首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
We have cloned and characterized three distinct Rhizobium meliloti loci involved in glutamine biosynthesis (glnA, glnII, and glnT). The glnA locus shares DNA homology with the glnA gene of Klebsiella pneumoniae, encodes a 55,000-dalton monomer subunit of the heat-stable glutamine synthetase (GS) protein (GSI), and complemented an Escherichia coli glnA mutation. The glnII locus shares DNA homology with the glnII gene of Bradyrhizobium japonicum and encodes a 36,000-dalton monomer subunit of the heat-labile GS protein (GSII). The glnT locus shares no DNA homology with either the glnA or glnII gene and complemented a glnA E. coli strain. The glnT locus codes for an operon encoding polypeptides of 57,000, 48,000, 35,000, 29,000, and 28,000 daltons. glnA and glnII insertion mutants were glutamine prototrophs, lacked the respective GS form (GSI or GSII), grew normally on different nitrogen sources (Asm+), and induced normal, nitrogen-fixing nodules on Medicago sativa plants (Nod+ Fix+). A glnA glnII double mutant was a glutamine auxotroph (Gln-), lacked both GSI and GSII forms, but nevertheless induced normal Fix+ nodules. glnT insertion mutants were prototrophs, contained both GSI and GSII forms, grew normally on different N sources, and induced normal Fix+ nodules. glnII and glnT, but not glnA, expression in R. meliloti was regulated by the nitrogen-regulatory genes ntrA and ntrC and was repressed by rich N sources such as ammonium and glutamine.  相似文献   

3.
A glutamine synthetase (GS) gene, glnA, from Bacteroides fragilis was cloned on a recombinant plasmid pJS139 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. DNA homology was not detected between the B. fragilis glnA gene and the E. coli glnA gene. The cloned B fragilis glnA gene was expressed from its own promoter and was subject to nitrogen repression in E. coli, but it was not able to activate histidase activity in an E. coli glnA ntrB ntrC deletion mutant containing the Klebsiella aerogenes hut operon. The GS produced by pJS139 in E. coli was purified; it had an apparent subunit Mr of approximately 75,000, which is larger than that of any other known bacterial GS. There was very slight antigenic cross-reactivity between antibodies to the purified cloned B. fragilis GS and the GS subunit of wild-type E. coli.  相似文献   

4.
5.
6.
Regulation of glutamine synthetase in Streptomyces coelicolor.   总被引:13,自引:10,他引:3       下载免费PDF全文
  相似文献   

7.
8.
Mutations in a site, glnF, linked by P1-mediated transduction of argG on the chromosome of Klebsiella aerogenes, result in a requirement for glutamine. Mutants in this gene have in all media a level of glutamine synthetase (GS) corresponding to the level found in the wild-type strain grown in the medium producing the strongest repression of GS. The adenylylation and deadenylylation of GS in glnF mutants is normal. The glutamine requirement of glnF mutants could be suppressed by mutations in the structural gene for GS, glnA. These mutations result in altered regulation of GS synthesis, regardless of the presence or absence of the glnF mutation (GlnR phenotype). In GlnR mutants the GS level is higher than in the wild-type strain when the cells are cultured in strongly repressing medium, but lower than in the wild-type strain when cells are cultured in a derepressing medium. Heterozygous merodiploids carrying a normal glnA gene as well as a glnA gene responsible for the GlnR phenotype behave in every respect like merodiploids carrying two normal glnA genes. These results confirm autogenous regulation of GS synthesis and indicate that GS is both a repressor and an activator of GS synthesis. The mutation in glnA responsible for the GLnR phenotype has apparently resulted in the formation of a GS that is incompetent both as repressor and as activator of GS synthesis. According to this hypothesis, the product of the glnF gene is necessary for activation of the glnA gene by GS.  相似文献   

9.
10.
The glutamine synthetase (GS) gene glnA of Thiobacillus ferrooxidans was cloned on recombinant plasmid pMEB100 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as the sole source of nitrogen. High levels of GS-specific activity were obtained in the E. coli glnA deletion mutants containing the T. ferrooxidans GS gene. The cloned T. ferrooxidans DNA fragment containing the glnA gene activated histidase activity in an E. coli glnA glnL glnG deletion mutant containing the Klebsiella aerogenes hut operon. Plasmid pMEB100 also enabled the E. coli glnA glnL glnG deletion mutant to utilize arginine or low levels of glutamine as the sole source of nitrogen. There was no detectable DNA homology between the T. ferrooxidans glnA gene and the E. coli glnA gene.  相似文献   

11.
The nucleotide sequence of a 2.0-kilobase DNA segment containing the Clostridium acetobutylicum glnA gene was determined. The upstream region of the glnA gene contained two putative extended promoter consensus sequences (p1 and p2), characteristic of gram-positive bacteria. A third putative extended gram-positive promoter consensus sequence (p3), oriented towards the glnA gene, was detected downstream of the structural gene. The sequences containing the proposed promoter regions p1 and p2 or p3 were shown to have promoter activity by subcloning into promoter probe vectors. The complete amino acid sequence (444 residues) of the C. acetobutylicum glutamine synthetase (GS) was deduced, and comparisons were made with the reported amino acid sequences of GS from other organisms. To determine whether the putative promoter p3 and a downstream region with an extensive stretch of inverted repeat sequences were involved in regulation of C. acetobutylicum glnA gene expression by nitrogen in Escherichia coli, deletion plasmids were constructed lacking p3 and various downstream sequences. Deletion of the putative promoter p3 and downstream inverted repeat sequences affected the regulation of GS and reduced the levels of GS approximately fivefold under nitrogen-limiting conditions but did not affect the repression of GS levels in cells grown under nitrogen-excess conditions.  相似文献   

12.
The structural gene (glnA) encoding the glutamine synthetase (GS) of the extremely thermophilic eubacterium Thermotoga maritima has been cloned on a 6.0 kb HindIII DNA fragment. Sequencing of the region containing the glnA gene (1444 bp) showed an ORF encoding a polypeptide (439 residues) with an estimated mass of 50,088 Da, which shared significant homology with the GSI sequences of other Bacteria (Escherichia coli, Bacillus subtilis) and Archaea (Pyrococcus woesei, Sulfolobus solfataricus). The T. maritima glnA gene was expressed in E. coli, as shown by the ability to complement a glnA lesion in the glutamine-auxotrophic strain ET8051. The recombinant GS has been partially characterized with respect to the temperature dependence of enzyme activity, molecular mass and mode of regulation. The molecular mass of the Thermotoga GS (590,000 Da), estimated by gel filtration, was compatible with a dodecameric composition for the holoenzyme, as expected for a glutamine synthetase of the GSI type. Comparison of the amino acid sequence of T. maritima GS with those from thermophilic and mesophilic micro-organisms failed to detect any obvious features directly related to thermal stability.  相似文献   

13.
14.
15.
16.
17.
Mutations resulting in defects in the adenylylation system of glutamine synthetase (GS) affect the expression of glnA, the structural gene for GS. Mutants with lesions in glnB are glutamine auxotrophs and contain repressed levels of highly adenylylated GS. Glutamine-independent revertants of the glnB3 mutant have acquired an additional mutation at the glnE site. The glnE54 mutant is incapable of adenylylating GS and produces high levels of enzyme, even when ammonia is present in the growth medium. The fact that mutations in glnB and glnE simultaneously disturb both the normal adenylylation and repression patterns of GS in Klebsiella aerogenes indicates that the adenylylation system, or adenylylation state, of GS is critical for the regulation of synthesis of GS.  相似文献   

18.
19.
The glnA gene from Synechocystis sp. strain PCC 6803 was cloned by hybridization with the glnA gene from Anabaena sp. strain PCC 7120, and a deletion-insertion mutation of the Synechocystis gene was generated in vitro. A strain derived from Synechocystis sp. strain PCC 6803 which contained integrated into the chromosome, in addition to its own glnA gene, the Anabaena glnA gene was constructed. From that strain, a Synechocystis sp. glnA mutant could be obtained by transformation with the inactivated Synechocystis glnA gene; this mutant grew by using Anabaena glutamine synthetase and was not a glutamine auxotroph. A Synechocystis sp. glnA mutant could not be obtained, however, from the wild-type Synechocystis sp. The Anabaena glutamine synthetase enzyme was subject to ammonium-promoted inactivation when expressed in the Synechocystis strain but not in the Anabaena strain itself.  相似文献   

20.
Abstract The glnAntrBC operon of Proteus vulgaris was cloned and heterologously expressed in Escherichia coli . The nucleotide sequence was determined. An open reading frame of 1407 bp was identified as the glnA gene and the deduced amino acid sequence showed 82% identity with the E. coli glutamine synthetase protein. Heterologous expression of the glnA gene in E. coli restored glutamine synthetase (GS) activity in a GS-negative mutant and a 52 kDa protein was detected and addressed as the GS subunit of P. vulgaris . Adjacent to the glnA gene the regulatory genes ntrB and ntrC were identified. Their coding regions comprised 1053 and 1452 bp, respectively, and the deduced gene products NRII (NtrB) and NRI (NtrC) shared 72% identity with the corresponding E. coli proteins. Heterologous expression in E. coli revealed only a 54 kDa protein which was shown to be NRI. NRII was not detectable using the methods employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号