首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Abieslactone is a triterpenoid lactone isolated from Abies plants. Previous studies have demonstrated that its derivative abiesenonic acid methyl ester possesses anti-tumor-promoting activity in vitro and in vivo. In the present study, cell viability assay demonstrated that abieslactone had selective cytotoxicity against human hepatoma cell lines. Immunostaining experiments revealed that abieslactone induced HepG2 and SMMC7721 cell apoptosis. Flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of CDK2 and cyclin D1. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to upregulation of Bax, down-regulation of Bcl-2, mitochondrial release of cytochrome c, reduction of mitochondrial membrane potential (MMP), and activation of caspase cascades (Casp-9 and -3). Activation of caspase cascades also resulted in the cleavage of PARP fragment. Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Recent studies have shown that ROS is upstream of Akt signal in mitochondria-mediated hepatoma cell apoptosis. Our results showed that the accumulation of ROS was detected in HepG2 cells when treated with abieslactone, and ROS scavenger partly blocked the effects of abieslactone-induced HepG2 cell death. In addition, inactivation of total and phosphorylated Akt activities was found to be involved in abieslactone-induced HepG2 cell apoptosis. Therefore, our findings suggested that abieslactone induced G1 cell cycle arrest and caspase-dependent apoptosis via the mitochondrial pathway and the ROS/Akt pathway in HepG2 cells.  相似文献   

2.
Statins are widely used to prevent cardiovascular diseases. They are well-tolerated, with side-effects mainly seen in skeletal muscle. How these side-effects are caused is unknown. We compared isolated primary mouse skeletal muscle myocytes, C2C12 myotubes and liver HepG2 cells to detect differences that could uncover why statins are toxic in skeletal muscle but less so in the liver. 10μM simvastatin caused a decrease in mitochondrial respiration in the primary mouse myocytes and C2C12 myotubes, but had no effect in the HepG2 cells. Mitochondrial integrity is maintained by multiple signaling pathways. One of these pathways, Igf-1/Akt signaling, is also heavily implicated in causing statin-induced toxicity by upregulating atrogin-1. We found that phosphorylated Akt was reduced in C2C12 myotubes but not in HepG2 cells. HepG2 mitochondrial respiration became susceptible to simvastatin-treatment after Akt inhibition, and mitochondrial respiration was rescued in Igf-1-treated C2C12 myotubes. These results suggest that disruption of Igf-1/Akt signaling is a causative factor in simvastatin-induced mitochondrial dysfunction in C2C12 myotubes, whereas HepG2 cells are protected by maintaining Igf-1/Akt signaling. We conclude that phosphorylation of Akt is a key indicator of susceptibility to statin-induced toxicity. How statins can disrupt Igf-1/Akt signaling is unknown. Statins reduce geranylgeranylation of small GTPases, such as Rap1. Previous studies implicate Rap1 as a link between cAMP/Epac and Igf-1/Akt signaling. Transient transfection of constitutively active Rap1 into C2C12 myotubes led to a partial rescue of simvastatin-induced inhibition of mitochondrial respiration, providing a novel link between signaling and respiration.  相似文献   

3.
Rotenone, a commonly used pesticide, is well documented to induce selective degeneration in dopaminergic neurons and motor dysfunction. Such rotenone-induced neurodegenration has been primarily suggested through mitochondria-mediated apoptosis and reactive oxygen species (ROS) generation. But the status of rotenone induced changes in liver, the major metabolic site is poorly investigated. Thus, the present investigation was aimed to study the oxidative stress-induced cytotoxicity and apoptotic cell death in human liver cells-HepG2 receiving experimental exposure of rotenone (12.5–250 μM) for 24 h. Rotenone depicted a dose-dependent cytotoxic response in HepG2 cells. These cytotoxic responses were in concurrence with the markers associated with oxidative stress such as an increase in ROS generation and lipid peroxidation as well as a decrease in the glutathione, catalase, and superoxide dismutase levels. The decrease in mitochondrial membrane potential also confirms the impaired mitochondrial activity. The events of cytotoxicity and oxidative stress were found to be associated with up-regulation in the expressions (mRNA and protein) of pro-apoptotic markers viz., p53, Bax, and caspase-3, and down-regulation of anti-apoptotic marker Bcl-2. The data obtain in this study indicate that rotenone-induced cytotoxicity in HepG2 cells via ROS-induced oxidative stress and mitochondria-mediated apoptosis involving p53, Bax/Bcl-2, and caspase-3.  相似文献   

4.
Angiotensin II (AngII) is an important factor that promotes the proliferation of cancer cells, whereas celastrol exhibits a significant antitumor activity in various cancer models. Whether celastrol can effectively suppress AngII mediated cell proliferation remains unknown. In this study, we studied the effect of celastrol on AngII-induced HepG2 cell proliferation and evaluated its underlying mechanism. The results revealed that AngII was able to significantly promote HepG2 cell proliferation via up-regulating AngII type 1 (AT1) receptor expression, improving mitochondrial respiratory function, enhancing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, increasing the levels of reactive oxygen species (ROS) and pro-inflammatory cytokines. The excess ROS from mitochondrial dysfunction is able to cause the apoptosis of tumor cells via activating caspase3 signal pathway. In addition, the reaction between NO and ROS results in the formation of peroxynitrite (ONOO?), and then promoting cell damage. celastrol dramatically enhanced ROS generation, thereby causing cell apoptosis through inhibiting mitochodrial respiratory function and boosting the expression levels of AngII type 2 (AT2) receptor without influencing NADPH oxidase activity. PD123319 as a special inhibitor of AT2R was able to effectively decreased the levels of inflammatory cytokines and endothelial nitric oxide synthase (eNOS) activity, but only partially attenuate the effect of celastrol on AnII mediated HepG2 cell proliferation. Thus, celastrol has the potential for use in liver cancer therapy. ROS derived from mitochondrial is an important factor for celastrol to suppress HepG2 cell proliferation.  相似文献   

5.
1-(3′,4′,5′-Trimethoxyphenyl)-3-(3″,4″-dimethoxy-2″-hydroxyphenyl)-propane (DP), a novel synthesized 1,3-diarylpropanes compound, showed growth inhibitory effect on human hepatoma HepG2 cells in a concentration-dependent manner. The growth inhibitory effect of DP on HepG2 cells was associated with microtubule depolymerization, G2/M phase arrest and apoptosis induction. The G2/M phase arrest induced by DP resulted from its microtubule-depolymerizing ability, and DP-treated HepG2 cells finally underwent caspase-dependent apoptosis. DP increased the levels of death receptor 4 (DR4), death receptor 5 (DR5) and pro-apoptotic protein Bax, but decreased the levels of anti-apoptotic protein Bcl-2. Meanwhile, the decrease in the mitochondrial membrane potential (MMP) and the release of cytochrome c from mitochondria were observed in DP-treated HepG2 cells. DP increased the levels of reactive oxygen species (ROS) in HepG2 cells, and antioxidant N-acetylcysteine (NAC) completely blocked DP-induced ROS accumulation and the disruption of the balance between Bax and Bcl-2 proteins, and effectively blocked the decreased MMP and apoptosis, but had no effect on the activation of caspase-8 and the up-regulations of DR4 and DR5 induced by DP. These results suggest that DP induces G2/M phase arrest through interruption of microtubule network followed by the death receptor- and ROS-mediated apoptosis in HepG2 cells.  相似文献   

6.
BackgroundParaoxonase 2 (PON2) a known anti-apoptotic protein, has not been explored against Nε-(carboxymethyl)lysine (CML), induced mitochondrial dysfunction and apoptosis in human retinal cells. Hence this present study aims to investigate the potential role of PON2 in mitigating CML-induced mitochondrial dysfunction in these cells.MethodsPON2 protein was quantified in HRECs (Human retinal endothelial cells), ARPE-19 (Retinal pigment epithelial cells) cells upon CML treatment and also in cadaveric diabetic retina vs respective controls. ROS production, mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (mPTP) opening, the release of Cyt-c, Bax, Caspase-3, Fis1, Mfn1, Mfn2, mitochondrial morphology, and the signaling pathway was assessed using DCFDA, JC-1, CoCl2, immunofluorescence or western blotting analysis in both loss-of-function or gain-of-function experiments.ResultsPON2 protein was downregulated in HREC and ARPE-19 cells upon CML treatment as well as in the diabetic retina (p = 0.035). Decrease in PON2 augments Fis1 expression resulting in fragmentation of mitochondria and enhances the ROS production, decreases MMP, facilitates mPTP opening, and induces the release of Cyt-c, which activates the pro-apoptotic pathway. Whereas PON2 overexpression similar to SP600125 (a specific JNK inhibitor) was able to decrease Fis1 (p = 0.036) and reverse the Bcl-2 and Bax ratio, and inhibit the JNK1/2 signaling pathway.ConclusionOur results confirm that PON2 has an anti-apoptotic role against the CML mediated mitochondrial dysfunction and inhibits apoptosis through the JNK-Fis1 axis.General significanceWe hypothesis that enhancing PON2 may provide a better therapeutic potential against diabetic vascular disease.  相似文献   

7.
Nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in a variety of cells, but the mechanism of this effect has not been fully elucidated. We report that diclofenac, a NSAID, induces growth inhibition and apoptosis of HL-60 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS), Akt, caspase-8, and Bid. ROS generation occurs in an early stage of diclofenac-induced apoptosis preceding cytochrome c release, caspase activation, and DNA fragmentation. N-Acetyl-L-cysteine, an antioxidant, suppresses ROS generation, Akt inactivation, caspase-8 activation, and DNA fragmentation. Cyclic AMP, an inducer of Akt phosphorylation, suppresses Akt inactivation, Bid cleavage, and DNA fragmentation. LY294002, a PI3 kinase inhibitor, enhances Akt inactivation and DNA fragmentation. Ac-IETD-CHO, a caspase-8 inhibitor, suppresses Bid cleavage and DNA fragmentation. z-VAD-fmk, a universal caspase inhibitor, but not cyclosporin A (CsA), an inhibitor of mitochondrial membrane permeability transition, suppresses DNA fragmentation. These results suggest the sequential mechanism of diclofenac-induced apoptosis of HL-60 cells: ROS generation suppresses Akt activity, thereby activating caspase-8, which stimulates Bid cleavage and induces cytochrome c release and the activation of caspase-9 and-3 in a CsA-insensitive mechanism. Furthermore, we found that 2-methoxyestradiol (2-ME), a superoxide dismutase inhibitor, significantly enhances diclofenac-induced apoptosis; that is, diclofenac combined with 2-ME may have therapeutic potential in the treatment of human leukemia.  相似文献   

8.
Oxidative stress is an important molecular mechanism underlying lung fibrosis. The mitochondrion is a major organelle for oxidative stress in cells. Therefore, blocking the mitochondrial signalling pathway may be the best therapeutic manoeuver to ameliorate lung fibrosis. Astaxanthin (AST) is an excellent antioxidant, but no study has addressed the pathway of AST against pulmonary oxidative stress and free radicals by the mitochondrion‐mediated signalling pathway. In this study, we investigated the antioxidative effects of AST against H2O2‐ or bleomycin (BLM)‐induced mitochondrial dysfunction and reactive oxygen species (ROS) production in alveolar epithelial cells type II (AECs‐II) in vivo and in vitro. Our data show that AST blocks H2O2‐ or BLM‐induced ROS generation and dose‐dependent apoptosis in AECs‐II, as characterized by changes in cell and mitochondria morphology, translocation of apoptotic proteins, inhibition of cytochrome c (Cyt c) release, and the activation of caspase‐9, caspase‐3, Nrf‐2 and other cytoprotective genes. These data suggest that AST inhibits apoptosis in AECs‐II cells through the ROS‐dependent mitochondrial signalling pathway and may be of potential therapeutic value in lung fibrosis treatment.  相似文献   

9.
The anti-cancer effect of dehydrocostus lactone (DHL) derived from Saussurea costus (Falc.) Lipech against laryngeal carcinoma was assessed. The cytotoxic activity of DHL against laryngeal carcinoma is still obscure. Therefore, our study investigated the role of DHL in the growth inhibition of laryngeal carcinoma in vitro and in vivo, and the molecular mechanism of DHL-induced apoptosis in cancer cells of the larynx. The results showed that DHL inhibits the viability, migration and proliferation of Hep-2 and TU212 cells with little toxic effects on human normal larynx epithelial HBE cell line. Flow cytometry analysis (FAC) analysis and staining assay (Hoechst 33258) indicated that DHL stimulated Hep-2 and TU212 cell apoptosis in a dose-dependent manner. Mechanistically, DHL is capable of inhibiting Hep-2 and TU212 cell viability via promoting p53 and P21 function, meanwhile DHL dose-dependently induces Hep-2 and TU212 cells apoptosis via activating mitochondrial apoptosis by inhibiting PI3K/Akt/Bad pathway and stimulating endoplasmic reticulum stress-mediated apoptosis pathway. In vivo, DHL inhibited the growth of the Hep-2 nude mouse xenograft model and observed no significant signs of toxicity in the organs of nude mice. In vivo experiments further confirmed the anti-cancer effect of DHL on laryngeal carcinoma cells in vitro, and DHL-treated nude mice can reduce the volume of tumours. Together, our study indicated that DHL has the potential to inhibit human laryngeal carcinoma via activating mitochondrial apoptosis pathway by inhibiting PI3K/Akt/Bad signalling pathway and stimulating endoplasmic reticulum stress-mediated apoptosis pathway, providing a strategy for the treatment of human laryngeal carcinoma.  相似文献   

10.
Hepatoma-derived growth factor (HDGF) is highly expressed in human cancer and its expression is correlated with poor prognosis of cancer. The growth factor is known to stimulate cell growth while the underlying mechanism is however not clear. Transfection with HDGF cDNA stimulated while its specific antisense oligonucleotides repressed the growth of human hepatocellular carcinoma HepG2 cells. Furthermore, knock-down of HDGF by antisense oligos also induced apoptosis in HepG2 cells and in other human cancer cells, e.g. human squamous carcinoma A431 cells. HDGF knock-down was found to induce the expression of the pro-apoptotic protein Bad and also inactivate ERK and Akt, which in turn led to dephosphorylation of Bad at Ser-112, Ser-136, and activation of the intrinsic apoptotic pathway, i.e. depolarization of the mitochondrial membrane, release of mitochondrial cytochrome c, increase in the processing of caspase 9 and 3. As HDGF knock-down not only suppresses the growth but also induces apoptosis in human cancer cells, HDGF may therefore serve as a survival factor for human cancer cells and a potential target for cancer therapy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Mitochondria are the most important sensor for apoptosis. Extracellular adenosine is well reported to induce apoptosis of tumor cells. Here we found that extracellular adenosine suppresses the cell growth by induction of apoptosis in BEL-7404 liver cancer cells, and identified a novel mechanism that extracellular adenosine triggers apoptosis by increasing Reactive Oxygen Species (ROS) production and mitochondrial membrane dysfunction in the cells. We observed that adenosine increases ROS production, activates c-Caspase-8 and -9 and Caspase effectors, c-Caspase-3 and c-PARP, induces accumulation of apoptosis regulator Bak, decreases Bcl-xL and Mcl-1, and causes the mitochondrial membrane dysfunction and the release of DIABLO, Cytochrome C, and AIF from mitochondria to cytoplasm in the cells; ROS inhibitor, NAC significantly reduces adenosine-induced ROS production; it also shows the same degree of blocking adenosine-induced loss of mitochondrial membrane potential (MMP) and apoptosis. Our study first observed that adenosine increases ROS production in tumor cells and identified the positive feedback loop for ROS-mediated mitochondrial membrane dysfunction which amplifies the death signals in the cells. Our findings indicated ROS production and mitochondrial dysfunction play a key role in adenosine-induced apoptosis of 7404 cells.  相似文献   

12.
Matrine is a natural alkaloid isolated from the root and stem of the legume plant Sophora. Its anti-proliferative and pro-apoptotic effects on several types of cancer have been well-documented. However, the role of matrine in regulating mitochondrial homeostasis, particularly mitophagy in liver cancer apoptosis, remains uncertain. The aim of our study was to explore whether matrine promotes liver cancer cell apoptosis by modifying mitophagy. HepG2 cells were used in the study and treated with different doses of matrine. Cell viability and apoptosis were determined by MTT assay, TUNEL staining, western blotting, and LDH release assay. Mitophagy was monitored by immunofluorescence assay and western blotting. Mitochondrial function was assessed by immunofluorescence assay, ELISA, and western blotting. The results of our study indicated that matrine treatment dose-dependently reduced cell viability and increased the apoptotic rate of HepG2 cells. Functional studies demonstrated that matrine treatment induced mitochondrial dysfunction and activated mitochondrial apoptosis by inhibiting protective mitophagy. Re-activation of mitophagy abolished the pro-apoptotic effects of matrine on HepG2 cells. Molecular investigations further confirmed that matrine regulated mitophagy via the PINK1/Parkin pathways. Matrine blocked the PINK1/Parkin pathways and repressed mitophagy, whereas activation of the PINK1/Parkin pathways increased mitophagy activity and promoted HepG2 cell survival in the presence of matrine. Together, our data indicated that matrine promoted HepG2 cell apoptosis through a novel mechanism that acted via inhibiting mitophagy and the PINK1/Parkin pathways. This finding provides new insight into the molecular mechanism of matrine for treating liver cancer and offers a potential target to repress liver cancer progression by modulating mitophagy and the PINK1/Parkin pathways.  相似文献   

13.
Relative specific amino acid dependency is one of the metabolic abnormalities of cancer cells, and restriction of specific amino acids induces apoptosis of prostate cancer cells. This study shows that restriction of tyrosine and phenylalanine (Tyr/Phe), glutamine (Gln), or methionine (Met), modulates Raf and Akt survival pathways and affects the function of mitochondria in DU145 and PC3, in vitro. These three restrictions inhibit energy production (ATP synthesis) and induce generation of reactive oxygen species (ROS). Restriction of Tyr/Phe or Met in DU145 and Met in PC3 reduces mitochondrial membrane potential (DeltaPsim) and induces caspase-dependent and -independent apoptosis. In DU145, Tyr/Phe or Met restriction reduces activity of Akt, mitochondrial distribution of phosphorylated Raf and apoptosis inducing factor (AIF), and increases mitochondrial distribution of Bak. Mitochondrial Bcl-XL is increased in Tyr/Phe-restricted but decreased in Met-restricted cells. Under Tyr/Phe or Met restriction, reduced mitochondrial Raf does not inactivate the pro-apoptotic function of Bak. Tyr/Phe restriction also inhibits Bcl-2 and Met restriction inhibits Bcl-XL in mitochondria. These comprehensive actions damage the integrity of the mitochondria and induce apoptosis of DU145. In PC3, apoptosis induced by Met restriction was not associated with alterations in intracellular distribution of Raf, Bcl-2 family proteins, or AIF. All of the amino acid restrictions inhibited Akt activity in this cell line. We conclude that specific amino acid restriction differentially interferes with homeostasis/balance between the Raf and Akt survival pathways and with the interaction of Raf and Bcl-2 family proteins in mitochondria to induce apoptosis of DU145 and PC3 cells.  相似文献   

14.

Objective

To investigate the effect of parthenolide on apoptosis and autophagy and to study the role of the PI3K/Akt signaling pathway in cervical cancer.

Results

Parthenolide inhibits HeLa cell viability in a dose dependent-manner and was confirmed by MTT assay. Parthenolide (6 µM) induces mitochondrial-mediated apoptosis and autophagy by activation of caspase-3, upregulation of Bax, Beclin-1, ATG5, ATG3 and down-regulation of Bcl-2 and mTOR. Parthenolide also inhibits PI3K and Akt expression through activation of PTEN expression. Moreover, parthenolide induces generation of reactive oxygen species that leads to the loss of mitochondrial membrane potential.

Conclusion

Parthenolide induces apoptosis and autophagy-mediated growth inhibition in HeLa cells by suppressing the PI3K/Akt signaling pathway and mitochondrial membrane depolarization and ROS generation. Parthenolide may be a potential therapeutic agent for the treatment of cervical cancer.
  相似文献   

15.
In this study, we investigated the ability of the Polysaccharide from the Eggs of Strongylocentrotus nudus (SEP) to regulate cellular autophagy and apoptosis in leukaemia cells. Human acute myeloid leukaemia (AML) cells (HL60) and murine AML cells (L1210) treated with SEP were used to assess viability using Cell Counting Kit-8, cytotoxicity by measuring lactate dehydrogenase release, the generation of reactive oxygen species (ROS) by DCFH-DA staining. In addition, we utilized a mouse model of leukaemia in which L1210 cells were injected into DBA/2 mice by sub-axillary injection. Treatment with SEP decreased cell viability, increased in cytotoxicity and increased the release of ROS in a dose-dependent manner. SEP treatment was also associated with the activation of pro-apoptotic proteins cleaved caspase-3, cleaved caspase-9 and cleaved poly (ADP-ribose) polymerase (PARP). Activation of the apoptotic pathway led to the release of cytochrome C (CytoC) into the cytosol of the cell resulting in decreased membrane potential. The effect of SEP treatment was depended on the activation of the nuclear factor kappa-B (NF-κB) signalling pathway as SEP treatment led to an increase in NF-κB phosphorylation, and inhibition of NF-κB signalling using PDTC blocked SEP-mediated activation of apoptosis. Treatment with SEP also prolonged survival time in our leukaemia mouse model and was associated with diminished tumour volume, increased leucocyte and lymphocyte proliferation, promoted pro-inflammatory factor release in serum and enhanced immune function. Taken together, these data suggest that SEP inhibits the progression of leukaemia by initiating mitochondrial dysfunction, autophagy, and apoptosis via the NF-κB signalling pathway.  相似文献   

16.
A novel polysaccharide, MEP-II, isolated from the fermentation broth of Morchella esculenta inhibited the proliferation of human hepatoma cell line (HepG2) through an apoptotic pathway. After HepG2 cells were treated with 150–600 μg MEP-II/ml, typical apoptotic characteristics including externalization of phosphatidylserine residues on the cell surface, nuclear fragmentation, chromatin condensation and cytoplasm shrinkage were observed. Furthermore, reactive oxygen species (ROS) burst and the collapse of mitochondrial membrane potential (Δψm) also occurred in HepG2 cells after incubation of 150–600 μg MEP-II/ml. The antioxidant, 1 mM N-acetyl-l-cysteine inhibited MEP-II-induced apoptosis, suggesting that ROS are the key mediators for MEP-II-induced apoptosis. MEP-II is therefore a potential anti-tumor agent that induces apoptosis of HepG2 cells through ROS generation.  相似文献   

17.
Astaxanthin (ATX), which is the most abundant flavonoid in propolis, has previously shown neuroprotective properties against cerebral ischaemia‐induced apoptosis. However, the mechanisms by which ATX mediates its therapeutic effects are unclear. At present, we explored the underlying mechanisms involved in the protective effects of ATX via the phosphoinositide 3‐kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor erythroid 2‐related factor 2 (Nrf2) signalling pathway in SH‐SY5Y cells. The PI3K/Akt inhibitor LY294002 and GSK3β inhibitor LiCl were employed in this study. Pre‐treatment with ATX for 24 hours significantly decreased the oxygen and glucose deprivation (OGD)‐induced viability loss, reduced the proportion of apoptosis and regulated OGD‐mediated reactive oxygen species (ROS) production. Furthermore, ATX suppressed OGD‐caused mitochondrial membrane potential and decomposition of caspase‐3 to cleaved caspase‐3, and heightened the B‐cell lymphoma 2 (Bcl‐2)/Bax ratio. PI3K/Akt/GSK3β/Nrf2 signalling pathway activation in SH‐SY5Y cells was verified by Western blot. ATX and LiCl treatment raised the protein levels of p‐Akt, p‐GSK3β, nucleus Nrf2 and haeme oxygenase 1 (HO‐1). However, these protein expression levels decreased by treatment of LY294002. The above in vitro data indicate that ATX can confer neuroprotection against OGD‐induced apoptosis via the PI3K/Akt/GSK3β/Nrf2 signalling pathway.  相似文献   

18.
Shi DY  Liu HL  Stern JS  Yu PZ  Liu SL 《FEBS letters》2008,582(12):1667-1671
We report here that alpha-lipoic acid (alpha-LA), a naturally-occurring antioxidant, scavenges reactive oxygen species (ROS) followed by an increase in apoptosis of human hepatoma cells. Apoptosis induced by alpha-LA was dependent upon the activation of the caspase cascade and the mitochondrial death pathway. alpha-LA induced increases in caspase-9 and caspase-3 but had no significant effect on caspase-8 activity. Apoptosis induced by alpha-LA was found to be mediated through the tensin homologue deleted on chromosome 10 (PTEN)/Akt pathway. Prior to cell apoptosis, PTEN was activated and its downstream target Akt was inhibited. Our findings indicate that increasing ROS scavenging could be a therapeutic strategy to treat cancer.  相似文献   

19.

Background

Despite the recent progress in screening and therapy, a majority of prostate cancer cases eventually attain hormone refractory and chemo-resistant attributes. Conventional chemotherapeutic strategies are effective at very high doses for only palliative management of these prostate cancers. Therefore chemo-sensitization of prostate cancer cells could be a promising strategy for increasing efficacy of the conventional chemotherapeutic agents in prostate cancer patients. Recent studies have indicated that the chemo-preventive natural agents restore the pro-apoptotic protein expression and induce endoplasmic reticulum stress (ER stress) leading to the inhibition of cellular proliferation and activation of the mitochondrial apoptosis in prostate cancer cells. Therefore reprogramming ER stress-mitochondrial dependent apoptosis could be a potential approach for management of hormone refractory chemoresistant prostate cancers. We aimed to study the effects of the natural naphthoquinone Shikonin in human prostate cancer cells.

Results

The results indicated that Shikonin induces apoptosis in prostate cancer cells through the dual induction of the endoplasmic reticulum stress and mitochondrial dysfunction. Shikonin induced ROS generation and activated ER stress and calpain activity. Moreover, addition of antioxidants attenuated these effects. Shikonin also induced the mitochondrial apoptotic pathway mediated through the enhanced expression of the pro-apoptotic Bax and inhibition of Bcl-2, disruption of the mitochondrial membrane potential (MMP) followed by the activation of caspase-9, caspase-3, and PARP cleavage.

Conclusion

The results suggest that shikonin could be useful in the therapeutic management of hormone refractory prostate cancers due to its modulation of the pro-apoptotic ER stress and mitochondrial apoptotic pathways.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0127-1) contains supplementary material, which is available to authorized users.  相似文献   

20.
Uveal melanoma (UM) is a highly invasive intraocular malignancy with high mortality. Presently, there is no FDA-approved standard for the treatment of metastatic UM. Pristimerin is a natural quinine methide triterpenoid compound with anti-angiogenic, anti-cancer and anti-inflammatory activities. However, Pristimerin potential cytotoxic effect on UM was poorly investigated. In the present study, we found the migration and invasion of UM-1 cells were inhibited by Pristimerin which also caused a rapid increase of ROS, decreased mitochondrial membrane potential, induced the accumulation of cells in G0/G1 phase, ending with apoptotic cell death. Pristimerin inhibited Akt and FoxO3a phosphorylation and induced nuclear accumulation of FoxO3a in UM-1 cells, increased the expression of pro-apoptotic proteins Bim、p27Kip1, cleaved caspase-3, PARP and Bax, and decreased the expression of Cyclin D1 and Bcl-2. LY294002 or Akt-siRNA inhibited the PI3K/Akt/FoxO3a pathway and promoted the Pristimerin-induced apoptosis, while Pristimerin effects were partially abolished in FoxO3a knockdown UM-1 cell cultures. Taken together, present results showed that Pristimerin induced apoptotic cell death through inhibition of PI3K/Akt/FoxO3a pathway in UM-1 cells. These findings indicate that Pristimerin may be considered as a potential chemotherapeutic agent for patients with UM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号