首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptides are of great interest to be used as vaccine antigens due to their safety, ease of manufacturing and specificity in generating immune response. There have been massive discoveries of peptide antigens over the past decade. However, peptides alone are poorly immunogenic, which demand co-administration with strong adjuvant to enhance their immunogenicity. Recently, fibril-forming peptides such as Q11 and lipoamino acid-based carrier have been identified to induce substantial immune responses when covalently linked to peptide epitope. In this study, we have incorporated either Q11 or lipoamino acids to a peptide epitope (J14) derived from M protein of group A streptococcus to develop self-adjuvanting vaccines. J14, Q11 and lipoamino acids were also conjugated together in a single vaccine construct in an attempt to evaluate the synergy effect of combining multiple adjuvants. Physicochemical characterization demonstrated that the vaccine constructs folded differently and self-assembled into nanoparticles. Significantly, only vaccine constructs containing double copies of lipoamino acids (regardless in conjugation with Q11 or not) were capable to induce significant dendritic cells uptake and subsequent J14-specific antibody responses in non-sizes dependent manners. Q11 had minimal impact in enhancing the immunogenicity of J14 even when it was used in combination with lipoamino acids. These findings highlight the impact of lipoamino acids moiety as a promising immunostimulant carrier and its number of attachment to peptide epitope was found to have a profound effect on the vaccine immunogenicity.  相似文献   

2.
Summary A lipoamino acid based synthetic peptide, (Lipid Core Peptide, LCP) derived from the conserved region of group A streptococci (GAS) was evaluated as potential candidate in a vaccine to prevent GAS-associated diseases, including rheumatic heart disease and post-streptococcal acute glomerulonephritis. Multiple copies of a peptide sequence from the bacterial surface M protein were incorporated into a lipid core and it was used to immunize mice with and without the application of adjuvant. The LCP construct had significantly enhanced immunogenicity compared with the monomeric peptide epitope. Furthermore, the peptides incorporated into the LCP system generated antibodies without the use of any conventional adjuvant.  相似文献   

3.
A lipoamino acid based synthetic peptide, (Lipid Core Peptide, LCP) derived from the conserved region of group A streptococci (GAS) was evaluated as potential candidate in a vaccine to prevent GAS-associated diseases, including rheumatic heart disease and post-streptococcal acute glomerulonephritis. Multiple copies of a peptide sequence from the bacterial surface M protein were incorporated into a lipid core and it was used to immunize mice with and without the application of adjuvant. The LCP construct had significantly enhanced immunogenicity compared with the monomeric peptide epitope. Furthermore, the peptides incorporated into the LCP system generated antibodies without the use of any conventional adjuvant.  相似文献   

4.
Traditional vaccines consisting of whole attenuated microorganisms, killed microorganisms, or microbial components, administered with an adjuvant (e.g. alum), have been proved to be extremely successful. However, to develop new vaccines, or to improve upon current vaccines, new vaccine development techniques are required. Peptide vaccines offer the capacity to administer only the minimal microbial components necessary to elicit appropriate immune responses, minimizing the risk of vaccination associated adverse effects, and focusing the immune response toward important antigens. Peptide vaccines, however, are generally poorly immunogenic, necessitating administration with powerful, and potentially toxic adjuvants. The attachment of lipids to peptide antigens has been demonstrated as a potentially safe method for adjuvanting peptide epitopes. The lipid core peptide (LCP) system, which incorporates a lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity, has been demonstrated to boost immunogenicity of attached peptide epitopes without the need for additional adjuvants. The synthesis of LCP systems normally yields a product that cannot be purified to homogeneity. The current study describes the development of methods for the synthesis of highly pure LCP analogs using native chemical ligation. Because of the highly lipophilic nature of the LCP lipid adjuvant, difficulties (e.g. poor solubility) were experienced with the ligation reactions. The addition of organic solvents to the ligation buffer solubilized lipidic species, but did not result in successful ligation reactions. In comparison, the addition of approximately 1% (w/v) sodium dodecyl sulfate (SDS) proved successful, enabling the synthesis of two highly pure, tri-epitopic Streptococcus pyogenes LCP analogs. Subcutaneous immunization of B10.BR (H-2(k)) mice with one of these vaccines, without the addition of any adjuvant, elicited high levels of systemic IgG antibodies against each of the incorporated peptides.  相似文献   

5.
Peptides bind with high affinity to MHC class I molecules by anchoring certain side-chains (anchors) into specificity pockets in the MHC peptide-binding groove. Peptides that do not contain these canonical anchor residues normally have low affinity, resulting in impaired pMHC stability and loss of immunogenicity. Here, we report the crystal structure at 1.6 A resolution of an immunogenic, low-affinity peptide from the tumor-associated antigen MUC1, bound to H-2Kb. Stable binding is still achieved despite small, non-canonical residues in the C and F anchor pockets. This structure reveals how low-affinity peptides can be utilized in the design of novel peptide-based tumor vaccines. The molecular interactions elucidated in this non-canonical low-affinity peptide MHC complex should help uncover additional immunogenic peptides from primary protein sequences and aid in the design of alternative approaches for T-cell vaccines.  相似文献   

6.
A multifunctional carrier combining B/T cell epitopes (i), a built-in vaccine adjuvant (ii), and a universal T cell epitope (iii) for the construction of potent and specific immunogenic conjugates is presented. The IL-1beta(163-171) fragment known to reproduce the immunostimulatory and adjuvant effects of the whole IL-1beta without possessing any of the pro-inflammatory properties of IL-1beta was covalently anchored to the N-terminus of the Sequential Oligopeptide Carrier, SOC(n), formed by the repeating tripeptide unit Lys-Aib-Gly. A promiscuous T cell epitope derived from the tetanus toxin, TT(593-599), was also positioned in the carboxy terminus of SOC(n) as a universal immunogen to provide broad immunogenicity. Selected B/T cell epitopes from the Sm and La/SSB autoantigens, against which is directed the humoral autoimmunity in patients with systemic lupus erythematosus and Sj?gren's Syndrome, respectively, were coupled to the Lys-N(epsilon)H2 groups of the carrier, and the formulated constructs were administered in animals following the conventional immunization protocol of complete/incomplete Freund's adjuvant. The induced immune responses were compared with that produced when the Sm- and La/SSB-reconstituted immunogenic conjugates were injected alone. High titers of specific antibodies recognizing the priming construct, as well as the cognate autoantigen, were obtained when administered alone without the assistance of Freund's adjuvant. It is concluded that our approach provides the conceptual and experimental framework for the development of multifunctional immunogenic conjugates eliciting enhanced, specific, and prolonged humoral response for usage as human vaccine candidates.  相似文献   

7.
Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors such as structure, accessibility and amino acid composition are crucial. Since small peptides tend not to be immunogenic, it may be necessary to conjugate them to carrier proteins in order to enhance immune presentation. Several strategies for conjugation of peptide-carriers applied for immunization exist, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody purification, the antibodies are characterized based on their affinity or specificity. An efficient approach for characterization of peptide antibodies is epitope mapping using peptide based assays. This review describes standard solid-phase approaches for generation of peptide antibodies with special emphasis on peptide selection, generation of peptide conjugates for immunization and characterization of the resulting peptide antibodies.  相似文献   

8.
Traditional vaccines consisting of whole attenuated micro-organisms, or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection, adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity, and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic, and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system, incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore, mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.  相似文献   

9.
We synthesized 27 synthetic peptides corresponding to approximately 80% of the sequences encoding gp70 and p15E of Gardner-Arnstein feline leukemia virus (FeLV) subtype B. The peptides were conjugated to keyhole limpet hemocyanin and injected into rabbits for preparation of antipeptide antisera. These sera were then tested for their ability to neutralize a broad range of FeLV isolates in vitro. Eight peptides elicited neutralizing responses against subtype B isolates. Five of these peptides corresponded to sequences of gp70 and three to p15E. The ability of these antipeptide antisera to neutralize FeLV subtypes A and C varied. In certain circumstances, failure to neutralize a particular isolate corresponded to sequence changes within the corresponding peptide region. However, four antibodies which preferentially neutralized the subtype B viruses were directed to epitopes in common with Sarma subtype C virus. These results suggest that distal changes in certain subtypes (possibly glycosylation differences) alter the availability of certain epitopes in one virus isolate relative to another. We prepared a "nest" of overlapping peptides corresponding to one of the neutralizing regions of gp70 and performed slot blot analyses with both antipeptide antibodies and a monoclonal antibody which recognized this epitope. We were able to define a five-amino-acid sequence required for reactivity. Comparisons were made between an anti-synthetic peptide antibody and a monoclonal antibody reactive to this epitope for the ability to bind both peptide and virus, as well as to neutralize virus in vitro. Both the anti-synthetic peptide and the monoclonal antibodies bound peptide and virus to high titers. However, the monoclonal antibody had a 4-fold-higher titer against virus and a 10-fold-higher neutralizing titer than did the anti-synthetic peptide antibody. Competition assays were performed with these two antibodies adjusted to equivalent antivirus titers against intact virions affixed to tissue culture plates. The monoclonal antibody had a greater ability to compete for virus binding, which suggested that differences in neutralizing titers may relate to the relative affinities of these antisera for the peptide conformation in the native structure.  相似文献   

10.
Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP) vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+) and/or CD8(+) T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+) T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+) T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.  相似文献   

11.
The multipin peptide synthesis technique has been used to map antigenic sites of proteins (1,2). Antibodies raised to the whole protein are screened on pin-synthesized overlapping octapeptides homologous with the protein of interest, and the peptides that bind antibodies clearly identify the epitopes. What is described in this study is a method using pin-synthesized peptides to generate specific antibodies to many peptides. Cleavable linkers have been developed (3) that, used together with the multipin peptide synthesis technique, allow the synthesis and cleavage of many thousands of peptides into aqueous solutions at physiological pH. This technique is useful for assays requiring peptides in solution, e.g., mapping of T-cell determinants. A technique has been developed for the cleavage of many peptides from pins and simultaneous coupling to immunogenic carriers (4). The conjugates produced are suitable for the generation of antipeptide antibodies. This procedure is illustrated using several 15 amino acid long peptides (15-mers), homologous with the sequence of a model antigen, myohemerythrin (MHr). The resulting antipeptide sera generated were tested by ELISA for titer and specificity on pinsynthesized peptides and β-amide peptides and the protein antigen coated to microtiter plates.  相似文献   

12.
Rabbit antisera were raised against a series of synthetic peptides corresponding to regions of the alpha subunit of lamb kidney (Na+ + K+)-ATPase which chemical labeling studies and hydropathy plots of the amino-acid sequence suggest are exposed, accessible regions of the enzyme and may comprise the cation selectivity region, the ATP and cardiac glycoside binding sites, and the phosphorylation site. Five of six peptides tested (11-15 residues in length) were immunogenic and the antisera to four peptides recognized the intact, electroblotted (Western blot analysis) alpha subunit. Immunization with peptides conjugated to keyhole limpet haemocyanin (KLH) produced antipeptide antibodies for seven of nine conjugates. Antisera to four peptide conjugates recognized the native enzyme, confirming predictions that these sequence regions are exposed regions of the holoenzyme. In addition, a collection of four polyclonal antisera and five monoclonal antibodies raised to native holoenzyme were tested for their ability to bind to the peptide conjugates. In this way, two NH2-terminal sequence regions (1-12 and 16-30) and the putative ATP-binding site region (496-506) were identified as epitopes of the native enzyme. These results confirm some aspects of the transmembrane folding models proposed by Shull et al. and Kawakami et al. for the membrane-bound (Na+ + K+)-ATPase.  相似文献   

13.
Construction of immunogens for synthetic malaria vaccines   总被引:1,自引:0,他引:1  
The immunogenicity of a peptide consisting of eight repeats of the tetrapeptide sequence NANP (Asn-Ala-Asn-Pro) contained in the circumsporozoite protein of Plasmodium falciparum was investigated in mice under different modes of presentation. This peptide was able to produce biologically active antibodies when administered with adjuvant and linked to a protein carrier. However, a (NANP) peptide polymerized by carbodiimide was found to be immunogenic in the absence of protein carrier in H-2b mice. In contrast, the (NANP)8 peptide polymerized by glutaraldehyde was not immunogenic in the same strain. Furthermore, the efficacy of murabutide in saline, as an immunological adjuvant, was compared to the efficacy of Freund's complete adjuvant.  相似文献   

14.
《MABS-AUSTIN》2013,5(8):1168-1181
ABSTRACT

Immunogenicity is a key factor capable of influencing the efficacy and safety of therapeutic antibodies. A recently developed method called MHC-associated peptide proteomics (MAPPs) uses liquid chromatography/mass spectrometry to identify the peptide sequences derived from a therapeutic protein that are presented by major histocompatibility complex class II (MHC II) on antigen-presenting cells, and therefore may induce immunogenicity. In this study, we developed a MAPPs technique (called Ab-MAPPs) that has high throughput and can efficiently identify the MHC II-presented peptides derived from therapeutic antibodies using magnetic nanoparticle beads coated with a hydrophilic polymer in the immunoprecipitation process. The magnetic beads could identify more peptides and sequence regions originating from infliximab and adalimumab in a shorter measurement time than Sepharose beads, which are commonly used for MAPPs. Several sequence regions identified by Ab-MAPPs from infliximab corresponded to immunogenic sequences reported by other methods, which suggests the method’s high potential for identifying significant sequences involved in immunogenicity. Furthermore, our study suggests that the Ab-MAPPs method can recognize the difference of a single amino acid residue between similar antibody sequences with different levels of T-cell proliferation activity and can identify potentially immunogenic peptides with high binding affinity to MHC II. In conclusion, Ab-MAPPs is useful for identifying the immunogenic sequences of therapeutic antibodies and will contribute to the design of therapeutic antibodies with low immunogenicity during the drug discovery stage.  相似文献   

15.
The multipin peptide synthesis technique has been used to map antigenic sites of proteins (1,2). Antibodies raised to the whole protein are screened on pin-synthesized overlapping octapeptides homologous with the protein of interest, and the peptides that bind antibodies clearly identify the epitopes. What is described in this study is a method using pin-synthesized peptides to generate specific antibodies to many peptides. Cleavable linkers have been developed (3) that, used together with the multipin peptide synthesis technique, allow the synthesis and cleavage of many thousands of peptides into aqueous solutions at physiological pH. This technique is useful for assays requiring peptides in solution, e.g., mapping of T-cell determinants. A technique has been developed for the cleavage of many peptides from pins and simultaneous coupling to immunogenic carriers (4). The conjugates produced are suitable for the generation of antipeptide antibodies. This procedure is illustrated using several 15 amino acid long peptides (15-mers), homologous with the sequence of a model antigen, myohemerythrin (MHr). The resulting antipeptide sera generated were tested by ELISA for titer and specificity on pin-synthesized peptides and beta-amide peptides and the protein antigen coated to microtiter plates.  相似文献   

16.
X M Su  S Sriram 《Cellular immunology》1992,141(2):485-495
We have analyzed the epitope specificity and encephalitogenicity of peptides that span the C terminus of MBP, p84-103. Our studies show that multiple antigenic epitopes with disease-inducing capacity exist in SJL mice. Three peptides that span this region were examined and found to be immunogenic. However, the mode of immunization (active or passive) determined the incidence and severity of EAE. In our experiments adoptive transfer of p91-103-reactive T cell lines was most consistent in the development of disease. Interestingly, the response to peptides p89-101, p91-103, and p84-102 was absent following immunization with MBP. This suggests that although p91-103 and p89-101 were encephalitogenic they were not the major immunogenic epitopes following immunization with MBP. Analysis of a panel of eight p91-103-reactive T cell clones showed significant heterogeneity in the fine specificity, the TCR V beta gene usage, and in their ability of transfer EAE. These studies suggest that in SJL mice the epitopes involved in the pathogenesis of disease are multiple and there is no clear correlation between encephalitogenicity and TCR V beta gene usage. These observations argue against the presence of a dominant TCR V beta gene in the pathogenesis of EAE in SJL mice.  相似文献   

17.
Abstract: This study tested immunogenicity of a synthetic peptide hZP3327–341 from a human zona pellucida (ZP) glycoprotein. After antibody response to various peptide-carrier conjugates was assessed in mice, two female cynomolgus macaques were immunized with the peptide conjugated to keyhole limpet hemocyanin (KLH). A control macaque was immunized with KLH. The peptide was immunogenic in both species, and included both B and T cell epitopes since low to moderate titers of peptide-specific antibodies and a T cell proliferative response were measured. Profiles of ovarian steroid metabolites indicated unchanged ovarian function in the macaques, but only the control conceived when bred. Ovarian histology was normal except that immunoglobulin was bound to ZP in follicles of the peptide-immune macaques. ZP from these females bound sperm and induced acrosome reactions at rates equal to those of an untreated control. The results support the feasibility of an immunocontraceptive vaccine based on autologous ZP peptides.  相似文献   

18.
Mapping of dominant B-cell epitopes of a human zona pellucida protein (ZP1)   总被引:2,自引:0,他引:2  
Zona pellucida (ZP) glycoproteins contain numerous antigenic determinants including carbohydrate, protein, and conformational epitopes; and the immunogenicity of these complex glycoproteins varies in different mammalian hosts. Studies have now shown that antibodies from primates immunized with a cDNA-expressed recombinant rabbit ZP protein (the homologue of the human ZP1 [hZP1]) inhibit sperm binding to the ZP without altering ovarian function, unlike immunization with ZP3 and ZP2 protein families. The ZP1 protein or peptides derived from it (recombinant or synthetic) are therefore primary candidates for use in designing safe and reversible human and animal contraceptive vaccines. In order to define peptide epitope(s) that may be critical for eliciting an immune response sufficient to effect immunological contraception without causing any adverse effects on ovarian physiology, studies have been carried out to identify immunodominant B-cell epitopes of the ZP1 protein. The amino acid sequence of the hZP1 was used to design a set of 94 (15-mer) biotinylated peptides having an overlap of 9 amino acids. Using these peptides in a modified enzyme-linked immunoassay, antibodies in sera from rabbits or baboons immunized with native porcine ZP protein were screened for ZP1 peptide recognition. These studies demonstrate that there are a limited number of peptides recognized by primate antibodies but that the overlapping peptides sharing the sequence GPLTLELQI are recognized by both rabbit and baboon antibodies regardless of the adjuvant system used to induce the immune response. This peptide is 100% conserved in amino acid sequence between the human and pig, although the rabbit protein has two conserved amino acid substitutions (100% similar, 77% identical). Because this peptide is immunogenic as well as antigenic in primates, it could play a major role in the development of human contraceptive vaccines.  相似文献   

19.
The fine specificity of the humoral immune response to the pre-S(2) region of the hepatitis B surface antigen was studied. It was demonstrated that the murine antibody response to the pre-S(2) region is focused on residues 133 through 143, and two distinct but overlapping epitopes were identified within 11 continuous residues. One epitope, defined by p133-139, is group specific, and the other epitope, defined by p137-143, is influenced by a subtype-dependent amino acid substitution at residue 141. However, the influence of residue 141 was "covert" in that it was only detected when synthetic antigens of 19 amino acids or smaller were used as the solid-phase ligand. The minimum size of both epitopes (p133-139 and p137-143) was seven amino acids. The physical and chemical form of the immunogen (i.e., protein vs peptide; conjugated vs free peptide) influenced antibody fine specificity. In quantitative antibody inhibition studies it was demonstrated that antibodies with nonoverlapping as well as overlapping fine specificities were capable of mutual inhibition. Finally, human HBV-infected, patient sera were shown to possess anti-pre-S(2) region antibodies that recognized sequences in common with the murine antisera. These results have implications relevant to the design of synthetic and recombinant second generation HBV vaccines and diagnostic reagents.  相似文献   

20.
We describe a peptide vaccine model containing a built-in adjuvant. This model used a multiple antigen peptide system (MAPS) to amplify peptide antigens and a lipoamino acid, tripalmitoyl glyceryl cysteine (P3C), as a built-in adjuvant. An 18-residue peptide antigen (B2) derived from the third variable domain (amino acid 312-329) of the glycoprotein gp120 of type I human immunodeficiency virus (HIV-1) was used in this model. This peptide antigen is a suitable target since it consists of neutralizing, T-helper, and T-cytotoxic epitopes. The peptide antigen in a tetravalent MAPS format (B2M-P3C) with a lipophilic attachment was synthesized by two routes for comparison: a direct stepwise approach and an indirect modular approach. In the stepwise approach, each residue was sequentially added to the peptide resin to give B2M-P3C and the P3C was incorporated to the side chain of a carboxyl terminal lysine as Fmoc-Lys(P3C). In the modular approach, a module containing a chloroacetylated core matrix of MAPS (M-P3C) with a carboxyl tetrapeptide bearing Lys(P3C) and a second module containing the peptide antigen B2 with a cysteine at its terminus were synthesized and purified separately, and then coupled to each other to form B2M-P3C. In the modular approach, the molecular ion of B2M-P3C was unambiguously identified by ion-spray mass spectrometry. B2M-P3C, administered in liposomes without any adjuvant such as Freund's complete adjuvant, was used to immunize mice and found to induce gp120-specific antibodies in vitro, and prime cytotoxic T lymphocytes in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号