首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that inhibition of L-type Ca2+ current (ICa) by cytosolic free Mg2+ concentration ([Mg2+]i) is profoundly affected by activation of cAMP-dependent protein kinase pathways. To investigate the mechanism underlying this counterregulation of ICa, rat cardiac myocytes and tsA201 cells expressing L-type Ca2+ channels were whole cell voltage-clamped with patch pipettes in which [Mg2+] ([Mg2+]p) was buffered by citrate and ATP. In tsA201 cells expressing wild-type Ca2+ channels (1C/2A/2), increasing [Mg2+]p from 0.2 mM to 1.8 mM decreased peak ICa by 76 ± 4.5% (n = 7). Mg2+-dependent modulation of ICa was also observed in cells loaded with ATP--S. With 0.2 mM [Mg2+]p, manipulating phosphorylation conditions by pipette application of protein kinase A (PKA) or phosphatase 2A (PP2A) produced large changes in ICa amplitude; however, with 1.8 mM [Mg2+]p, these same manipulations had no significant effect on ICa. With mutant channels lacking principal PKA phosphorylation sites (1C/S1928A/2A/S478A/S479A/2), increasing [Mg2+]p had only small effects on ICa. However, when channel open probability was increased by 1C-subunit truncation (1C1905/2A/S478A/S479A/2), increasing [Mg2+]p greatly reduced peak ICa. Correspondingly, in myocytes voltage-clamped with pipette PP2A to minimize channel phosphorylation, increasing [Mg2+]p produced a much larger reduction in ICa when channel opening was promoted with BAY K8644. These data suggest that, around its physiological concentration range, cytosolic Mg2+ modulates the extent to which channel phosphorylation regulates ICa. This modulation does not necessarily involve changes in channel phosphorylation per se, but more generally appears to depend on the kinetics of gating induced by channel phosphorylation. voltage-gated Ca2+ channel; cardiac myocytes; human embryonic kidney cells; protein kinase A; protein phosphatase 2A  相似文献   

2.
The role of PKC in the regulation of store-operated Ca2+ entry (SOCE) is rather controversial. Here, we used Ca2+-imaging, biochemical, pharmacological, and molecular techniques to test if Ca2+-independent PLA2β (iPLA2β), one of the transducers of the signal from depleted stores to plasma membrane channels, may be a target for the complex regulation of SOCE by PKC and diacylglycerol (DAG) in rabbit aortic smooth muscle cells (SMCs). We found that the inhibition of PKC with chelerythrine resulted in significant inhibition of thapsigargin (TG)-induced SOCE in proliferating SMCs. Activation of PKC by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) caused a significant depletion of intracellular Ca2+ stores and triggered Ca2+ influx that was similar to TG-induced SOCE. OAG and TG both produced a PKC-dependent activation of iPLA2β and Ca2+ entry that were absent in SMCs in which iPLA2β was inhibited by a specific chiral enantiomer of bromoenol lactone (S-BEL). Moreover, we found that PKC regulates TG- and OAG-induced Ca2+ entry only in proliferating SMCs, which correlates with the expression of the specific PKC- isoform. Molecular downregulation of PKC- impaired TG- and OAG-induced Ca2+ influx in proliferating SMCs but had no effect in confluent SMCs. Our results demonstrate that DAG (or OAG) can affect SOCE via multiple mechanisms, which may involve the depletion of Ca2+ stores as well as direct PKC--dependent activation of iPLA2β, resulting in a complex regulation of SOCE in proliferating and confluent SMCs. protein kinase C-; Ca2+-independent phospholipase A2; diacylglycerol; smooth muscle cells  相似文献   

3.
We examined the effect of EGF on the proliferation of mouse embryonic stem (ES) cells and their related signal pathways. EGF increased [3H]thymidine and 5-bromo-2'-deoxyuridine incorporation in a time- and dose-dependent manner. EGF stimulated the phosphorylation of EGF receptor (EGFR). Inhibition of EGFR tyrosine kinase with AG-1478 or herbimycin A, inhibition of PLC with neomycin or U-73122, inhibition of PKC with bisindolylmaleimide I or staurosporine, and inhibition of L-type Ca2+ channels with nifedipine or methoxyverapamil prevented EGF-induced [3H]thymidine incorporation. PKC-, -I, -, -, and - were translocated to the membrane and intracellular Ca2+ concentration ([Ca2+]i) was increased in response to EGF. Moreover, inhibition of EGFR tyrosine kinase, PLC, and PKC completely prevented EGF-induced increases in [Ca2+]i. EGF also increased inositol phosphate levels, which were blocked by EGFR tyrosine kinase inhibitors. Furthermore, EGF rapidly increased formation of H2O2, and pretreatment with antioxidant (N-acetyl-L-cysteine) inhibited EGF-induced increase of [Ca2+]i. In addition, we observed that p44/42 MAPK phosphorylation by EGF and inhibition of EGFR tyrosine kinase, PLC, PKC, or Ca2+ channels blocked EGF-induced phosphorylation of p44/42 MAPKs. Inhibition of p44/42 MAPKs with PD-98059 (MEK inhibitor) attenuated EGF-induced increase of [3H]thymidine incorporation. Finally, inhibition of EGFR tyrosine kinase, PKC, Ca2+ channels, or p44/42 MAPKs attenuated EGF-stimulated cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, and CDK4, respectively. In conclusion, EGF partially stimulates proliferation of mouse ES cells via PLC/PKC, Ca2+ influx, and p44/42 MAPK signal pathways through EGFR tyrosine kinase phosphorylation. calcium; epidermal growth factor; mitogen-activated protein kinases; protein kinase C  相似文献   

4.
We used theCa2+-sensitive fluorescent dyefura 2, together with measurements of intracellularD-myo-inositol1,4,5-trisphosphate [Ins(1,4,5)P3],to assess the inhibitory effects of caffeine on signal transduction viaG protein-coupled receptor pathways in isolated rat mandibular salivaryacinar cells. ACh, norepinephrine (NE), and substance P (SP) all evokedsubstantial increases in the intracellular freeCa2+ concentration([Ca2+]i).Responses to ACh and NE were markedly inhibited by prior application of20 mM caffeine. The inhibitory effect of caffeine was not reproduced byphosphodiesterase inhibition with IBMX or addition of cell-permeantdibutyryl cAMP. In contrast to the ACh and NE responses, the[Ca2+]iresponse to SP was unaffected by caffeine. Despite this, SP and AChappeared to mobilize Ca2+ from acommon intracellular pool. Measurements of agonist-induced changes inIns(1,4,5)P3levels confirmed that caffeine inhibited the stimulus-response couplingpathway at a point beforeIns(1,4,5)P3 generation. Caffeine did not, however, inhibit[Ca2+]iresponses evoked by direct activation of G proteins with 40 mMF. These data show thatcaffeine inhibits G protein-coupled signal transduction in these cellsat some element that is common to the muscarinic and -adrenergicsignaling pathways but is not shared by the SP signaling pathway. Wesuggest that this element might be a specific structural motif on the Gprotein-coupled muscarinic and -adrenergic receptors.  相似文献   

5.
Several proteins belonging to the ATP-binding cassettesuperfamily can affect ion channel function. These include the cystic fibrosis transmembrane conductance regulator, the sulfonylurea receptor, and the multidrug resistance protein P-glycoprotein (MDR1).We measured whole cell swelling-activatedCl currents(ICl,swell) inparental cells and cells expressing wild-type MDR1 or aphosphorylation-defective mutant (Ser-661, Ser-667, and Ser-671replaced by Ala). Stimulation of protein kinase C (PKC) with a phorbolester reduced the rate of increase inICl,swell only incells that express MDR1. PKC stimulation had no effect on steady-stateICl,swell.Stimulation of protein kinase A (PKA) with 8-bromoadenosine3',5'-cyclic monophosphate reduced steady-state ICl,swell only inMDR1-expressing cells. PKA stimulation had no effect on the rate ofICl,swellactivation. The effects of stimulation of PKA and PKC onICl,swell wereadditive (i.e., decrease in the rate of activation and reduction insteady-stateICl,swell). The effects of PKA and PKC stimulation were absent in cells expressing thephosphorylation-defective mutant. In summary, it is likely thatphosphorylation of MDR1 by PKA and by PKC alters swelling-activated Cl channels by independentmechanisms and that Ser-661, Ser-667, and Ser-671 are involved in theresponses ofICl,swell tostimulation of PKA and PKC. These results support the notion that MDR1phosphorylation affectsICl,swell.  相似文献   

6.
Ca2+-activatedCl currents (ICl,Ca) wereexamined using fluorescence confocal microscopy to monitorintracellular Ca2+ liberation evoked by flash photolysis ofcaged inositol 1,4,5-trisphosphate (InsP3) involtage-clamped Xenopus oocytes. Currents at +40 mV exhibited asteep dependence on InsP3 concentration([InsP3]), whereas currents at140 mV exhibited a higher threshold and more graded relationshipwith [InsP3]. Ca2+ levelsrequired to half-maximally activate ICl,Ca wereabout 50% larger at 140 mV than at +40 mV, and currents evokedby small Ca2+ elevations were reduced >25-fold. Thehalf-decay time of Ca2+ signals shortened at increasinglypositive potentials, whereas the decay of ICl,Calengthened. The steady-state current-voltage (I-V) relationshipfor ICl,Ca exhibited outward rectification withweak photolysis flashes but became more linear with stronger stimuli.Instantaneous I-V relationships were linear with both strongand weak stimuli. Current relaxations following voltage steps duringactivation of ICl,Ca decayed with half-times that shortened from about 100 ms at +10 mV to 20 ms at 160 mV. We conclude that InsP3-mediated Ca2+liberation activates a single population of Clchannels, which exhibit voltage-dependent Ca2+ activationand voltage-independent instantaneous conductance.

  相似文献   

7.
The rat dorsal root ganglion (DRG) Ca2+-sensing receptor (CaR) was stably expressed in-frame as an enhanced green fluorescent protein (EGFP) fusion protein in human embryonic kidney (HEK)293 cells, and is functionally linked to changes in intracellular Ca2+ concentration ([Ca2+]i). RT-PCR analysis indicated the presence of the message for the DRG CaR cDNA. Western blot analysis of membrane proteins showed a doublet of 168–175 and 185 kDa, consistent with immature and mature forms of the CaR.EGFP fusion protein, respectively. Increasing extracellular [Ca2+] ([Ca2+]e) from 0.5 to 1 mM resulted in increases in [Ca2+]i levels, which were blocked by 30 µM 2-aminoethyldiphenyl borate. [Ca2+]e-response studies indicate a Ca2+ sensitivity with an EC50 of 1.75 ± 0.10 mM. NPS R-467 and Gd3+ activated the CaR. When [Ca2+]e was successively raised from 0.25 to 4 mM, peak [Ca2+]i, attained with 0.5 mM, was reduced by 50%. Similar reductions were observed with repeated applications of 10 mM Ca2+, 1 and 10 µM NPS R-467, or 50 and 100 µM Gd3+, indicating desensitization of the response. Furthermore, Ca2+ mobilization increased phosphorylated protein kinase C (PKC) levels in the cells. However, the PKC activator, phorbol myristate acetate did not inhibit CaR-mediated Ca2+ signaling. Rather, a spectrum of PKC inhibitors partially reduced peak responses to Cae2+. Treatment of cells with 100 nM PMA for 24 h, to downregulate PKC, reduced [Ca2+]i transients by 49.9 ± 5.2% (at 1 mM Ca2+) and 40.5 ± 6.5% (at 2 mM Ca2+), compared with controls. The findings suggest involvement of PKC in the pathway for Ca2+ mobilization following CaR activation. desensitization; protein kinase C  相似文献   

8.
TheCl secretory response ofcolonic cells to Ca2+-mediatedagonists is transient despite a sustained elevation of intracellular Ca2+. We evaluated the effects ofsecond messengers proposed to limit Ca2+-mediatedCl secretion on thebasolateral membrane,Ca2+-dependentK+ channel(KCa) in colonic secretorycells, T84. Neither protein kinase C (PKC) nor inositoltetrakisphosphate (1,3,4,5 or 3,4,5,6 form) affectedKCa in excised inside-out patches.In contrast, arachidonic acid (AA; 3 µM) potently inhibitedKCa, reducingNPo, the productof number of channels and channel open probability, by 95%. Theapparent inhibition constant for this AA effect was 425 nM. AAinhibited KCa in the presence ofboth indomethacin and nordihydroguaiaretic acid, blockers of thecyclooxygenase and lipoxygenase pathways. In the presence of albumin,the effect of AA on KCa wasreversed. A similar effect of AA was observed onKCa during outside-out recording.We determined also the effect of thecis-unsaturated fatty acid linoleate,the trans-unsaturated fatty acidelaidate, and the saturated fatty acid myristate. At 3 µM, all ofthese fatty acids inhibited KCa,reducing NPo by 72-86%. Finally, the effect of the cytosolic phospholipaseA2 inhibitorarachidonyltrifluoromethyl ketone(AACOCF3) on thecarbachol-induced short-circuit current(Isc) responsewas determined. In the presence ofAACOCF3, the peakcarbachol-inducedIsc response wasincreased ~2.5-fold. Our results suggest that AA generation inducedby Ca2+-mediated agonists maycontribute to the dissociation observed between the rise inintracellular Ca2+ evoked by theseagonists and the associatedCl secretory response.

  相似文献   

9.
Localized Ca2+ transients resulting from inositoltrisphosphate (IP3)-dependent Ca2+ releasecouple to spontaneous transient outward currents (STOCs) in murinecolonic myocytes. Confocal microscopy and whole cell patch-clamptechniques were used to investigate coupling between localizedCa2+ transients and STOCs. Colonic myocytes were loadedwith fluo 3. Reduction in external Ca2+([Ca2+]o) reduced localized Ca2+transients but increased STOC amplitude and frequency. Simultaneous recordings of Ca2+ transients and STOCs showed increasedcoupling strength between Ca2+ transients and STOCs when[Ca2+]o was reduced. Gd3+ (10 µM) did not affect Ca2+ transients but increased STOCamplitude and frequency. Similarly, an inhibitor of Ca2+influx,1-2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole (SKF-96365), increased STOC amplitude and frequency. A protein kinase C(PKC) inhibitor, GF-109203X, also increased the amplitude and frequencyof STOCs but had no effect on Ca2+ transients. Phorbol12-myristate 13-acetate (1 µM) reduced STOC amplitude and frequencybut did not affect Ca2+ transients. 4-Phorbol (1 µM)had no effect on STOCs or Ca2+ transients. Single channelstudies indicated that large-conductance Ca2+-activatedK+ (BK) channels were inhibited by aCa2+-dependent PKC. In summary 1)Ca2+ release from IP3 receptor-operated storesactivates Ca2+-activated K+ channels;2) Ca2+ influx through nonselective cationchannels facilitates activation of PKC; and 3) PKC reducesthe Ca2+ sensitivity of BK channels, reducing the couplingstrength between localized Ca2+ transients and BK channels.

  相似文献   

10.
Astrocytes are involved in normal andpathological brain functions, where they become activated and undergoreactive gliosis. Astrocytes have been shown to respond toextracellular nucleotides via the activation of P2 receptors, either Gprotein-coupled P2Y receptors or P2X receptors that are ligand-gatedion channels. In this study, we have examined the manner in whichactivation of the P2X7 nucleotide receptor, anextracellular ATP-gated ion channel expressed in astrocytes, can leadto the phosphorylation of ERK1/2. Results showed that theP2X7 receptor agonist2',3'-O-(4-benzoyl)benzoyl-ATP induced ERK1/2phosphorylation in human astrocytoma cells overexpressing therecombinant rat P2X7 receptor (rP2X7-R), aresponse that was inhibited by the P2X7 receptorantagonist, oxidized ATP. Other results suggest thatrP2X7-R-mediated ERK1/2 phosphorylation was linked to thephosphorylation of the proline-rich/Ca2+-activated tyrosinekinase Pyk2, c-Src, phosphatidylinositol 3'-kinase, and proteinkinase C activities and was dependent on the presence ofextracellular Ca2+. These results support the hypothesisthat the P2X7 receptor and its signaling pathways play arole in astrocyte-mediated inflammation and neurodegenerative disease.

  相似文献   

11.
The effect of sphingosine-1-phosphate (S1P) on large-conductance Ca2+-activated K+ (BKCa) channels was examined in primary cultured human umbilical vein endothelial cells by measuring intracellular Ca2+ concentration ([Ca2+]i), whole cell membrane currents, and single-channel activity. In nystatin-perforated current-clamped cells, S1P hyperpolarized the membrane and simultaneously increased [Ca2+]i. [Ca2+]i and membrane potentials were strongly correlated. In whole cell clamped cells, BKCa currents were activated by increasing [Ca2+]i via cell dialysis with pipette solution, and the activated BKCa currents were further enhanced by S1P. When [Ca2+]i was buffered at 1 µM, the S1P concentration required to evoke half-maximal activation was 403 ± 13 nM. In inside-out patches, when S1P was included in the bath solution, S1P enhanced BKCa channel activity in a reversible manner and shifted the relationship between Ca2+ concentration in the bath solution and the mean open probability to the left. In whole cell clamped cells or inside-out patches loaded with guanosine 5'-O-(2-thiodiphosphate) (GDPS; 1 mM) using a patch pipette, GDPS application or pretreatment of cells with pertussis toxin (100 ng/ml) for 15 h did not affect S1P-induced BKCa current and channel activation. These results suggest that S1P enhances BKCa channel activity by increasing Ca2+ sensitivity. This channel activation hyperpolarizes the membrane and thereby increases Ca2+ influx through Ca2+ entry channels. Inasmuch as S1P activates BKCa channels via a mechanism independent of G protein-coupled receptors, S1P may be a component of the intracellular second messenger that is involved in Ca2+ mobilization in human endothelial cells. sphingolipid metabolites; intracellular second messenger; Ca2+ mobilization  相似文献   

12.
Mucin secretion by airway goblet cells is under the control ofapical P2Y2, phospholipaseC-coupled purinergic receptors. In SPOC1 cells, the mobilization ofintracellular Ca2+ by ionomycin orthe activation of protein kinase C (PKC) by phorbol 12-myristate13-acetate (PMA) stimulates mucin secretion in a fully additive fashion[L. H. Abdullah, J. D. Conway, J. A. Cohn, and C. W. Davis.Am. J. Physiol. 273 (Lung Cell. Mol. Physiol. 17):L201-L210, 1997]. This apparent independence between PKC andCa2+ in the stimulation of mucinsecretion was tested in streptolysin O-permeabilized SPOC1 cells. Thesecells were fully competent to secrete mucin whenCa2+ was elevated from 100 nM to3.1 µM for 2 min following permeabilization; theCa2+EC50 was 2.29 ± 0.07 µM.Permeabilized SPOC1 cells were exposed to PMA or 4-phorbol atCa2+ activities ranging from 10 nMto 10 µM. PMA, but not 4-phorbol, increased mucin release at allCa2+ activities tested: at 10 nMCa2+ mucin release was 2.1-foldgreater than control and at 4.7 µM Ca2+ mucin release was maximal(3.6-fold increase). PMA stimulated 27% more mucin release at 4.7 µMthan at 10 nM Ca2+. Hence, SPOC1cells possess Ca2+-insensitive,PKC-dependent, and Ca2+-dependentPKC-potentiated pathways for mucin granule exocytosis.

  相似文献   

13.
In cardiacsarcolemmal vesicles, MgATP stimulatesNa+/Ca2+exchange with the following characteristics:1) increases 10-fold the apparentaffinity for cytosolic Ca2+;2) a Michaelis constant for ATP of~500 µM; 3) requires micromolar vanadate while millimolar concentrations are inhibitory;4) not observed in the presence of20 µM eosin alone but reinstated when vanadate is added;5) mimicked by adenosine5'-O-(3-thiotriphosphate), without the need for vanadate, but not by ,-methyleneadenosine 5'-triphosphate; and 6) notaffected by unspecific protein alkaline phosphatase but abolished by aphosphatidylinositol-specific phospholipase C (PI-PLC). The PI-PLCeffect is counteracted by phosphatidylinositol. In addition, in theabsence of ATP,L--phosphatidylinositol4,5-bisphosphate (PIP2) was ableto stimulate the exchanger activity in vesicles pretreated with PI-PLC.This MgATP stimulation is not related to phosphorylation of thecarrier, whereas phosphorylation appeared in the phosphoinositides,mainly PIP2, thatcoimmunoprecipitate with the exchanger. Vesicles incubated with MgATPand no Ca2+ show a markedsynthesis ofL--phosphatidylinositol4-monophosphate (PIP) with little production ofPIP2; in the presence of 1 µM Ca2+, the net synthesis of PIP issmaller, whereas that of PIP2increases ninefold. These results indicate thatPIP2 is involved in the MgATPstimulation of the cardiacNa+/Ca2+exchanger through a fast phosphorylation chain: aCa2+-independent PIP formationfollowed by a Ca2+-dependentsynthesis of PIP2.

  相似文献   

14.
Na+-K+-Cl cotransporter isoform 1 (NKCC1) and reverse mode operation of the Na+/Ca2+ exchanger (NCX) contribute to intracellular Na+ and Ca2+ overload in astrocytes following oxygen-glucose deprivation (OGD) and reoxygenation (REOX). Here, we further investigated whether NKCC1 and NCX play a role in mitochondrial Ca2+ (Cam2+) overload and dysfunction. OGD/REOX caused a doubling of mitochondrial-releasable Ca2+ (P < 0.05). When NKCC1 was inhibited with bumetanide, the mitochondrial-releasable Ca2+ was reduced by 42% (P < 0.05). Genetic ablation of NKCC1 also reduced Cam2+ accumulation. Moreover, OGD/REOX in NKCC1+/+ astrocytes caused dissipation of the mitochondrial membrane potential (m) to 42 ± 3% of controls. In contrast, when NKCC1 was inhibited with bumetanide, depolarization of m was attenuated significantly (66 ± 10% of controls, P < 0.05). Cells were also subjected to severe in vitro hypoxia by superfusion with a hypoxic, acidic, ion-shifted Ringer buffer (HAIR). HAIR/REOX triggered a secondary, sustained rise in intracellular Ca2+ that was attenuated by reversal NCX inhibitor KB-R7943. The hypoxia-mediated increase in Cam2+ was accompanied by loss of m and cytochrome c release in NKCC1+/+ astrocytes. Bumetanide or genetic ablation of NKCC1 attenuated mitochondrial dysfunction and astrocyte death following ischemia. Our study suggests that NKCC1 acting in concert with NCX causes a perturbation of Cam2+ homeostasis and mitochondrial dysfunction and cell death following in vitro ischemia. intracellular calcium ion; mitochondrial membrane potential; sodium ion influx; bumetanide; cytochrome c; glial cell death  相似文献   

15.
These experiments were performed to determine the effects ofreducing Ca2+ influx(Cain) onK+ currents(IK) inmyocytes from rat small mesenteric arteries by1) adding externalCd2+ or2) lowering externalCa2+ to 0.2 mM. When measured froma holding potential (HP) of 20 mV(IK20),decreasing Cain decreasedIK at voltageswhere it was active (>0 mV). When measured from a HP of 60 mV(IK60),decreasing Cain increasedIK at voltagesbetween 30 and +20 mV but decreased IK at voltagesabove +40 mV. Difference currents(IK) weredetermined by digital subtraction of currents recorded under controlconditions from those obtained whenCain was decreased. At testvoltages up to 0 mV,IK60 exhibitedkinetics similar to controlIK60, with rapidactivation to a peak followed by slow inactivation. At 0 mV, peakIK60 averaged75 ± 13 pA (n = 8) withCd2+ and 120 ± 20 pA(n = 9) with lowCa2+ concentration. At testvoltages from 0 to +60 mV,IK60 always had an early positive peak phase, but its apparent "inactivation" increased with voltage and its steady value became negative above +20mV. At +60 mV, the initial peakIK60 averaged115 ± 18 pA with Cd2+ and 187 ± 34 pA with low Ca2+. With 10 mM pipette BAPTA, Cd2+ produced asmall inhibition ofIK20 but stillincreased IK60 between 30 and +10 mV. InCa2+-free external solution,Cd2+ only decreased bothIK20 andIK60. In thepresence of iberiotoxin (100 nM) to inhibitCa2+-activatedK+ channels(KCa),Cd2+ increasedIK60 at allvoltages positive to 30 mV while BAY K 8644 (1 µM) decreasedIK60. Theseresults suggest that Cain, through L-type Ca2+ channels and perhapsother pathways, increases KCa(i.e., IK20) and decreases voltage-dependent K+currents in this tissue. This effect could contribute to membrane depolarization and force maintenance.

  相似文献   

16.
Activation of PLC-delta1 by Gi/o-coupled receptor agonists   总被引:1,自引:0,他引:1  
The mechanism of phospholipase (PLC)- activation by G protein-coupled receptor agonists was examined in rabbit gastric smooth muscle. Ca2+ stimulated an eightfold increase in PLC-1 activity in permeabilized muscle cells. Treatment of dispersed or cultured muscle cells with three Gi/o-coupled receptor agonists (somatostatin, -opioid agonist [D-Pen2,D-Pen5]enkephalin, and A1 agonist cyclopentyl adenosine) caused delayed increase in phosphoinositide (PI) hydrolysis (8- to 10-fold) that was strongly inhibited by overexpression of dominant-negative PLC-1(E341R/D343R; 65–76%) or constitutively active RhoA(G14V). The response coincided with capacitative Ca2+ influx and was not observed in the absence of extracellular Ca2+, but was partly inhibited by nifedipine (16–30%) and strongly inhibited by SKF-96365, a blocker of store-operated Ca2+ channels. Treatment of the cells with a Gq/13-coupled receptor agonist, CCK-8, caused only transient, PLC-1-mediated PI hydrolysis. Unlike Gi/o-coupled receptor agonists, CCK-8 activated RhoA and stimulated RhoA:PLC-1 association. Inhibition of RhoA activity with C3 exoenzyme or by overexpression of dominant-negative RhoA(T19N) or G13 minigene unmasked a delayed increase in PI hydrolysis that was strongly inhibited by coexpression of PLC-1(E341R/D343R) or by SKF-96365. Agonist-independent capacitative Ca2+ influx induced by thapsigargin stimulated PI hydrolysis (8-fold), which was partly inhibited by nifedipine (25%) and strongly inhibited by SKF-96365 (75%) and in cells expressing PLC-1(E341R/D343R). Agonist-independent Ca2+ release or Ca2+ influx via voltage-gated Ca2+ channels stimulated only moderate PI hydrolysis (2- to 3-fold), which was abolished by PLC-1 antibody or nifedipine. We conclude that PLC-1 is activated by Gi/o-coupled receptor agonists that do not activate RhoA. The activation is preferentially mediated by Ca2+ influx via store-operated Ca2+ channels. phospholipase C; G protein  相似文献   

17.
Certain angina and coronary artery disease forms do not respond to Ca2+ channel blockers, and a role for vasoactive eicosanoids such as PGF2 in Ca2+ antagonist-insensitive coronary vasospasm is suggested; however, the signaling mechanisms are unclear. We investigated whether PGF2-induced coronary smooth muscle contraction is Ca2+ antagonist insensitive and involves activation of a PKC-dependent pathway. We measured contraction in single porcine coronary artery smooth muscle cells and intracellular free Ca2+ concentration ([Ca2+]i) in fura 2-loaded cells and examined cytosolic and particulate fractions for PKC activity and reactivity with isoform-specific PKC antibodies. In Hanks' solution (1 mM Ca2+), PGF2 (10-5 M) caused transient [Ca2+]i increase followed by maintained [Ca2+]i increase and 34% cell contraction. Ca2+ channel blockers verapamil and diltiazem (10-6 M) abolished maintained PGF2-induced [Ca2+]i increase but only partially inhibited PGF2-induced cell contraction to 17%. Verapamil-insensitive PGF2 contraction was inhibited by PKC inhibitors GF-109203X, calphostin C, and -PKC V1-2. PGF2 caused Ca2+-dependent -PKC and Ca2+-independent -PKC translocation from cytosolic to particulate fractions that was inhibited by calphostin C. Verapamil abolished PGF2-induced -but not -PKC translocation. PMA (10-6 M), a direct activator of PKC, caused 21% contraction with no significant [Ca2+]i increase and -PKC translocation that were inhibited by calphostin C but not verapamil. Membrane depolarization by 51 mM KCl, which stimulates Ca2+ influx, caused 36% cell contraction and [Ca2+]i increase that were inhibited by verapamil but not GF-109203X or calphostin C and did not cause - or -PKC translocation. Thus a significant component of PGF2-induced contraction of coronary smooth muscle is Ca2+ antagonist insensitive, involves Ca2+-independent -PKC activation and translocation, and may represent a signaling mechanism of Ca2+ antagonist-resistant coronary vasospasm. eicosanoids; calcium; vascular smooth muscle  相似文献   

18.
We have studiedGq-linked ANG II signaling [inositol phosphate (IP)accumulation, Ca2+ mobilization] in primary cultures ofrat cardiac fibroblasts (CFs) and have found that ANG II initiates aprotein kinase C (PKC)-mediated negative feedback loop that rapidlyterminates the ANG II response. Pharmacological inhibition of PKC bystaurosporine and GF-109203X doubled IP production over that achievedin response to ANG II alone. Inhibition of PKC also led to largerCa2+ transients in response to ANG II, suggesting thatCa2+ mobilization was proportional toGq-phospholipase C-IP3 activity underthe conditions studied. Depletion of cellular PKC by overnight treatment with phorbol 12-myristate 13-acetate (PMA) similarly augmented ANG II-induced IP production. Acute activation of PKC by PMAhalved IP formation, with an EC501 nM; 4-PMA wasinactive. Time course data demonstrated that ANG II-mediated IPproduction fully desensitized within 30 s; PKC inhibition reducedthe rate and extent of this desensitization. In cells desensitized toANG II, a purinergic agonist still mobilized intracellularCa2+, indicating that desensitization was homologous. TheANG II-induced Ca2+ signal was fully resensitized within 30 min. The data demonstrate that a large portion of theIP-Ca2+ responses of rat CFs to ANG II are short-livedbecause of rapid, PKC-mediated desensitization.

  相似文献   

19.
The inhibitory control of pancreatic ductal HCO3 secretion may be physiologically important in terms of limiting the hydrostatic pressure developed within the ducts and in terms of switching off pancreatic secretion after a meal. Substance P (SP) inhibits secretin-stimulated HCO3 secretion by modulating a Cl-dependent HCO3 efflux step at the apical membrane of the duct cell (Hegyi P, Gray MA, and Argent BE. Am J Physiol Cell Physiol 285: C268–C276, 2003). In the present study, we have shown that SP is present in periductal nerves within the guinea pig pancreas, that PKC mediates the effect of SP, and that SP inhibits an anion exchanger on the luminal membrane of the duct cell. Secretin (10 nM) stimulated HCO3 secretion by sealed, nonperfused, ducts about threefold, and this effect was totally inhibited by SP (20 nM). Phorbol 12,13-dibutyrate (PDBu; 100 nM), an activator of PKC, reduced basal HCO3 secretion by 40% and totally blocked secretin-stimulated secretion. In addition, bisindolylmaleimide I (1 nM to 1 µM), an inhibitor of PKC, relieved the inhibitory effect of SP on secretin-stimulated HCO3 secretion and also reversed the inhibitory effect of PDBu. Western blot analysis revealed that guinea pig pancreatic ducts express the -, I-, -, -, -, -, -, and µ-isoforms of PKC. In microperfused ducts, luminal H2DIDS (0.5 mM) caused intracellular pH to alkalinize and, like SP, inhibited basal and secretin-stimulated HCO3 secretion. SP did not inhibit secretion further when H2DIDS was present in the lumen, suggesting that SP and H2DIDS both inhibit the activity of an anion exchanger on the luminal membrane of the duct cell. pancreas; Cl/HCO3 exchanger; inhibition; epithelium  相似文献   

20.
To determine whetherthe phosphoinositol/Ca2+ pathwayinteracts with the adenylate cyclase/adenosine 3',5'-cyclicmonophosphate (cAMP) pathway in the cardiac -receptor, the effectsof U-50488, a specific -receptor agonist, on the intracellularCa2+ concentration([Ca2+]i)and forskolin-induced accumulation of cAMP in rat ventricular myocyteswere determined after interference of thephosphoinositol/Ca2+ pathway.U-50488 suppressed the forskolin-induced accumulation of cAMP andelevated[Ca2+]i,which were blocked by norbinaltorphimine, a specific -receptor antagonist, and pertussis toxin. The effects of U-50488 werequalitatively similar to those of A-23187, aCa2+ ionophore, but opposite tothose of1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-acetoxymethyl ester (AM), a[Ca2+]ichelator. Abolition of U-50488-induced elevation of[Ca2+]iby BAPTA-AM also abolished the effect of U-50488 on forskolin-induced accumulation of cAMP. Inhibition of the phospholipase C by specific inhibitors, U-73122 and neomycin, abolished the effects of U-50488 onboth[Ca2+]iand forskolin-induced accumulation of cAMP. The results showed for thefirst time that -receptor stimulation may suppress cAMP accumulationvia activation of thephosphoinositol/Ca2+ pathway inthe rat heart.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号