首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that murine portal vein myocytes express ether-à-go-go related genes (ERGs) and exhibit distinctive currents when recorded under symmetrical K+ conditions. The aim of the present study was to characterize ERG channel currents evoked from a negative holding potential under conditions more pertinent to a physiological scenario to assess the possible functional impact of this conductance. Currents were recorded with ruptured or perforated patch variants of the whole cell technique from a holding potential of –60 mV. Application of three structurally distinct and selective ERG channel blockers, E-4031, dofetilide, and the peptide toxin BeKM-1, all inhibited a significant proportion of the outward current and abolished inward currents with distinctive "hooked" kinetics recorded on repolarization. Dofetilide-sensitive currents at negative potentials evoked by depolarization to +40 mV had a voltage-dependent time to peak and rate of decay characteristic of ERG channels. Application of the novel ERG channel activator PD-118057 (1–10 µM) markedly enhanced the hooked inward currents evoked by membrane depolarization and hyperpolarized the resting membrane potential recorded by current clamp and the perforated patch configuration by 20 mV. In contrast, ERG channel blockade by dofetilide (1 µM) depolarized the resting membrane potential by 8 mV. These data are the first record of ERG channel currents in smooth muscle cells under quasi-physiological conditions that suggest that ERG channels contribute to the resting membrane potential in these cells. vascular smooth muscle; voltage-dependent K+ current; membrane excitability  相似文献   

2.
Interaction of reactive oxygen species with ion transport mechanisms   总被引:22,自引:0,他引:22  
The use ofelectrophysiological and molecular biology techniques has shed light onreactive oxygen species (ROS)-induced impairment of surface andinternal membranes that control cellular signaling. These deleteriouseffects of ROS are due to their interaction with various ion transportproteins underlying the transmembrane signal transduction, namely,1) ion channels, such asCa2+ channels (includingvoltage-sensitive L-type Ca2+currents, dihydropyridine receptor voltage sensors, ryanodine receptorCa2+-release channels, andD-myo-inositol1,4,5-trisphosphate receptor Ca2+-release channels),K+ channels (such asCa2+-activatedK+ channels, inward and outwardK+ currents, and ATP-sensitiveK+ channels),Na+ channels, andCl channels;2) ion pumps, such as sarcoplasmicreticulum and sarcolemmal Ca2+pumps,Na+-K+-ATPase(Na+ pump), andH+-ATPase(H+ pump);3) ion exchangers such as theNa+/Ca2+exchanger andNa+/H+exchanger; and 4) ion cotransporterssuch asK+-Cl,Na+-K+-Cl,andPi-Na+cotransporters. The mechanism of ROS-induced modificationsin ion transport pathways involves1) oxidation of sulfhydryl groups located on the ion transport proteins,2) peroxidation of membrane phospholipids, and 3) inhibition ofmembrane-bound regulatory enzymes and modification of the oxidativephosphorylation and ATP levels. Alterations in the ion transportmechanisms lead to changes in a second messenger system, primarilyCa2+ homeostasis, which furtheraugment the abnormal electrical activity and distortion of signaltransduction, causing cell dysfunction, which underlies pathologicalconditions.

  相似文献   

3.
The most common mutation in the CFTR gene in individuals with cystic fibrosis (CF), F508, leads to the absence of CFTR Cl channels in the apical plasma membrane, which in turn results in impairment of mucociliary clearance, the first line of defense against inhaled bacteria. Pseudomonas aeruginosa is particularly successful at colonizing and chronically infecting the lungs and is responsible for the majority of morbidity and mortality in patients with CF. Rescue of F508-CFTR by reduced temperature or chemical means reveals that the protein is at least partially functional as a Cl channel. Thus current research efforts have focused on identification of drugs that restore the presence of CFTR in the apical membrane to alleviate the symptoms of CF. Because little is known about the effects of P. aeruginosa on CFTR in the apical membrane, whether P. aeruginosa will affect the efficacy of new drugs designed to restore the plasma membrane expression of CFTR is unknown. Accordingly, the objective of the present study was to determine whether P. aeruginosa affects CFTR-mediated Cl secretion in polarized human airway epithelial cells. We report herein that a cell-free filtrate of P. aeruginosa reduced CFTR-mediated transepithelial Cl secretion by inhibiting the endocytic recycling of CFTR and thus the number of WT-CFTR and F508-CFTR Cl channels in the apical membrane in polarized human airway epithelial cells. These data suggest that chronic infection with P. aeruginosa may interfere with therapeutic strategies aimed at increasing the apical membrane expression of F508-CFTR. cystic fibrosis  相似文献   

4.
Voltage-clamp studies offreshly isolated smooth muscle cells from rabbit portal veinrevealed the existence of a time-dependent cation current evoked bymembrane hyperpolarization (termed Ih). Both therate of activation and the amplitude of Ih wereenhanced by membrane hyperpolarization. Half-maximal activation ofIh was about 105 mV with conventional wholecell and 80 mV when the perforated patch technique was used. Incurrent clamp, injection of hyperpolarizing current produced a markeddepolarizing "sag" followed by rebound depolarization. Activationof Ih was augmented by an increase in theextracellular K+ concentration and was blocked rapidly byexternally applied Cs+ (1-5 mM). The bradycardic agentZD-7288 (10 µM), a selective inhibitor of Ih,produced a characteristically slow inhibition of the portal veinIh. The depolarizing sag recorded in current clamp was also abolished by application of 5 mM Cs+.Cs+ significantly decreased the frequency of spontaneouscontractions in both whole rat portal vein and rabbit portal veinsegments. Multiplex RT-PCR of rabbit portal vein myocytes using primers derived from existing genes for hyperpolarization-activated cation channels (HCN1-4) revealed the existence of cDNA clonescorresponding to HCN2, 3, and 4. The present study shows that portalvein myocytes contain genes shown to encode forhyperpolarization-activated channels and exhibit an endogenous currentwith characteristics similar to Ih in other celltypes. This conductance appears to determine, in part, the rhythmicityof this vessel.

  相似文献   

5.
Increased extracellular osmolarity ([Os]e) suppresses stimulated hormone secretion from anterior pituitary cells. Ca2+ influx may mediate this effect. We show that increase in [Os]e (by 18–125%) differentially suppresses L-type and T-type Ca2+ channel currents (IL and IT, respectively); IL was more sensitive than IT. Hyperosmotic suppression of IL depended on the magnitude of increase in [Os]e and was correlated with the percent decrease in pituitary cell volume, suggesting that pituitary cell shrinkage can modulate L-type currents. The hyperosmotic suppression of IL and IT persisted after incubation of pituitary cells either with the actin-disrupter cytochalasin D or with the actin stabilizer phalloidin, suggesting that the actin cytoskeleton is not involved in this modulation. The hyperosmotic suppression of Ca2+ influx was not correlated with changes in reversal potential, membrane capacitance, and access resistance. Together, these results suggest that the hyperosmotic suppression of Ca2+ influx involves Ca2+ channel proteins. We therefore recorded the activity of L-type Ca2+ channels from cell-attached patches while exposing the cell outside the patch pipette to hyperosmotic media. Increased [Os]e reduced the activity of Ca2+ channels but did not change single-channel conductance. This hyperosmotic suppression of Ca2+ currents may therefore contribute to the previously reported hyperosmotic suppression of hormone secretion. L-type Ca2+ channels; osmosensitivity; mechanosensitivity; osmolarity; hyperosmolarity  相似文献   

6.
Inward rectifier K+ channels (Kir) are a significant determinant of endothelial cell (EC) membrane potential, which plays an important role in endothelium-dependent vasodilatation. In the present study, several complementary strategies were applied to determine the Kir2 subunit composition of human aortic endothelial cells (HAECs). Expression levels of Kir2.1, Kir2.2, and Kir2.4 mRNA were similar, whereas Kir2.3 mRNA expression was significantly weaker. Western blot analysis showed clear Kir2.1 and Kir2.2 protein expression, but Kir2.3 protein was undetectable. Functional analysis of endothelial inward rectifier K+ current (IK) demonstrated that 1) IK current sensitivity to Ba2+ and pH were consistent with currents determined using Kir2.1 and Kir2.2 but not Kir2.3 and Kir2.4, and 2) unitary conductance distributions showed two prominent peaks corresponding to known unitary conductances of Kir2.1 and Kir2.2 channels with a ratio of 4:6. When HAECs were transfected with dominant-negative (dn)Kir2.x mutants, endogenous current was reduced 50% by dnKir2.1 and 85% by dnKir2.2, whereas no significant effect was observed with dnKir2.3 or dnKir2.4. These studies suggest that Kir2.2 and Kir2.1 are primary determinants of endogenous K+ conductance in HAECs under resting conditions and that Kir2.2 provides the dominant conductance in these cells. potassium channels; inward rectifier potassium channel  相似文献   

7.
The effect of sphingosine-1-phosphate (S1P) on large-conductance Ca2+-activated K+ (BKCa) channels was examined in primary cultured human umbilical vein endothelial cells by measuring intracellular Ca2+ concentration ([Ca2+]i), whole cell membrane currents, and single-channel activity. In nystatin-perforated current-clamped cells, S1P hyperpolarized the membrane and simultaneously increased [Ca2+]i. [Ca2+]i and membrane potentials were strongly correlated. In whole cell clamped cells, BKCa currents were activated by increasing [Ca2+]i via cell dialysis with pipette solution, and the activated BKCa currents were further enhanced by S1P. When [Ca2+]i was buffered at 1 µM, the S1P concentration required to evoke half-maximal activation was 403 ± 13 nM. In inside-out patches, when S1P was included in the bath solution, S1P enhanced BKCa channel activity in a reversible manner and shifted the relationship between Ca2+ concentration in the bath solution and the mean open probability to the left. In whole cell clamped cells or inside-out patches loaded with guanosine 5'-O-(2-thiodiphosphate) (GDPS; 1 mM) using a patch pipette, GDPS application or pretreatment of cells with pertussis toxin (100 ng/ml) for 15 h did not affect S1P-induced BKCa current and channel activation. These results suggest that S1P enhances BKCa channel activity by increasing Ca2+ sensitivity. This channel activation hyperpolarizes the membrane and thereby increases Ca2+ influx through Ca2+ entry channels. Inasmuch as S1P activates BKCa channels via a mechanism independent of G protein-coupled receptors, S1P may be a component of the intracellular second messenger that is involved in Ca2+ mobilization in human endothelial cells. sphingolipid metabolites; intracellular second messenger; Ca2+ mobilization  相似文献   

8.
Polyamines are essential for cell migrationduring early mucosal restitution after wounding in the gastrointestinaltract. Activity of voltage-gated K+ channels (Kv) controlsmembrane potential (Em) that regulates cytoplasmicfree Ca2+ concentration([Ca2+]cyt) by governing thedriving force for Ca2+ influx. This study determinedwhether polyamines are required for the stimulation of cell migrationby altering K+ channel gene expression,Em, and[Ca2+]cyt in intestinal epithelialcells (IEC-6). The specific inhibitor of polyamine synthesis,-difluoromethylornithine (DFMO, 5 mM), depleted cellularpolyamines (putrescine, spermidine, and spermine), selectivelyinhibited Kv1.1 channel (a delayed-rectifier Kv channel) expression,and resulted in membrane depolarization. Because IEC-6 cells did notexpress voltage-gated Ca2+ channels, the depolarizedEm in DFMO-treated cells decreased [Ca2+]cyt as a result of reduceddriving force for Ca2+ influx through capacitativeCa2+ entry. Migration was reduced by 80% in thepolyamine-deficient cells. Exogenous spermidine not only reversed theeffects of DFMO on Kv1.1 channel expression, Em,and [Ca2+]cyt but also restoredcell migration to normal. Removal of extracellular Ca2+ orblockade of Kv channels (by 4-aminopyridine, 1-5 mM) significantly inhibited normal cell migration and prevented the restoration of cellmigration by exogenous spermidine in polyamine-deficient cells. Theseresults suggest that polyamine-dependent intestinal epithelial cellmigration may be due partially to an increase of Kv1.1 channelexpression. The subsequent membrane hyperpolarization raises[Ca2+]cyt by increasing the drivingforce (the electrochemical gradient) for Ca2+ influx andthus stimulates cell migration.

  相似文献   

9.
The cellular mechanism for Cl and K+ secretion in the colonic epithelium requires K+ channels in the basolateral and apical membranes. Colonic mucosa from guinea pig and rat were fixed, sectioned, and then probed with antibodies to the K+ channel proteins KVLQT1 (Kcnq1) and minK-related peptide 2 (MiRP2, Kcne3). Immunofluorescence labeling for Kcnq1 was most prominent in the lateral membrane of crypt cells in rat colon. The guinea pig distal colon had distinct lateral membrane immunoreactivity for Kcnq1 in crypt and surface cells. In addition, Kcne3, an auxiliary subunit for Kcnq1, was detected in the lateral membrane of crypt and surface cells in guinea pig distal colon. Transepithelial short-circuit current (Isc) and transepithelial conductance (Gt) were measured for colonic mucosa during secretory activation by epinephrine (EPI), prostaglandin E2 (PGE2), and carbachol (CCh). HMR1556 (10 µM), an inhibitor of Kcnq1 channels (Gerlach U, Brendel J, Lang HJ, Paulus EF, Weidmann K, Brüggemann A, Busch A, Suessbrich H, Bleich M, and Greger R. J Med Chem 44: 3831–3837, 2001), partially (50%) inhibited Cl secretory Isc and Gt activated by PGE2 and CCh in rat colon with an IC50 of 55 nM, but in guinea pig distal colon Cl secretory Isc and Gt were unaltered. EPI-activated K+-secretory Isc and Gt also were essentially unaltered by HMR1556 in both rat and guinea pig colon. Although immunofluorescence labeling with a Kcnq1 antibody supported the basolateral membrane presence in colonic epithelium of the guinea pig as well as the rat, the Kcnq1 K+ channel is not an essential component for producing Cl secretion. Other K+ channels present in the basolateral membrane presumably must also contribute directly to the K+ conductance necessary for K+ exit during activation of Cl secretion in the colonic mucosa. HMR1556; K+ secretion; epinephrine; prostaglandin E2; cholinergic  相似文献   

10.
Acute hypoxia causes pulmonary vasoconstriction in part by inhibiting voltage-gated K+ (Kv) channel activity in pulmonary artery smooth muscle cells (PASMC). The hypoxia-mediated decrease in Kv currents [IK(V)] is selective to PASMC; hypoxia has little effect on IK(V) in mesenteric artery smooth muscle cells (MASMC). Functional Kv channels are homo- and/or heterotetramers of pore-forming -subunits and regulatory -subunits. KCNA5 is a Kv channel -subunit that forms functional Kv channels in PASMC and regulates resting membrane potential. We have shown that acute hypoxia selectively inhibits IK(V) through KCNA5 channels in PASMC. Overexpression of the human KCNA5 gene increased IK(V) and caused membrane hyperpolarization in HEK-293, COS-7, and rat MASMC and PASMC. Acute hypoxia did not affect IK(V) in KCNA5-transfected HEK-293 and COS-7 cells. However, overexpression of KCNA5 in PASMC conferred its sensitivity to hypoxia. Reduction of PO2 from 145 to 35 mmHg reduced IK(V) by 40% in rat PASMC transfected with human KCNA5 but had no effect on IK(V) in KCNA5-transfected rat MASMC (or HEK and COS cells). These results indicate that KCNA5 is an important Kv channel that regulates resting membrane potential and that acute hypoxia selectively reduces KCNA5 channel activity in PASMC relative to MASMC and other cell types. Because Kv channels (including KCNA5) are ubiquitously expressed in PASMC and MASMC, the observation from this study indicates that a hypoxia-sensitive mechanism essential for inhibiting KCNA5 channel activity is exclusively present in PASMC. The divergent effect of hypoxia on IK(V) in PASMC and MASMC also may be due to different expression levels of KCNA5 channels. membrane potential; potassium channels; vascular smooth muscle  相似文献   

11.
The patch-clamp technique was used to study the effects ofcarbachol (CCh) on HT-29 cells. During CCh exposure, the cells (n = 23) depolarized close to theequilibrium potential forCl(;48 mV) and the membrane potential then started to oscillate(16/23 cells). In voltage-clamp experiments, similar oscillations inwhole cell currents could be demonstrated. The whole cell conductanceincreased from 225 ± 25 pS in control solution to 6,728 ± 1,165 pS (means ± SE, n = 17). Insubstitution experiments (22 mMCl in bath solution, = 0 mV), the reversal potential changed from 41.6 ± 2.2 mV(means ± SE, n = 9) to 3.2 ± 2.0 mV (means ± SE, n = 7).When the cells were loaded with the calcium-sensitive fluorescent dye,fluo 3, and simultaneously patch clamped, CCh caused a synchronousoscillating pattern of fluorescence and membrane potential. Incell-attached patches, the CCh-activated currents reversed at arelative membrane potential of 1.9 ± 3.7 mV (means ± SE,n = 11) with control solution in thepipette and at 46.2 ± 5.3 mV (means ± SE,n = 10) with a 15 mMCl solution in the pipette.High K+ (144 mM) did not changethe reversal potential significantly (P  0.05, n = 8). In inside-out patches,calcium-dependent Clchannels could be demonstrated with a conductance of 19 pS(n = 7). It is concluded that CChcauses oscillations in membrane potential that involvecalcium-dependent Clchannels and a K+ permeability.

  相似文献   

12.
Published data suggest that the neuropeptide calcitonin gene-related peptide (CGRP) can stimulate osteoblastic bone formation; however, interest has focused on activation of cAMP-dependent signaling pathways in osteogenic cells without full consideration of the importance of cAMP-independent signaling. We have now examined the effects of CGRP on intracellular Ca2+ concentration ([Ca2+]int) and membrane potential (Em) in preosteoblastic human MG-63 cells by single-cell fluorescent confocal analysis using fluo 4-AM-fura red-AM and bis(1,3-dibarbituric acid)-trimethine oxanol [DiBAC4(3)] bis-oxonol assays. CGRP produced a two-stage change in [Ca2+]int: a rapid transient peak and a secondary sustained increase. Both responses were dose dependent with an EC50 of 0.30 nM, and the maximal effect (initially 3-fold over basal levels) was observed at 20 nM. The initial phase was sensitive to inhibition of Ca2+ mobilization with thapsigargin, whereas the secondary phase was eliminated only by blocking transmembrane Ca2+ influx with verapamil or inhibiting cAMP-dependent signaling with the Rp isomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS). These data suggest that CGRP initially stimulates Ca2+ discharge from intracellular stores by a cAMP-independent mechanism and subsequently stimulates Ca2+ influx through L-type voltage-dependent Ca2+ channels by a cAMP-dependent mechanism. In addition, CGRP dose-dependently polarized cellular Em, with maximal effect at 20 nM and an EC50 of 0.30 nM. This effect was attenuated with charybdotoxin (–20%) or glyburide (glibenclamide; –80%), suggesting that Em hyperpolarization is induced by both Ca2+-activated and ATP-sensitive K+ channels. Thus CGRP signals strongly by both cAMP-dependent and cAMP-independent signaling pathways in preosteoblastic human MG-63 cells. osteoblastic cells; calcium; membrane potential; potassium channels; adenosine 3',5'-cyclic monophosphate  相似文献   

13.
Using the patch-clamp technique, we studied the effects ofepidermal growth factor (EGF) on whole cell and single channel currentsin adult rat alveolar epithelial type II cells in primary culture inthe presence or absence of EGF for 48 h. In symmetrical sodiumisethionate solutions, EGF exposure caused a significant increase inthe type II cell whole cell conductance. Amiloride (10 µM) produced ~20-30% inhibition of the wholecell conductance in both the presence and absence of EGF, such that EGFcaused the magnitude of the amiloride-sensitive component to more than double. Northern analysis showed that -, - and -subunits of rat epithelial Na+ channel (rENaC)steady-state mRNA levels were all significantly decreased by EGF. Atthe single channel level, all active inside-out patches demonstratedonly 25-pS channels that were amiloride sensitive and relativelynonselective for cations(PNa+/PK+  1.0:0.48). Although the biophysical characteristics (conductance, open-state probability, and selectivity) of the channels from EGF-treated and untreated cells were essentially identical, channel density was increased by EGF; the modal channel per patch was increasedfrom 1 to 2. These findings indicate that EGF increases expression ofnonselective, amiloride-sensitive cation channels in adult alveolarepithelial type II cells. The contribution of rENaC to the totalEGF-dependent cation current under these conditions is quantitativelyless important than that of the nonselective cation channels in these cells.

  相似文献   

14.
Dietary polyunsaturated fatty acids (PUFAs) have been reported to exhibit antiarrhythmic properties, which have been attributed to their availability to modulate Na+, Ca2+, and several K+ channels. However, their effects on human ether-a-go-go-related gene (HERG) channels are unknown. In this study we have analyzed the effects of arachidonic acid (AA, -6) and docosahexaenoic acid (DHA, -3) on HERG channels stably expressed in Chinese hamster ovary cells by using the whole cell patch-clamp technique. At 10 µM, AA and DHA blocked HERG channels, at the end of 5-s pulses to –10 mV, to a similar extent (37.7 ± 2.4% vs. 50.2 ± 8.1%, n = 7–10, P > 0.05). 5,6,11,14-Eicosatetrayenoic acid, a nonmetabolizable AA analog, induced effects similar to those of AA on HERG current. Both PUFAs shifted the midpoint of activation curves of HERG channels by –5.1 ± 1.8 mV (n = 10, P < 0.05) and –11.2 ± 1.1 mV (n = 7, P < 0.01). Also, AA and DHA shifted the midpoint of inactivation curves by +12.0 ± 3.9 mV (n = 4; P < 0.05) and +15.8 ± 4.3 mV (n = 4; P < 0.05), respectively. DHA and AA accelerated the deactivation kinetics and slowed the inactivation kinetics at potentials positive to +40 mV. Block induced by DHA, but not that produced by AA, was higher when measured after applying a pulse to –120 mV (IO). Finally, both AA and DHA induced a use-dependent inhibition of HERG channels. In summary, block induced by AA and DHA was time, voltage, and use dependent. The results obtained suggest that both PUFAs bind preferentially to the open state of the channel, although an interaction with inactivated HERG channels cannot be ruled out for AA. K+ channel; membrane currents; ion channels; arrhythmia; antiarrhythmics  相似文献   

15.
We have previously shown that a pretreatment with phorbol12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC),reduced deoxygenation-induced K+loss and Ca2+ uptake and preventedcell dehydration in sickle anemia red blood cells (SS cells) (H. Fathallah, E. Coezy, R.-S. De Neef, M.-D. Hardy-Dessources, and F. Giraud. Blood 86: 1999-2007,1995). The present study explores the detailed mechanism of thisPMA-induced inhibition. The main findings are, first, the detection ofPKC and PKC in normal red blood cells and the demonstration that both isoforms are expressed at higher levels in SS cells. The -isoform only is translocated to the membrane and activated by PMAand by elevation of cytosolicCa2+. Second, PMA is demonstratedto activate Ca2+ efflux indeoxygenated SS cells by a direct stimulation of the Ca2+ pump. PMA, moreover, inhibitsdeoxygenation-induced, charybdotoxin-sensitive K+ efflux in SS cells. Thisinhibition is partly indirect and explained by the reduceddeoxygenation-induced rise in cytosolicCa2+ resulting fromCa2+ pump stimulation. However, asignificant inhibition of theCa2+-activatedK+ channels(KCa channels) by PMA can also bedemonstrated when the channels are activated byCa2+ plus ionophore, underconditions in which the Ca2+ pumpis operating near its maximal extrusion rate, but swamped byCa2+ plus ionophore. The data thussuggest a PKC-mediated phosphorylation both of theCa2+ pump and of theKCa channel or an auxiliaryprotein.

  相似文献   

16.
The goal of the present study was to testthe hypothesis that local Ca2+ release events(Ca2+ sparks) deliver high local Ca2+concentration to activate nearby Ca2+-sensitiveK+ (BK) channels in the cell membrane of arterial smoothmuscle cells. Ca2+ sparks and BK channels were examined inisolated myocytes from rat cerebral arteries with laser scanningconfocal microscopy and patch-clamp techniques. BK channels had anapparent dissociation constant for Ca2+ of 19 µM and aHill coefficient of 2.9 at 40 mV. At near-physiological intracellularCa2+ concentration ([Ca2+]i; 100 nM) and membrane potential (40 mV), the open probability of a singleBK channel was low (1.2 × 106). A Ca2+spark increased BK channel activity to 18. Assuming that 1-100% of the BK channels are activated by a single Ca2+ spark, BKchannel activity increases 6 × 105-fold to 6 × 103-fold, which corresponds to ~30 µM to 4 µM sparkCa2+ concentration.1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester caused the disappearance of all Ca2+sparks while leaving the transient BK currents unchanged. Our resultssupport the idea that Ca2+ spark sites are in closeproximity to the BK channels and that local[Ca2+]i reaches micromolar levels to activateBK channels.

  相似文献   

17.
Previous studies have shown that inhibition of L-type Ca2+ current (ICa) by cytosolic free Mg2+ concentration ([Mg2+]i) is profoundly affected by activation of cAMP-dependent protein kinase pathways. To investigate the mechanism underlying this counterregulation of ICa, rat cardiac myocytes and tsA201 cells expressing L-type Ca2+ channels were whole cell voltage-clamped with patch pipettes in which [Mg2+] ([Mg2+]p) was buffered by citrate and ATP. In tsA201 cells expressing wild-type Ca2+ channels (1C/2A/2), increasing [Mg2+]p from 0.2 mM to 1.8 mM decreased peak ICa by 76 ± 4.5% (n = 7). Mg2+-dependent modulation of ICa was also observed in cells loaded with ATP--S. With 0.2 mM [Mg2+]p, manipulating phosphorylation conditions by pipette application of protein kinase A (PKA) or phosphatase 2A (PP2A) produced large changes in ICa amplitude; however, with 1.8 mM [Mg2+]p, these same manipulations had no significant effect on ICa. With mutant channels lacking principal PKA phosphorylation sites (1C/S1928A/2A/S478A/S479A/2), increasing [Mg2+]p had only small effects on ICa. However, when channel open probability was increased by 1C-subunit truncation (1C1905/2A/S478A/S479A/2), increasing [Mg2+]p greatly reduced peak ICa. Correspondingly, in myocytes voltage-clamped with pipette PP2A to minimize channel phosphorylation, increasing [Mg2+]p produced a much larger reduction in ICa when channel opening was promoted with BAY K8644. These data suggest that, around its physiological concentration range, cytosolic Mg2+ modulates the extent to which channel phosphorylation regulates ICa. This modulation does not necessarily involve changes in channel phosphorylation per se, but more generally appears to depend on the kinetics of gating induced by channel phosphorylation. voltage-gated Ca2+ channel; cardiac myocytes; human embryonic kidney cells; protein kinase A; protein phosphatase 2A  相似文献   

18.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

19.
We found that the amyloid peptide A(1-42) is capable of interacting with membrane and forming heterogeneous ion channels in the absence of any added Cu2+ or biological redox agents that have been reported to mediate A(1-42) toxicity. The A(1-42)-formed cation channel was inhibited by Cu2+ in cis solution ([Cu2+]cis) in a voltage- and concentration-dependent manner between 0 and 250 µM. The [Cu2+]cis-induced channel inhibition is fully reversible at low concentrations between 50 and 100 µM [Cu2+]cis and partially reversible at 250 µM [Cu2+]cis. The inhibitory effects of [Cu2+]cis between 50 and 250 µM on the channel could not be reversed with addition of Cu2+-chelating agent clioquinol (CQ) at concentrations between 64 and 384 µM applied to the cis chamber. The effects of 200-250 µM [Cu2+]cis on the burst and intraburst kinetic parameters were not fully reversible with either wash or 128 µM [CQ]cis. The kinetic analysis of the data indicate that Cu2+-induced inhibition was mediated via both desensitization and an open channel block mechanism and that Cu2+ binds to the histidine residues located at the mouth of the channel. It is proposed that the Cu2+-binding site of the A(1-42)-formed channels is modulated with Cu2+ in a similar way to those of channels formed with the prion protein fragment PrP(106-126), suggesting a possible common mechanism for Cu2+ modulation of A and PrP channel proteins linked to neurodegenerative diseases. neurodegenerative diseases; transitional metals; ion channel pathologies; membrane injuries; calcium homeostasis  相似文献   

20.
Whole cell patch-clamprecordings were made from cultured myenteric neurons taken from murineproximal colon. The micropipette contained Cs+ to removeK+ currents. Depolarization elicited a slowly activatingtime-dependent outward current (Itdo), whereasrepolarization was followed by a slowly deactivating tail current(Itail). Itdo andItail were present in ~70% of neurons. Weidentified these currents as Cl currents(ICl), because changing the transmembraneCl gradient altered the measured reversal potential(Erev) of both Itdo andItail with that for Itailshifted close to the calculated Cl equilibrium potential(ECl). ICl areCa2+-activated Cl current[ICl(Ca)] because they were Ca2+dependent. ECl, which was measured from theErev of ICl(Ca) using agramicidin perforated patch, was 33 mV. This value is more positivethan the resting membrane potential (56.3 ± 2.7 mV), suggestingmyenteric neurons accumulate intracellular Cl.-Conotoxin GIVA [0.3 µM; N-type Ca2+ channelblocker] and niflumic acid [10 µM; knownICl(Ca) blocker], decreased theICl(Ca). In conclusion, these neurons haveICl(Ca) that are activated by Ca2+entry through N-type Ca2+ channels. These currents likelyregulate postspike frequency adaptation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号