by proinflammatory cytokines is a key feature of atherosclerotic lesion formation. Transforming growth factor (TGF)-beta1 is a pleiotropic growth factor that can modulate the inflammatory response in diverse cell types including VSMCs. However, the mechanisms by which TGF-beta1 is able to mediate these effects remains incompletely understood. We demonstrate here that the ability of TGF-beta1 to inhibit markers of VSMC activation, inducible nitric-oxide synthase (iNOS) and interleukin (IL)-6, is mediated through its downstream effector Smad3. In reporter gene transfection studies, we found that among a panel of Smads, Smad3 could inhibit iNOS induction in an analogous manner as exogenous TGF-beta1. Adenoviral overexpression of Smad3 potently repressed inducible expression of endogenous iNOS and IL-6. Conversely, TGF-beta1 inhibition of cytokine-mediated induction of iNOS and IL-6 expression was completely blocked in Smad3-deficient VSMCs. Previous studies demonstrate that CCAAT/enhancer-binding protein (C/EBP) and NF-kappaB sites are critical for cytokine induction of both the iNOS and IL-6 promoters. We demonstrate that the inhibitory effect of Smad3 occurs via a novel antagonistic effect of Smad3 on C/EBP DNA-protein binding and activity. Smad3 mediates this effect in part by inhibiting C/EBP-beta and C/EBP-delta through distinct mechanisms. Furthermore, we find that Smad3 prevents the cooperative induction of the iNOS promoter by C/EBP and NF-kappaB. These data demonstrate that Smad3 plays an essential role in mediating TGF-beta1 anti-inflammatory response in VSMCs.  相似文献   

6.
Hypertrophy and hyperplasia lead to excess accumulation of smooth muscle in the airways of human asthmatic subjects. However, little is known about mechanisms that might counterbalance these processes, thereby limiting the quantity of smooth muscle in airways. Ligation of Fas on the surface of vascular smooth muscle cells and nonmuscle airway cells can lead to apoptotic cell death. We therefore tested the hypotheses that 1) human airway smooth muscle (HASM) expresses Fas, 2) Fas cross-linking induces apoptosis in these cells, and 3) tumor necrosis factor (TNF)-alpha potentiates Fas-mediated airway myocyte killing. Immunohistochemistry using CH-11 anti-Fas monoclonal IgM antibody revealed Fas expression in normal human bronchial smooth muscle in vivo. Flow cytometry using DX2 anti-Fas monoclonal IgG antibody revealed that passage 4 cultured HASM cells express surface Fas. Surface Fas decreased partially during prolonged serum deprivation of cultured HASM cells and was upregulated by TNF-alpha stimulation. Fas cross-linking with CH-11 antibody induced apoptosis in cultured HASM cells, and this effect was reduced by long-term serum deprivation and synergistically potentiated by concomitant TNF-alpha exposure. TNF-alpha did not induce substantial apoptosis in the absence of Fas cross-linking. These data represent the first demonstration that Fas is expressed on HASM and suggest a mechanism by which Fas-mediated apoptosis could act to oppose excess smooth muscle accumulation during airway remodeling in asthma.  相似文献   

7.
Endothelin-1 (ET-1), a G protein-coupled receptor-activating peptide, is increased in airway epithelium, plasma, and bronchoalveolar lavage fluid of asthmatic patients. We hypothesized that ET-1 may contribute to the increased airway smooth muscle mass found in severe asthma by inducing hypertrophy and inhibiting apoptosis of smooth muscle cells. To investigate this hypothesis, we determined that treatment of primary human bronchial smooth muscle cells with ET-1 dose dependently [10(-11)-10(-7) M] inhibited the apoptosis induced by serum withdrawal. ET-1 treatment also resulted in a significant increase in total protein synthesis, mediated through both ET(A) and ET(B) receptors, cell size, as well as increased expression of myosin heavy chain, alpha-smooth muscle actin, and calponin. ET-1-induced hypertrophy was accompanied by activation of JAK1/STAT-3 and MAPK1/2 (ERK1/2) cell signaling pathways. Inhibition of JAK1/STAT-3 pathways by piceatannol or ERK1/2 by the MAPK/ERK kinase 1/2 inhibitor U0126 blunted the increase in total protein synthesis. The hypertrophic effect of ET-1 was equivalent to that of the gp130 cytokine oncostatin M and greater than that induced by cardiotrophin-1. ET-1 induced release of IL-6 but not IL-11, leukemia inhibitory factor, oncostatin M, or cardiotrophin-1, although treatment of cells with IL-6 alone did not induce hypertrophy. These results suggest that ET-1 is a candidate mediator for the induction of increased smooth muscle mass in asthma and identify signaling pathways activated by this mediator.  相似文献   

8.
Transforming growth factor-beta1 (TGF-beta1) is abundantly expressed in pulmonary hypertension, but its effect on the pulmonary circulation remains unsettled. We studied the consequences of TGF-beta1 stimulation on freshly isolated human pulmonary artery smooth muscle cells (HPASMC). TGF-beta1 initially promoted differentiation, with upregulated expression of smooth muscle contractile proteins. TGF-beta1 also induced expression of Nox4, the only NAD(P)H oxidase membrane homolog found in HPASMC, through a signaling pathway involving Smad 2/3 but not mitogen-activated protein (MAP) kinases. TGF-beta1 likewise increased production of reactive oxygen species (ROS), an effect significantly reduced by the NAD(P)H oxidase flavoprotein inhibitor diphenylene iodonium (DPI) and by Nox4 siRNAs. In the absence of TGF-beta1, Nox4 was present in freshly cultured cells but progressively lost with each passage in culture, paralleling a decrease in ROS production by HPASMC over time. At a later time point (72 h), TGF-beta1 promoted HPASMC proliferation in a manner partially inhibited by Nox4 small interfering RNA and dominant negative Smad 2/3, indicating that TGF-beta1 stimulates HPASMC growth in part by a redox-dependent mechanism mediated through induction of Nox4. HPASMC activation of the MAP kinases ERK1/2 was reduced by the NAD(P)H oxidase inhibitors DPI and 4-(2-aminoethyl)benzenesulfonyl fluoride, suggesting that TGF-beta1 may facilitate proliferation by upregulating Nox4 and ROS production, with transient oxidative inactivation of phosphatases and augmentation of growth signaling cascades. These findings suggest that Nox4 is the relevant Nox homolog in HPASMC. This is the first observation that TGF-beta1 regulates Nox4, with important implications for mechanisms of pulmonary vascular remodeling.  相似文献   

9.
10.
11.
12.
Transforming growth factor-Beta (TGF-beta) is a potent growth inhibitor for several cell types including epithelial cells and hematopoietic progenitor cells. Using a human promonocytic leukemia cell line, THP-1, we have shown that TGF-beta inhibits their proliferation and promotes differentiation into cells exhibiting macrophage-like properties. Therefore, a key question is whether TGF-beta influences the expression of genes associated with proliferation and/or growth inhibition. TGF-beta treatment of THP-1 cells results in downregulation of expression of c-myc. We also observe that TGF-beta 1-treated cells express reduced levels of the cell cycle regulated histone, H2B, but express elevated levels of an RNA splicing variant of this histone that has been observed to be upregulated in growth inhibited and terminally differentiated cells. In addition, a nuclear protein associated with senescence and withdrawal of cells from the cell cycle, statin, is also expressed by THP-1 cells in response to TGF-beta 1 treatment. These results suggest that TGF-beta 1 is capable of inducing expression of specific nuclear proteins associated with differentiation and/or cessation of proliferation that may result in changes in nuclear organization and altered gene expression. Such changes in nuclear organization may be incompatible with continued proliferation of the cells.  相似文献   

13.
14.
The effects of transforming growth factor-beta (TGF-beta) on low density lipoprotein (LDL) receptor-mediated cholesterol metabolism were evaluated in vascular smooth muscle cells. TGF-beta significantly increased the binding, uptake, and degradation of 125I-LDL. This increase was paralleled by an increase in LDL receptor mRNA steady state levels and an increase in cholesterol esterification. The increase in LDL cholesterol metabolism was independent of proliferation. LDL receptor expression in response to TGF-beta was not affected by coincubation with an antibody against platelet-derived growth factor or by cyclooxygenase inhibitors in arterial smooth muscle cells, suggesting that TGF-beta's effect was not mediated through platelet-derived growth factor or prostaglandins, as demonstrated in other cell systems. However, coincubation with pertussis toxin abrogated the effect of TGF-beta on LDL receptor expression, suggesting that a pertussis toxin-sensitive G-protein may be involved in the signal transduction pathway. These results are discussed in terms of their potential effects on cellular cholesterol trafficking.  相似文献   

15.
Both insulin-like growth factor binding protein-3 (IGFBP-3) and transforming growth factor-beta (TGF-beta) have been separately shown to have cell-specific growth-inhibiting or growth-potentiating effects. TGF-beta stimulates IGFBP-3 mRNA and peptide expression in several cell types, and TGF-beta-induced growth inhibition and apoptosis have been shown to be mediated through the induction of IGFBP-3. However, a link between the growth stimulatory effects of TGF-beta and IGFBP-3-induction has not been shown. In this study, we investigated the role of IGFBP-3 in mediating TGF-beta1-induced cell growth using human airway smooth muscle (ASM) cells as our model. TGF-beta1 (1 ng/ml) treatment induced a 10- to 20-fold increase in the levels of expression of IGFBP-3 mRNA and protein. Addition of either IGFBP-3 or TGF-beta1 to the growth medium resulted in an approximately twofold increase in cell proliferation. Coincubation of ASM cells with IGFBP-3 antisense (but not sense) oligomers as well as with an IGFBP-3 neutralizing antibody (but not with control IgG) blocked the growth induced by TGF-beta1 (P < 0.001). Several IGFBP-3-associated proteins were observed in ASM cell lysates, which may have a role in the cellular responses to IGFBP-3. These findings demonstrate that IGFBP-3 is capable of mediating the growth stimulatory effect of TGF-beta in ASM cells.  相似文献   

16.
Recent studies found that peroxiredoxin-I (Prx-I) is secreted from A549 cells although it does not contain a signal peptide and is known to be a cytosolic protein. Transforming growth factor-beta1 (TGF-beta1) treatment dramatically enhanced Prx-I secretion from A549 cells, and this effect was not inhibited by brefeldin A. Further investigation revealed that A549 cells constitutively secrete TGF-beta1. Furin, a TGF-beta1-converting enzyme, was also highly activated in A549 cells. Ectopic expression of alpha(1)-antitrypsin Portland (alpha(1)-PDX), a potent furin inhibitor, blocked both TGF-beta1 activation and Prx-I secretion. Our findings collectively suggest that non-classical secretion of Prx-I is induced by TGF-beta1, which is constitutively activated by furin in A549 cells.  相似文献   

17.
Transforming growth factor β (TGFβ) is a key remodelling factor in asthma. It is produced as a latent complex and the main limiting step in TGFβ bioavailability is its activation. Mast cell tryptase has been shown to stimulate the release of functionally active TGFβ from human airway smooth muscle (ASM) cells [P. Berger, P.O. Girodet, H. Begueret, O. Ousova, D.W. Perng, R. Marthan, A.F. Walls, J.M. Tunon de Lara, Tryptase-stimulated human airway smooth muscle cells induce cytokine synthesis and mast cell chemotaxis, FASEB J. 17 (2003) 2139-2141]. The aim of this study was to determine if tryptase could cause TGFβ activation as well as expression in ASM cells via its receptor, proteinase-activated receptor 2 (PAR2). Tryptase caused TGFβ activation without affecting levels of total TGFβ. This effect was inhibited by the selective tryptase inhibitor FUT175 and leupeptin but not mimicked by the PAR2 activating peptide SLIGKV-NH2. Furthermore, the ASM cells used in the study did not express PAR2. The results indicate that tryptase activates TGFβ via a PAR2-independent proteolytic mechanism in human ASM cells and may help understanding the role of tryptase in asthma.  相似文献   

18.
19.
In a previous study, we showed that isoproterenol induced actin depolymerization in human airway smooth muscle cells by both protein kinase A (PKA)-dependent and -independent signaling pathways. We now investigate the signaling pathway of PKA-independent actin depolymerization induced by isoproterenol in these cells. Cells were briefly exposed to isoproterenol or PGE(1) in the presence and absence of specific inhibitors of Src-family tyrosine kinases, phosphatidylinositol-3-kinase (PI3 kinase), or MAP kinase, and actin depolymerization was measured by concomitant staining of filamentous actin with FITC-phalloidin and globular actin with Texas red DNase I. Isoproterenol, cholera toxin, and PGE(1) induced actin depolymerization, indicated by a decrease in the intensity of filamentous/globular fluorescent staining. Pretreatment with the Src kinase inhibitors 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyriimidine (PP2) or geldanamycin or the PKA inhibitor Rp-cAMPS only partly inhibited isoproterenol- or PGE(1)-induced actin depolymerization. In contrast, PP2 and geldanamycin did not inhibit forskolin-induced actin depolymerization, and AG-213 (an EGF receptor tyrosine kinase inhibitor) did not inhibit isoproterenol- or PGE(1)-induced actin depolymerization. PI3 kinase or MAP kinase inhibition did not inhibit isoproterenol-induced actin depolymerization. Moreover, isoproterenol but not forskolin induced tyrosine phosphorylation of an Src family member at position 416. These results further confirm that both PKA-dependent and PKA-independent pathways mediate actin depolymerization in human airway smooth muscle cells and that the PKA-independent pathway by which isoproterenol induces actin depolymerization in human airway smooth muscle cells involves Src protein tyrosine kinases and the G(s) protein.  相似文献   

20.
Sphingosine 1-phosphate (S1P), a bioactive sphingolipid elevated in asthmatic airways, is increasingly recognized as playing an important role in respiratory disease. S1P activates receptor-mediated signaling to modulate diverse cellular functions and promote airway inflammation. Although many of the stimulatory pathways activated by S1P have been delineated, especially mitogen-activated protein kinases (MAPK), the question of whether S1P exerts negative feedback control on its own signaling cascade via upregulation of phosphatases remains unexplored. We show that S1P rapidly and robustly upregulates mRNA and protein expression of the MAPK deactivator-MAPK phosphatase 1 (MKP-1). Utilizing the pivotal airway structural cell, airway smooth muscle (ASM), we confirm that S1P activates all members of the MAPK family and, in part, S1P upregulates MKP-1 expression in a p38 MAPK-dependent manner. MKP-1 is a cAMP response element binding (CREB) protein-responsive gene and here, we reveal for the first time that an adenylate cyclase/PKA/CREB-mediated pathway also contributes to S1P-induced MKP-1. Thus, by increasing MKP-1 expression via parallel p38 MAPK- and CREB-mediated pathways, S1P temporally regulates MAPK signaling pathways by upregulating the negative feedback controller MKP-1. This limits the extent and duration of pro-inflammatory MAPK signaling and represses cytokine secretion in ASM cells. Taken together, our results demonstrate that S1P stimulates both kinases and the phosphatase MKP-1 to control inflammation in ASM cells and may provide a greater understanding of the molecular mechanisms responsible for the pro-asthmatic functions induced by the potent bioactive sphingolipid S1P in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号