首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro assays for the import of proteins by isolated pea thylakoids have been refined and optimised with respect to (a) the method of thylakoid preparation, (b) the concentration of thylakoids in the import assay, and (c) the pH and temperature of the import assay. As a result, the 23 kDa and 16 kDa proteins of the photosynthetic oxygen-evolving complex are imported with efficiencies approaching 100%; import of the third oxygen-evolving complex protein is also observed, albeit with lower efficiencies. We have also demonstrated import of three further thylakoid proteins: plastocyanin, the CFoII subunit of the ATP synthase, and the photosystem I subunit, PSI-N, using this import assay. Import of plastocyanin, PSI-N and the 33 kDa oxygen-evolving complex protein subunit requires the presence of stromal extract whereas the other three proteins are efficiently imported in the absence of added soluble proteins. Import into isolated barley thylakoids was achieved under identical assay conditions, although with somewhat lower efficiency than into pea thylakoids.  相似文献   

2.
The CFoII subunit of the ATP synthase is an integral component of the thylakoid membrane which is synthesized in the cytosol with a bipartite, lumen-targeting presequence similar in structural terms to those of imported lumenal proteins such as plastocyanin. This presequence is shown to possess a terminal cleavage site for the thylakoidal processing peptidase, but no intermediate site for the stromal processing peptidase. The integration of CFoII into the thylakoid membrane of Pisum sativum has been analysed using in vitro assays for the import of proteins into intact chloroplasts or isolated thylakoids. Efficient integration into thylakoids is observed in the light and dark, and the integration process does not require the presence of either stromal extracts or nucleoside triphosphates. The uncoupler nigericin inhibits integration only very slightly, indicating that the thylakoidal delta pH does not play a significant role in the integration mechanism. In each of these respects, the requirements for CFoII integration differ notably from those determined for integration of the light-harvesting chlorophyll-binding protein of photosystem II. The integration mechanism also differs significantly from the two mechanisms involved in the translocation of lumenal proteins across the thylakoid membrane, since one of these processes requires the presence of stromal protein factors and ATP, and the other mechanism is dependent on the thylakoidal delta pH. This conclusion is reinforced by the finding that saturation of the translocation system for the precursor to the lumenal 23 kDa oxygen-evolving complex protein does not affect integration of CFoII into thylakoids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The signal recognition particle (SRP) and its receptor (FtsY in prokaryotes) are essential for cotranslational protein targeting to the endoplasmic reticulum in eukaryotes and the cytoplasmic membrane in prokaryotes. An SRP/FtsY-like protein targeting/integration pathway in chloroplasts mediates the posttranslational integration of the light-harvesting chlorophyll a/b-binding protein (LHCP) into thylakoid membranes. GTP, chloroplast SRP (cpSRP), and chloroplast FtsY (cpFtsY) are required for LHCP integration into thylakoid membranes. Here, we report the reconstitution of the LHCP integration reaction with purified recombinant proteins and salt-washed thylakoids. Our data demonstrate that cpSRP and cpFtsY are the only soluble protein components required for LHCP integration. In addition, our studies reveal that ATP, though not absolutely required, remarkably stimulates LHCP integration into salt-washed thylakoids. ATP stimulates LHCP integration by a mechanism independent of the thylakoidal pH gradient (DeltapH) and exerts no detectable effect on the formation of the soluble LHCP-cpSRP-targeting complex. Taken together, our results indicate the participation of a thylakoid ATP-binding protein in LHCP integration.  相似文献   

4.
Most proteins found in the thylakoid lumen are synthesized in the cytosol with an N–terminal extension consisting of transient signals for chloroplast import and thylakoid transfer in tandem. The thylakoid‐transfer signal is required for protein sorting from the stroma to thylakoids, mainly via the cpSEC or cpTAT pathway, and is removed by the thylakoidal processing peptidase in the lumen. An Arabidopsis mutant lacking one of the thylakoidal processing peptidase homologs, Plsp1, contains plastids with anomalous thylakoids and is seedling‐lethal. Furthermore, the mutant plastids accumulate two cpSEC substrates (PsbO and PetE) and one cpTAT substrate (PsbP) as intermediate forms. These properties of plsp1‐null plastids suggest that complete maturation of lumenal proteins is a critical step for proper thylakoid assembly. Here we tested the effects of inhibition of thylakoid‐transfer signal removal on protein targeting and accumulation by examining the localization of non‐mature lumenal proteins in the Arabidopsis plsp1‐null mutant and performing a protein import assay using pea chloroplasts. In plsp1‐null plastids, the two cpSEC substrates were shown to be tightly associated with the membrane, while non‐mature PsbP was found in the stroma. The import assay revealed that inhibition of thylakoid‐transfer signal removal did not disrupt cpSEC‐ and cpTAT‐dependent translocation, but prevented release of proteins from the membrane. Interestingly, non‐mature PetE2 was quickly degraded under light, and unprocessed PsbO1 and PsbP1 were found in a 440‐kDa complex and as a monomer, respectively. These results indicate that the cpTAT pathway may be disrupted in the plsp1‐null mutant, and that there are multiple mechanisms to control unprocessed lumenal proteins in thylakoids.  相似文献   

5.
SecE, an essential component of the bacterial SecAYEG translocase, mediates protein translocation across the cytoplasmic membrane. In the thylakoid membranes of chloroplasts an SecE homologue, cpSecE, has recently been identified. In this report we show that insertion of cpSecE does not require stromal extract, indicating that signal recognition particle is not involved. Removal of nucleoside triphosphates has apparently no effect on the integration, again ruling out an involvement of SRP or its partner protein, FtsY. The use of well-known inhibitors of the Sec- and Tat pathways, sodium azide and nigericin, respectively, also had no influence on membrane insertion. The data presented here point towards cpSecE as another passenger of a wholly spontaneous import/insertion pathway in the thylakoids of chloroplasts.  相似文献   

6.
《BBA》1986,849(1):32-40
Spinach thylakoids have been frozen under a variety of salt / sucrose concentrations to remove varying amounts of peripheral membrane proteins, including the water-soluble part of the coupling factor complex (CF1). This leads to a defined degree of uncoupling by exposing the CF0 proton channel. The ability of thylakoids, subjected to this treatment, to reconstitute light-induced proton pumping, membrane-conformational changes and proton gradient formation when treated with DCCD, an energy transfer inhibitor which interacts with the CF0 proton channel, thus reducing the proton permeability of the membrane, has been investigated. Full reconstitution of proton pumping and ΔpH formation could be obtained in thylakoids in which up to 75% of the coupling factor complex had been removed by the freezing regime. Even under the most severe conditions employed, in which over 80% of the CF1 was removed from the membrane, there was still between 25 and 50% reconstitution of proton pumping. Reconstitution of membrane conformational changes as monitored by 90° scattering changes showed a strong positive correlation to the restoration of proton pumping. Reconstitution of slower, light-induced transmittance changes, in contrast, exhibited a more variable response. Little reconstitution of the slow transmittance changes was found under conditions which removed more than 60–70% of the coupling factor complex.  相似文献   

7.
Thylakoidal proteins of plant chloroplasts are transported to thylakoids via several different pathways, including the DeltapH-dependent and the Sec-dependent pathways. In this study, we asked if these two pathways utilize a common translocation pore. A fusion protein consisting of a 23-kDa subunit of the oxygen evolving complex and Escherichia coli biotin carboxyl carrier protein was biotinylated in E. coli cells and purified. When incubated with isolated pea thylakoids in the absence of avidin, the purified fusion protein was imported into the thylakoids via the DeltapH-dependent pathway. However in the presence of avidin, the fusion protein became lodged in the thylakoid membranes, with its N terminus reaching the thylakoidal lumen, while its C-terminal segment complexed with avidin exposed on the thylakoidal surface. The translocation intermediate of the fusion protein inhibited the import of authentic 23-kDa subunit, suggesting that it occupies a putative translocation pore for the DeltapH-dependent pathway. However the intermediate did not block import of the 33-kDa subunit of the oxygen evolving complex, which is a substrate for the Sec-dependent pathway. These results provide evidence against the possibility of a common translocation pore shared by the Sec-dependent pathway and the DeltapH-dependent pathway.  相似文献   

8.
Over the past decade, some familiar themes have emerged on how proteins are inserted into or translocated across the plant chloroplast thylakoid membrane and bacterial inner membranes. In the SecA and signal recognition particle (SRP) pathways, nucleotides and soluble factors are used to translocate proteins across the membrane bilayer in the unfolded state. However, the delta pH-dependent pathway in thylakoids uses a radically different mechanism: transport of proteins across the membrane is driven by the transmembrane pH gradient, and neither stromal factors nor nucleotide triphosphates are needed. In addition, this pathway, which requires the membrane-bound protein Hcf106, appears to translocate proteins in a tightly folded form. Recently, a similar pathway has been shown to operate in eubacteria, and several of its components have been identified.  相似文献   

9.
Multiple sorting pathways operate in chloroplasts to localize proteins to the thylakoid membrane. The signal recognition particle (SRP) pathway in chloroplasts employs the function of a signal recognition particle (cpSRP) to target light harvesting chlorophyll-binding protein (LHCP) to the thylakoid membrane. In assays that reconstitute stroma-dependent LHCP integration in vitro, the stroma is replaceable by the addition of GTP, cpSRP, and an SRP receptor homolog, cpFtsY. Still lacking is an understanding of events that take place at the thylakoid membrane including the identification of membrane proteins that may function at the level of cpFtsY binding or LHCP integration. The identification of Oxa1p in mitochondria, an inner membrane translocase component homologous to predicted proteins in bacteria and to the albino3 (ALB3) protein in thylakoids, led us to investigate the potential role of ALB3 in LHCP integration. Antibody raised against a 50-amino acid region of ALB3 (ALB3-50aa) identified a single 45-kDa thylakoid protein. Treatment of thylakoids with antibody to ALB3-50aa inhibited LHCP integration, whereas the same antibody treatment performed in the presence of antigen reversed the inhibition. In contrast, transport by the thylakoid Sec or Delta pH pathways was unaffected. These data support a model whereby a distinct translocase containing ALB3 is used to integrate LHCP into thylakoid membranes.  相似文献   

10.
A study by two-dimensional electrophoresis showed that the soluble, lumenal fraction of Arabidopsis thaliana thylakoids can be resolved into 300 protein spots. After subtraction of low-intensity spots and accounting for low-level stromal contamination, the number of more abundant, lumenal proteins was estimated to be between 30 and 60. Two of these proteins have been identified: a novel plastocyanin that also was the predominant component of the total plastocyanin pool, and a putative ascorbate peroxidase. Import studies showed that these proteins are routed to the thylakoid lumen by the Sec- and delta pH-dependent translocation pathways, respectively. In addition, novel isoforms of PsbO and PsbQ were identified.  相似文献   

11.
K Cline  R Henry  C Li    J Yuan 《The EMBO journal》1993,12(11):4105-4114
Many thylakoid proteins are cytosolically synthesized and have to cross the two chloroplast envelope membranes as well as the thylakoid membrane en route to their functional locations. In order to investigate the localization pathways of these proteins, we over-expressed precursor proteins in Escherichia coli and used them in competition studies. Competition was conducted for import into the chloroplast and for transport into or across isolated thylakoids. We also developed a novel in organello method whereby competition for thylakoid transport occurred within intact chloroplasts. Import of all precursors into chloroplasts was similarly inhibited by saturating concentrations of the precursor to the OE23 protein. In contrast, competition for thylakoid transport revealed three distinct precursor specificity groups. Lumen-resident proteins OE23 and OE17 constitute one group, lumenal proteins plastocyanin and OE33 a second, and the membrane protein LHCP a third. The specificity determined by competition correlates with previously determined protein-specific energy requirements for thylakoid transport. Taken together, these results suggest that thylakoid precursor proteins are imported into chloroplasts on a common import apparatus, whereupon they enter one of several precursor-specific thylakoid transport pathways.  相似文献   

12.
The three high-molecular-weight subunits of chloroplast coupling factor (CF1) are the primary proteins released from pyrophosphate-washed thylakoids exposed to freezing. Identical subunit profiles are found in the supernatant proteins of thylakoids exposed to different intensities of freezing stress by the inclusion of sugars with varying degrees of cryoprotective efficiency. Isolated CF1 is inactivated by freezing in the presence of NaCl, glucose, and sucrose but raffinose can protect against loss of enzymatic activity during freezing. The low specific activity of the supernatant proteins released from the thylakoid and the inability to recover the Ca2+-dependent ATPase activity lost from the membrane suggest that inactivation accompanies release of CF1 during freezing.  相似文献   

13.
Thylakoid membranes have a unique complement of proteins, most of which are nuclear encoded synthesized in the cytosol, imported into the stroma and translocated into thylakoid membranes by specific thylakoid translocases. Known thylakoid translocases contain core multi-spanning, membrane-integrated subunits that are also nuclear-encoded and imported into chloroplasts before being integrated into thylakoid membranes. Thylakoid translocases play a central role in determining the composition of thylakoids, yet the manner by which the core translocase subunits are integrated into the membrane is not known. We used biochemical and genetic approaches to investigate the integration of the core subunit of the chloroplast Tat translocase, cpTatC, into thylakoid membranes. In vitro import assays show that cpTatC correctly localizes to thylakoids if imported into intact chloroplasts, but that it does not integrate into isolated thylakoids. In vitro transit peptide processing and chimeric precursor import experiments suggest that cpTatC possesses a stroma-targeting transit peptide. Import time-course and chase assays confirmed that cpTatC targets to thylakoids via a stromal intermediate, suggesting that it might integrate through one of the known thylakoid translocation pathways. However, chemical inhibitors to the cpSecA-cpSecY and cpTat pathways did not impede cpTatC localization to thylakoids when used in import assays. Analysis of membranes isolated from Arabidopsis thaliana mutants lacking cpSecY or Alb3 showed that neither is necessary for cpTatC membrane integration or assembly into the cpTat receptor complex. These data suggest the existence of another translocase, possibly one dedicated to the integration of chloroplast translocases.  相似文献   

14.
The light-harvesting proteins in plastids of different lineages including algae and land plants represent a superfamily of chlorophyll-binding proteins that seem to be phylogenetically related, although some of the light-harvesting complex (LHC) proteins bind different carotenoids. LHCs can be divided into chlorophyll a/b-binding proteins found in green algae, euglenoids, and higher plants and into chlorophyll a/c-binding proteins of various algal taxa. LHC proteins from diatoms are named fucoxanthin-chlorophyll a/c-binding proteins (FCP). In contrast to chlorophyll a/b-binding proteins, there is no information so far about the way FCPs integrate into thylakoid membranes. The diatom FCP preproteins have a bipartite presequence that is necessary to enable transport into the four membrane-bound diatom plastids, but similar to chlorophyll a/b-binding proteins there is apparently no presequence present for targeting to the thylakoid membrane. By establishing an in vitro import assay for diatom thylakoids, we demonstrated that thylakoid integration of diatom FCP depends on the presence of stromal factors and GTP. This indicates that a pathway involving signal recognition particles (SRP) is involved in membrane integration just as shown for LHCs in higher plants. We also demonstrate integration of diatom FCP into thylakoids of higher plants and vice versa SRP-dependent targeting of LHCs from pea and Arabidopsis into diatom thylakoids. The similar SRP-dependent modes of thylakoid integration of land plant LHCs and FCPs support recent analyses indicating a common origin of chlorophyll a/b- and a/c-binding proteins.  相似文献   

15.
The 33- and 23-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized in the cytosol as larger precursors and transported into the thylakoid lumen via stromal intermediate forms. We have investigated the energetics of protein transport across the thylakoid membrane using import assays that utilize either intact chloroplasts or isolated thylakoids. We have found that the light-driven import of the 23-kDa protein into isolated thylakoids is almost completely inhibited by electron transport inhibitors or by the ionophore nigericin but not by valinomycin. These compounds have similar effects in chloroplast import assays: precursors of both the 33- and 23-kDa proteins are imported and processed to intermediate forms in the stroma, but transport into the thylakoid lumen is blocked when electron transport is inhibited or nigericin is present. These results indicate that the transport of these proteins across the thylakoid membrane requires a protonmotive force and that the dominant component in this respect is the proton gradient and not the electrical potential.  相似文献   

16.
The 33 kd protein of the photosynthetic oxygen-evolving complex is synthesized in the cytoplasm as a larger precursor and transported into the thylakoid lumen via a stromal intermediate form. In this report we describe a reconstituted system in which the later stages of this import pathway can be studied in isolation. We demonstrate import of the 33 kd protein, probably as the intermediate form, into isolated pea thylakoids by a mechanism which is stimulated by the addition of ATP. The imported protein is processed to the mature size and is resistant to digestion by proteases. The thylakoidal protein transport system is specific in that non-chloroplast proteins and precursors of stromal proteins are not imported.  相似文献   

17.
The effect of a 30 h high light treatment on the amount and the localization of thylakoid proteins was analysed in low light grown photoautotrophic cells of Marchantia polymorpha and Chenopodium rubrum. High light treatment resulted in a net loss of D1 protein which was accompanied by comparable losses of other proteins of the PS II core (reaction center with inner antenna). LHC II proteins were not reduced correspondingly, indicating that these complexes are less affected by prolonged high light. High light influenced the distribution of PS II components between the grana and the stroma region of the thylakoid membrane, probably by translocation of the respective PS II proteins. Additionally, modifications of several thylakoid proteins were detected in high light treated cells of C. rubrum. These effects are discussed in relation to photoinhibitory damage and repair processes.Abbreviations BCA bioinchonic acid - chl chlorophyll - CF1 coupling factor - CYC cycloheximide - GT grana thylakoids - HL high light - LL low light - PAGE polyacrylamide gel electrophoresis - PFD photon flux density - PS I Photosystem I - PS II Photosystem II - RC reaction center - SDS sodium dodecylsulfate - ST stroma thylakoids - Thyl unfractionated thylakoids  相似文献   

18.
The D1 polypeptide of photosystem II (PSII) is synthesized as a precursor that is processed by cleavage at the carboxyl terminus during assembly of the active PSII complex. A mutant of the green alga Scenedesmus obliquus, LF-1, inactive in water-splitting, lacks the D1 processing activity but assembles otherwise normal PSII complexes containing the precursor D1 molecule. We have isolated and partially purified a soluble protease from sonicated thylakoids of both wild-type S. obliquus and Pisum sativum which will process the precursor D1 molecule in PSII-enriched membranes from the LF-1 mutant to the mature size. After processing (but not before), photoactivation of these PSII membranes in the presence of manganese restores water-splitting to levels seen after photoactivation of PSII membranes from dark-grown, wild-type, cells. The protease is unable to process D1 in intact thylakoids from the LF-1 mutant but processes D1 if present during sonication of the thylakoids, indicating that processing of the carboxyl-terminal extension of D1 occurs in the lumen of the thylakoid. The processing protease from both S. obliquus and P. sativum is a single subunit enzyme of native molecular mass 33-35 kDa. Processing rate is optimal at pH 6.5. Processing in vitro is evident within 5 min and is markedly inhibited by millimolar concentrations of divalent cations (Cu, Zn greater than Mn greater than Ca, Mg) but not by any known inhibitors of the major classes of proteases. The protease is inactive against the precursors of other thylakoidal proteins and is thus distinct from the thylakoidal amino-terminal processing enzyme involved in the removal of transit peptides from cytoplasmically-synthesised proteins imported into the thylakoid lumen.  相似文献   

19.
The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content. When mutants were grown in high‐phosphate conditions, the leaf phosphorus levels increased and the growth phenotype was suppressed. Photosynthetic measurements indicated that in the absence of PHT4;1 stromal phosphate was reduced to levels that limited ATP synthase activity. This resulted in reduced CO2 fixation and accumulation of soluble sugars, limiting plant growth. The mutants also displayed faster induction of non‐photochemical quenching than the wild type, in line with the increased contribution of ΔpH to the proton‐motive force across thylakoids. Small‐angle neutron scattering showed a smaller lamellar repeat distance, whereas circular dichroism spectroscopy indicated a perturbed long‐range order of photosystem II (PSII) complexes in the mutant thylakoids. The absence of PHT4;1 did not alter the PSII repair cycle, as indicated by wild‐type levels of phosphorylation of PSII proteins, inactivation and D1 protein degradation. Interestingly, the expression of genes for several thylakoid proteins was downregulated in the mutants, but the relative levels of the corresponding proteins were either not affected or could not be discerned. Based on these data, we propose that PHT4;1 plays an important role in chloroplast phosphate compartmentation and ATP synthesis, which affect plant growth. It also maintains the ionic environment of thylakoids, which affects the macro‐organization of complexes and induction of photoprotective mechanisms.  相似文献   

20.
Plastocyanin is synthesized in the cytoplasm as a larger precursor and transported across three membranes into the chloroplast thylakoid lumen. Processing to the mature size involves successive cleavages by a stromal and a thylakoidal peptidase. In this report we describe the partial purification and characterization of the thylakoidal peptidase involved. The enzyme has been purified 36-fold from Pisum sativum thylakoids after solubilization using Triton X-100. The peptidase processes the plastocyanin import intermediate to the mature size, but no further, and is capable of processing pre-plastocyanin to the mature size but at a lower rate. No detectable activity is displayed against non-chloroplast proteins or precursors of stromal proteins. The enzyme has a pH optimum of 6.5-7 and is activated by chelating agents such as EDTA and EGTA. No inhibitors of the peptidase have been found to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号