首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whether all descendants of germline founder cells inheriting the germ plasm can migrate correctly to the genital ridges and differentiate into primordial germ cells (PGCs) at tadpole stage has not been elucidated in Xenopus. We investigated precisely the location of descendant cells, presumptive primordial germ cells (pPGCs) and PGCs, in embryos at stages 23-48 by whole-mount in situ hybridization with the antisense probe for Xpat RNA specific to pPGCs and whole-mount immunostaining with the 2L-13 antibody specific to Xenopus Vasa protein in PGCs. Small numbers of pPGCs and PGCs, which were positively stained with the probe and the antibody, respectively, were observed in ectopic locations in a significant number of embryos at those stages. A few of the ectopic PGCs in tadpoles at stages 44-47 were positive in TdT-mediated dUTP digoxigenin nick end labeling (TUNEL) staining. By contrast, pPGCs in the embryos until stage 40, irrespective of their location and PGCs in the genital ridges of the tadpoles at stages 43-48 were negative in TUNEL staining. Therefore, it is evident that a portion of the descendants of germline founder cells cannot migrate correctly to the genital ridges, and that a few ectopic PGCs are eliminated by apoptosis or necrosis at tadpole stages.  相似文献   

2.
A single blastomere containing the "germ plasm" of 32-cell stage Xenopus embryos was cultured with [3H]thymidine until the control embryos developed to the neurula stage. The explants, showing a spherical mass in which the nuclei of all cells were labeled, were implanted into the prospective place of presumptive primordial germ cells (pPGCs) in the endodermal cell mass of unlabeled host embryos of the neurula stage. Labeled PGCs as well as unlabeled, host PGCs were found in the genital ridges of experimental tadpoles. This indicates that the precursor of germ cells, corresponding to pPGCs in normal embryos of the neurula stage, in the explants migrated to genital ridges just at the right moment to become PGCs, and suggests that the developmental process progressed normally, even in the explants, as far as the differentiation of pPGCs is concerned.  相似文献   

3.
Presumptive primordial germ cells (pPGCs) in explants, derived from single germ plasm-bearing cells of Xenopus 32-cell embryos, at the equivalent of neurula stage (stage 20) in control embryos (designated as 'stage-20' explants) were demonstrated to be able to differentiate into PGCs, when implanted into a prospective place of pPGCs in host embryos (stage 20) (Ikenishi & Tsuzaki, 1988). According to a recent proposal that individual early embryonic cells in Xenopus , at both in vivo and in vitro , are able to measure elapsed time since fertilization (Cooke and Smith, 1990), the result means that the implanted pPGCs having the same elapsed time as the host embryos (isochronic pPGCs) could differentiate into PGCs. In the present study, in order to know whether the compatibility in elapsed times of implanted pPGCs and host embryos is necessary for the differentiation of PGCs, labelled, heterochronic pPGCs in 'stages 12–33/34' explants were implanted into unlabelled, host neurulae (stage 19).
Those heterochronic pPGCs could differentiate into PGCs like isochronic pPGCs in 'stage-19' explants as the control. By comparing the average diameters and yolk contents of labelled PGCs with those of unlabelled, host ones in experimental tadpoles, the possibility that a certain mechanism modulating the elapsed time of heterochronic pPGCs to that of host pPGCs is present in host embryos was also suggested.  相似文献   

4.
ULTRASTRUCTURE OF THE 'GERMINAL PLASM' IN XENOPUS EMBRYOS AFTER CLEAVAGE   总被引:8,自引:8,他引:0  
The endodermal location of 'germinal plasm'-bearing cells (GPBCs) and the ultrastructure of the 'germinal plasm' were studied in Xenopus laevis embryos at gastrula, neurula, tailbud and younger tadpole stages. Primordial germ cells (PGCs) of feeding tadpoles were also observed ultrastructurally.
GPBCs were found in the inner endoderm and in the yolk plug region at the late gastrula stage, in the middle and in the dorsal part of the endoderm cell mass at the late neurula and late tailbud stages, respectively. At the younger tadpole stage they were observed in the uppermost dorsal part of the endoderm. Germinal granules were always present in GPBCs at all stages examined but were not found in PGCs of feeding tadpoles. Irregularly shaped-stringlike bodies (ISBs) which seemed to have changed from germinal granules were first noticed in GPBCs at the late neurula stage, and were still present in PGCs of tadpoles, while 'granular materials' were not seen in GPBCs until the feeding tadpole stages. These facts and ultrastructural similarities shared by these organelles lead us to conclude that the change of the germinal granule through ISB, to the 'granular material' takes place during the differentiation of GPBCs into PGCs.  相似文献   

5.
In order to know the role of the Xdsg gene in presumptive PGCs (pPGCs) of Xenopus, we attempted to inhibit the translation of Xdsg mRNA in pPGCs by injecting antisense morpholino oligo (asMO), together with Fluorescein Dextran-Lysine (FDL), into single germ plasm-bearing cells of 32-cell embryos. Among three types of asMOs complementary to different parts of the 5'-untranslated region of Xdsg mRNA tested, only one asMO, designated as Xdsg-3, inhibited the translation of the mRNA in FDL-labeled pPGCs, resulting in the absence of labeled PGCs in experimental tadpoles. On the other hand, two other asMOs, Xdsg-1 and -2, did not inhibit the translation, so that a similar number of labeled PGCs found in FDL-injected but asMO-uninjected control tadpoles were observed in experimental tadpoles derived from asMO-injected embryos. Surprisingly, use of Xdsg-3 asMO resulted in the disappearance of the protein of Xenopus vasa homolog (Xenopus vasa-like gene 1, XVLG1) from FDL-labeled pPGCs by inhibiting the translation of XVLG1 mRNA. However, the effect of Xdsg-3 asMO on the translation of Xdsg and XVLG1 mRNAs and PGC formation could be canceled by the coinjection with Xdsg mRNA. Consequently, the Xdsg protein in pPGCs may play an important role in the formation of PGCs by regulating the production of XVLG1 protein.  相似文献   

6.
The blastomeres containing the "germinal plasm" were isolated from 32-cell stage Xenopus embryos and cultured in vitro for various periods of time till the control embryos developed to stage 28, 33/34, 40 and 45, respectively. The cells containing the plasm in the 'stage-28', '33/34' and '40' explants were similar in external shape, and in distribution in the spherical endodermal cell mass to the presumptive primordial germ cells (pPGCs) in normal embryos of the corresponding stages. In addition, the cells in explants as well as the pPGCs were separated by a large intercellular space from the surrounding endodermal cells. The change in proportion of the compact or the loosely structured germinal granules and the irregularly shaped-stringlike bodies (ISBs) occurred in the cells of the explants with the prolongation of the culture period. In the cells of the 'stage-45' explant as well as in the PGCs of normal stage-45 tadpoles the ISBs and "granular materials" replace those germinal granules. These facts lead to the conclusion that the change of the germinal granules through the ISBs, to the "granular materials", noticed in the normal course of differentiation of pPGCs into PGCs (see (1)), also takes place in the cells of the explants during the culture. Therefore, it is likely that the cells in the explants are genuine pPGCs or PGCs. This is the first demonstration of a possibility of the in vitro differentiation of PGCs from the blastomeres containing the "germinal plasm" of early cleavage stage.  相似文献   

7.
Xdazl is an RNA component of Xenopus germ plasm and encodes an RNA-binding protein that can act as a functional homologue of Drosophila boule. boule is required for entry into meiotic cell division during fly spermatogenesis. Both Xdazl and boule are related to the human DAZ and DAZL, and murine Dazl genes, which are also involved in gamete differentiation. As suggested from its germ plasm localization, we show here that Xdazl is critically involved in PGC development in Xenopus. Xdazl protein is expressed in the cytoplasm, specifically in the germ plasm, from blastula to early tailbud stages. Specific depletion of maternal Xdazl RNA results in tadpoles lacking, or severely deficient in, primordial germ cells (PGCs). In the absence of Xdazl, PGCs do not successfully migrate from the ventral to the dorsal endoderm and do not reach the dorsal mesentery. Germ plasm aggregation and intracellular movements are normal indicating that the defect occurs after PGC formation. We propose that Xdazl is required for early PGC differentiation and is indirectly necessary for the migration of PGCs through the endoderm. As an RNA-binding protein, Xdazl may regulate translation or expression of factors that mediate migration of PGCs.  相似文献   

8.
The presumptive primordial germ cell (pPGC) number with development after the cleavage stage and the fate of pPGCs damaged by uv irradiation were studied in successive Epon sections (0.5 μm thick) with the light microscope in both uv-irradiated and unirradiated Xenopus embryos. taking survival rate and sterility into consideration. The pPGCs of the uv-irradiated embryos occupy nearly the same location in the embryos as those of the unirradiated embryos at stages 12, 17, 23, and 28 [see Ikenishi, K., and Kotani, M. (1975). Develop. Growth Different. 17, 101–110]. At stage 3334 they are found in the central part of the endoderm cell mass in the uv-irradiated embryos, while they are situated in the lateral or dorsal part of the endoderm cell mass in the unirradiated. In the uv-irradiated embryos, a cavity which was never found in the unirradiated embryos was observed in the endoderm cell mass beneath the archenteron cavity and in the almost-median part of the posterior endoderm cell mass at stages 17 and 23, respectively, and some vacuoles in pPGCs as well as in somatic cells around those pPGCs were noticed at stages 17–3334. The number of pPGCs of the unirradiated enbryos increases about three- or fourfold during stages 12–46, while the pPGCs of the uv-irradiated embryos slowly increase in number from stage 17 to stage 28, indicating that the division occurs in pPGCs, then decrease with development and finally disappear from the tadpole.  相似文献   

9.
Cortical granules were demonstrated, in two successive Epon sections (0.7 μm thick) stained with PAS reagent and the triple staining method respectively, to persist beyond the cleavage stages of development to the tadpole stages in Xenopus laevis. They were also examined by electron microscope. The granules which are similar both cytochemically and ultrastructurally to the cortical granules of the unfertilized eggs were observed not only in germ cells, pPGCs and PGCs, but also in somatic cells at all the stages examined. An ultrastructural similarity between the granules found in the PGCs at the tadpole stages and chromatoid body was discussed.  相似文献   

10.
Using a large-scale in situ hybridization screening, we found that the mRNA coding for Xenopus glutamate receptor interacting protein 2 (XGRIP2) was localized to the germ plasm of Xenopus laevis. The mRNA is maternally transcribed in oocytes and, during maturation, transported to the vegetal germ plasm through the late pathway where VegT and Vg1 mRNAs are transported. In the 3'-untranslated region (UTR) of the mRNA, there are clusters of E2 and VM1 localization motifs that were reported to exist in the mRNAs classified as the late pathway group. With in situ hybridization to the sections of embryos, the signal could be detected in the cytoplasm of migrating presumptive primordial germ cells (pPGCs) until stage 35. At stage 40, when the cells cease to migrate and reach the dorsal mesentery, the signal disappeared. A possible role of XGRIP2 in pPGCs of Xenopus will be discussed.  相似文献   

11.
We succeeded in visualization of the primordial germ cells (PGCs) in a living Xenopus embryo. The mRNA of the reporter Venus protein, fused to the 3' untranslated region (UTR) of DEADSouth, which is a component of the germ plasm in Xenopus eggs, was microinjected into the vegetal pole of fertilized eggs and then the cells with Venus fluorescence were monitored during development. The behavior of the cells was identical to that previously described for PGCs. Almost all Venus-expressing cells were Xdazl-positive in the stage 48 tadpoles, indicating that they were PGCs. In addition, we found three sub-regions (A, B and C) in the 3' UTR, which were involved in the PGC-specific expression of the reporter protein. Sub-region A, which was identified previously as a localization signal for the germ plasm during oogenesis, participated in anchoring of the mRNA at the germ plasm and the degradation of the mRNA in the somatic cells. Sub-regions B and C were also involved in anchoring of the mRNA at the germ plasm. Sub-region B participated in the enhancement of translation.  相似文献   

12.
To detect structural changes following UV irradiation in the “germinal plasm,” ultrastructure of the “germinal plasm” was studied in normal and UV-irradiated eggs of Xenopus laevis at the following stages: prior to fertilization, early 2-cell, 32-cell, and late blastula. It was revealed that ultrastructural features of the “germinal plasm” were essentially common between Xenopus laevis and Rana pipiens. That is, the “germinal plasm” is composed primarily of a large aggregation of mitochondria and distinctive electron dense bodies (germinal granules). Irregularly shaped cylinderlike granules (giant germinal granules), having the same internal characteristics as the germinal granules, were found in the “germinal plasm” of all eggs examined.Comparison between normal and UV-irradiated eggs has demonstrated that UV irradiation causes swelling and vacuolation of mitochondria and fragmentation of germinal granules. The suggestion is that the integrity of certain UV-sensitive factor(s), which is involved in maintaining normal structure of germinal granules, is indispensable for the determination of the primordial germ cells.  相似文献   

13.
The response of developing gonads of the clawed toad Xenopus laevis tadpoles to estradiol benzoate (EB) was studied between stages 44 and 67 using high resolution techniques. In presumptive genetic males the following results were obtained: 1) 100% sex reversal was induced when EB was administered before translocation of primordial germ cells (PGCs) from the gonadal epithelium into the medullary region (stages 44-50). 2) Ambiguous gonads were formed when EB treatment was initiated at stages 51-54, when PGCs were migrating into the medullary region. 3) Finally, normal testes differentiated when EB treatment began after the primordial germ cells had completed their translocation into the medulla (stages 55-56). These results suggest that EB might induce sex-reversal in genetic males by disruption of early somatic-germ cell interactions in the medullary region of the gonad. Consequently, later morphogenetic events might be deranged, preventing differentiation of testis. We propose a hypothesis in which precocious production of estradiol (E2) by genotypic females is the mechanism for primary sex differentiation.  相似文献   

14.
Primordial germ cells (PGCs) in the turtle embryo ( Caretta caretta ) were observed with light and transmission electron microscopes. Identification of the PGCs for light microscopy was made by the periodic acid-Schiff (PAS) technique. PGCs were first found in the yolk-sac endoderm through the 5th to 6th day of development. PGCs freed from the endoderm then migrated to the root area of the dorsal mesentery and the coelomic angle between the 7th and the 11th day of development, and finally settled down in the gonadal anlage by the 14th day. Turtle PGCs were characterized by a large size (16 μm in diameter) and large nuclei with distinct nucleoli, and by the presence of large numbers of lipid droplets, yolk platelets and glycogen particles in the cytoplasm. Cell organelles were well-developed in PGCs at later stages. Amoeboid features of the PGCs were observed in the mesenchyme, indicating active locomotion. PGCs were usually surrounded or encircled by neighboring somatic cells. No intravascular PGCs were detected at any stage of development examined.  相似文献   

15.
3H-Thymidine incorporation experiments in Barbus conchonius showed that presumptive primordial germ cells (PGCs) terminated their mitotic activity between midepibolys, and late epiboly. At the ten-somite stage, shortly after labeling of PGCs by uptake of 3H-thymidine became arrested, they could be recognized by their relatively large size and large nucleus. They were located in two longitudinal rows of cells between mesoderm and periblast, always at the same distance to the left and right of the notochord. Contact with the endoderm was not observed before the 16- to 23-somite stage. The numbers of PGCs were small (mean number, 18–19) and remained small for nearly 3 weeks. Mitotic activity was not observed in PGCs during that period; thereafter, rapid proliferation began. There is no evidence for active migration of PGCs; it is assumed that they are merely translocated passively together with their surrounding tissues. No specific constituents were detected with histochemical methods for glycogen, alkaline phosphatase, and RNA. Electron microscopy revealed the presence of “nuage” around the nucleus of PGCs. This material corresponded with perinuclear dense bodies as seen with light microscopy from the 19-somite stage onward. It is concluded that presumptive PGCs segregate from the somatic cells between midepiboly and late epiboly, before the three germ layers have been formed, and that locations of PGCs in the endodermal or mesodermal layer may be merely transitory stages during their translocation toward the gonadal primordia.  相似文献   

16.
We investigated the mode of migration of presumptive primordial germ cells (pPGC) in the endoderm cell mass of Xenopus embryos at stages 7-40. The molecules underlying the migration were also studied cytochemically and immunocytologically. By examining the relative positions of pPGC and somatic cells derived from the single, fluorescein-dextran lysine (FDL)-injected, germ plasm-bearing cells of stage 6 embryos, pPGC in embryos at stages 7-23 and those at stages later than 24 were assumed to passively and actively migrate in the endoderm cell mass, respectively. This assumption was supported by the observation that F-actin, essential for active cell migration, was recognized on pPGC of the latter stages, but never on those of the former ones. In addition, the molecule like CXC chemokine receptor 4 (CXCR4) found on directionally migrating PGC in mouse and zebrafish, probably Xenopus CXCR4 (xCXCR4), was detected on pPGC only at latter stages. Accordingly, F-actin and xCXCR4, and probably beta1-integrin and collagen type IV, which are indispensable for the formation of F-actin, are thought to be involved in the active migration of pPGC in the endoderm cell mass.  相似文献   

17.
How germ cell specification occurs remains a fundamental question in embryogenesis. The embryos of several model organisms contain germ cell determinants (germ plasm) that segregate to germ cell precursors. In other animals, including mice, germ cells form in response to regulative mechanisms during development. To investigate germ cell determination in urodeles, where germ plasm has never been conclusively identified, we cloned a DAZ-like sequence from axolotls, Axdazl. Axdazl is homologous to Xdazl, a component of Xenopus germ plasm found in the vegetal pole of oocytes and eggs. Axdazl RNA is not localized in axolotl oocytes, and, furthermore, these oocytes do not contain the mitochondrial cloud that localizes Xdazl and other germ plasm components in Xenopus. Maternal Axdazl RNA is inherited in the animal cap and equatorial region of early embryos. At gastrula, neurula, and tailbud stages, Axdazl RNA is widely distributed. Axdazl first shows cell-specific expression in primordial germ cells (PGCs) approaching the gonad at stage 40, when nuage (germ plasm) appears in PGCs. These results suggest that, in axolotls, germ plasm components are insufficient to specify germ cells.  相似文献   

18.
Ultraviolet (UV) irradiation of the vegetal pole of anuran embryos at the two-cell stage has been reported to cause aberrant cleavage as well as a subsequent reduction in germ cell numbers. In this study, we find no correlation between UV-induced cleavage abnormalities and the absence of primordial germ cells in Rana pipiens tadpoles examined at stage 25. On the other hand, some tadpoles from a population which was lacking primordial germ cells at stage 25 subsequently contained germ cells. These late-appearing germs cells exhibited damaged mitochondria, autophagosomes, and secondary lysosomes, while surrounding somatic cells were morphologically normal. We suggest that these cytoplasmic abnormalities resulted from an effect of the initial UV irradiation of germ plasm. We conclude that one effect of UV irradiation of germ plasm is to delay or inhibit the migration of primordial germ cells into the genital ridges.  相似文献   

19.
Animal, vegetal, dorsal and ventral blastomeres of eight-cell embryos of the urodele Pleurodeles waltlii were isolated and cultured for 15 days. The four animal blastomeres produced vesicles delimited by an irregularly shaped epidermis. In all other explants, the formation of mesodermal structures occurred, which can be interpreted as the result of inductive interaction, occurring during segmentation, between the ectodermal animal cap and vegetal yolk mass. Primordial germ cells (PGCs), which formed in 78% of cases when the presumptive ventral half to the embryo was cultured, occurred in only 48% of cases when the two ventral vegetal blastomeres were cultured alone. The absence of PGCs in the explants emanating from the four vegetal blastomeres is thought to have been due to inhibition of differentiation by notochord. This hypothesis has been confirmed by culture experiments in which the addition of presumptive chordomesoderm of young gastrulae prevented the differentiation of PGCs under conditions in which they are normally formed. These observations suggest that, in urodeles, PGCs do not arise from cells segregated as early as the eight-cell stage, but are the product of later inductive interaction between ectoderm and endoderm.  相似文献   

20.
The location and ultrastructure of the primordial germ cells (PGCs) were studied in Ambystoma mexicanum larvae of stages 23 to 47.
PGCs were found in the spaces between the endodermal cell mass and the lateral plate mesoderm at stages 23 to 35. Some of the PGCs at stage 35, and most of them at stages 40 and 42, were located near the Wolffian duct. At stages 46 and 47 all the PGCs were situated in the genital ridges. Cilia, which have hitherto never been reported in PGCs, were occasionally seen in PGCs of Ambystoma from stage 23 till stage 46.
No "germinal plasm" was found in the PGCs prior to stage 40. Specific structures or "nuage material", corresponding to the germinal granules or their derivatives in Xenopus , were first recognized in the vicinity of the nucleus at stage 40. Between stages 40 and 46, the amount of "nuage material" markedly increased. It was finally localized mainly in "intermitochondrial spaces". A possible transfer of material from the nucleus to the cytoplasm or vice versa through nuclear pores was first noticed at stage 40, the material concerned being quite similar in ultrastructure to the "nuage material".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号